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Zusammenfassung

Energetische Formulierungen der Plastizität endlicher Verzerrungen sind ein Beispiel für die
allgemeine Theorie der ratenunabhängigen Systeme. Sie sind als direkte Verallgemeinerung der
primalen Formulierung der Plastizität kleiner Verzerrungen zu sehen, bei der die Unbekann-
ten als die Verschiebungen, die plastische Dehnung und möglicherweise Verhärtungsvariablen
gegeben sind. Insbesondere benutzt der Begriff energetischer Lösungen keine Ableitungen, was
die elegante Modellierung nicht-glatter Phänomene ermöglicht.

Weiterhin können energetische Lösungen als Grenzwerte stückweise konstanter Interpolan-
ten von Lösungen für zeitinkrementelle Minimierungsprobleme charakterisiert werden, wodurch
die zugehörige Formulierung zugänglich für Optimierungsalgorithmen wird. Allerdings bein-
halten die zeitinkrmentellen Minimierungsprobleme einige Schwierigkeiten: Sie sind hochgradig
nicht-linear, nicht-konvex und nicht-glatt. Die Entwicklung entsprechender Lösungsalgorith-
men ist das Ziel der vorliegenden Arbeit.

Nach dem Erklären der speziellen Problemstruktur sowohl im allgemeinen Rahmen raten-
unabhängier Systeme als auch als konkrete Formulierung für die Plastizität endlicher Ver-
zerrungen wird die algorithmische Idee von Proximal Newton Methoden aus der Literatur
für endlichdimensionale Optimierung vorgestellt. Da bestehende Formulierungen nicht die
Behandlung von Funktionenraumproblemen erlauben, werden algorithmische Konzepte und
Konvergenztheorie auf ein hinreichend allgemeines Hilbertraumszenario angepasst.

Während die Differenzierbarkeitsbedingungen mithilfe sowohl bekannter als auch neuar-
tiger Semiglattheitsbegriffe gelockert werden, hilft eine quadratische Normregularisierung im
Subproblem zur Schrittberechnung dabei, restriktive Konvexitätsannahmen an das Zielfunk-
tional zu beseitigen. Globale Konvergenz und lokale Beschleunigung der Proximal Newton
Methode werden bewiesen und numerische Robustheit nahe an optimalen Lösungen wird durch
das Einführen eines alternativen Abstiegskriteriums für Szenarios, die anfällig für numerische
Auslöschung sind, gesichert.

Die inexakte Berechnung von Schritten und adaptive Strategien zur Parameterwahl verbes-
sern die Effizienz der Berechnungen im Algorithmus noch weiter – und zwar unter Aufrechter-
haltung der vorteilhaften Konvergenzeigenschaften. Insbesondere müssen dabei auch die zuge-
hörigen Inexaktheitskriterien für die effiziente Auswertung im Funktionenraum konzipiert wer-
den. Der Einfluss dieser algorithmischen Modifikationen wird numerisch anhand einer Reihe
von Modellproblemen im Funktionenraum untersucht.

Zuletzt wird die finale Form des Lösungsalgorithmus auf ein anspruchsvolles und realisti-
sches Anwendungsproblem aus dem Bereich der Plastizität endlicher Verzerrungen angewen-
det: die Deformation einer stahl-ähnlichen Büroklammer in einem binären Homotopieproblem,
das aus dem Laden mit verschieden starken Kräften und dem nachfolgenden Entladen besteht,
um die irreversible Natur plastischer Verformungen zu demonstrieren.
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Abstract

The energetic formulation of finite strain plasticity is an instance of the general theory of
rate-independent systems. It can be understood as a direct generalization of the primal for-
mulation of small strain plasticity where the unknowns are the displacements, plastic strains,
and possibly hardening variables. In particular, the notion of energetic solutions does not
involve derivatives which allows for modeling non-smooth phenomena in an elegant way.

Furthermore, energetic solutions can be characterized as the limits of piecewise constant
interpolants of solutions to time-incremental minimization problems which makes the cor-
responding formulation amenable to optimization algorithms. However, various difficulties
are present in the time-incremental minimization problems: They are highly non-linear, non-
convex, and non-smooth. The development of adequate solution algorithms is the goal of the
present treatise.

After the particular problem structure is presented both in the general framework of rate-
independent systems and in the concrete formulation of finite strain plasticity, the algorithmic
idea of Proximal Newton methods for composite minimization problems is introduced as con-
sidered in the literature for finite dimensional optimization. Since existing formulations do
not allow for the treatment of function space problems like finite strain plasticity, algorithmic
concepts and convergence theory are adapted to a sufficiently general Hilbert space scenario.

While the framework of differentiability is loosened by developing a formulation which ade-
quately uses both known and novel concepts of semi-smoothness, restrictive convexity assump-
tions on the composite objective functional are eliminated by quadratic norm regularization in
the update step computation subproblems. Global convergence and local acceleration of the
Proximal Newton method are established and numerical robustness close to optimal solutions
is ensured by introducing an alternative sufficient decrease criterion for scenarios susceptible
to numerical cancellation.

Inexact computation of update steps and adaptive strategies for choosing algorithmic pa-
rameters further improve the computational efficiency of the algorithm while preserving advan-
tageous convergence properties. In particular, also the corresponding inexactness criteria for
update step candidates are designed for efficient evaluation in a function space scenario. The
influence of these algorithmic modifications is investigated numerically in a series of function
space model problems.

Lastly, the final form of the solution algorithm is exposed to a demanding real world
application problem from the framework of finite strain plasticity: the deformation of a steel-
like paperclip in a binary homotopy problem which consists of loading with forces of different
intensity and unloading in order to showcase the irreversible nature of plastic deformations.
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Chapter 1

Introduction

1.1 A Historical Overview of Approaches Towards Mathemati-
cal Elasto-Plasticity

The mathematical modeling of elasto-plastic problems is essential for a wide range of fields, in-
cluding structural design, manufacturing processes, technological production, and – of course –
scientific research. Under specific conditions, several material types such as metals, concrete,
rocks, clays, and soils may in fact be considered as plastic. While the origin of plasticity can
be traced back to the mid-nineteenth century to the work of Tresca [105], more contributions
to the classical theory of plasticity started to appear around the first half of the twentieth
century, cf. [39, 46, 71, 82, 98].

Within the last decades, a considerable amount of progress has been made in the theory of
elasto-statics at finite strains. Phenomena inherent to the latter field exhibit geometric non-
linearities as well as physically necessary singularities which is why the approaches for their
treatment developed in [5] have been considered a breakthrough in the field. Approximately
at the same time, also the theory of elasto-plasticity enjoyed major attention which have led
to a rigorous mathematical basis, cf. [1, 36, 73, 103]. In these early developments, however,
authors mainly restricted their deliberations to the case of small strains where methods of
convex analysis in Hilbert spaces can be taken advantage of straight-forwardly.

For the consideration of elasto-plasticity at finite strains, the authors in [78, 79] established
the fact that time-incremental problems in the rate-independent and in the viscoplastic case
can be written as a minimization problem for the sum of the increments in the stored energy
and the dissipated energy. In particular, this major advance allowed for the proof of general
existence results for the time-continuous problem by direct methods in the calculus of varia-
tions, cf. [60]. Furthermore, the theory developed within the latter work takes advantage of
the concept of energetic solutions for rate-independent systems which have first been consid-
ered in [67] and further developed in [30, 62, 66]. This notion allows for coping with the strong
non-linearities generated by the particular Lie group structure within the general and special
linear matrix group.

Even though also efficient numerical methods have been developed and successfully imple-
mented, cf. [93], neither of these schemes has been supported by rigorous convergence analysis
up until [65]. There, recent advances in abstract numerical approaches for rate-independent
processes [64, 66] are used in order to construct specific finite-element numerical schemes for
gradient plasticity at large strains and guarantee their convergence in sufficient generality.
Even there, however, the question of how to solve the occurring time-incremental minimiza-
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2 1.2. CONTRIBUTIONS AND OUTLINE

tion problems efficiently remains somewhat vague. We will cover this peculiar topic within
the present treatise by investigating a whole class of minimization algorithms which can in
particular be utilized for that task.

1.2 Contributions and Outline

As mentioned above, the main objective of this thesis is the development of an efficient func-
tion space minimization algorithm which can cope with the structural peculiarities exhibited
by time-incremental minimization problems stemming from finite strain plasticity formulated
in the framework of rate-independent systems. A thorough understanding of both the prob-
lem structure in function space and existing approaches towards corresponding minimization
algorithms is established in order to then design an iterative method which features both al-
gorithmic functionality and computational effectiveness. The structure is as follows:

Chapter 1 – Introduction. Now that we have given a short historical overview of mathe-
matical approaches for elasto-plasticity, the remainder of the chapter provides a collection of
standard notation which is used throughout the present treatise. Most of the particular formu-
lations, however, will be explained when they first appear in the main part of the manuscript.

Chapter 2 – Rate-Independent Finite Strain Plasticity. This chapter introduces the
motivational application problem for the development of our function space algorithm: time-
incremental minimization problems in the framework of finite strain plasticity. In order to
adequately formulate the particular problem setting and structure, we first elaborate on the
general concept of rate-independent systems together with the corresponding problem formula-
tions, solution concepts, and existence theory of solutions. Afterwards, we review the physical
description of finite strain plasticity and fit it into the framework of rate-independent systems.
Lastly, we formulate the specific form of the application problem as we will solve it later on
in our numerical investigations.

Chapter 3 – Proximal Newton Methods in Hilbert Spaces. With the specific problem
formulation at hand, we depart on the endeavor of developing an adequate solution algorithm.
To this end, we first review existing approaches for minimizing objective functionals – mainly
in finite dimensional scenarios. In that process, we emphasize central principles of non-linear
optimization which we will come back to in the design of our algorithm. Afterwards, we lay the
foundation for the final formulation of the algorithm by generalizing existing ideas for Proximal
Newton methods to an infinite dimensional Hilbert space setting. The particular structure of
our method allows for the application to problems with objective functions exhibiting rather
inconvenient differentiability and convexity properties.

Chapter 4 – Modifications for Algorithmic Efficiency. Even though the previously
constructed function space algorithm constitutes a functioning method applicable to problems
of the desired nature, the aspect of computational efficiency has been disregarded up to that
point. For this reason, we develop inexactness criteria for update step candidates of the Proxi-
mal Newton algorithm which allow to both save computational time and preserve convergence
properties of the exact method. Particular importance is laid on the efficient evaluation of
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these inexactness criteria in the infinite dimensional Hilbert space setting in which we want
to apply our method. Furthermore, we explore possibilities to adaptively choose algorithmic
parameters over the course of our algorithm in order to take advantage of the structure of the
underlying minimization problem even further.

Chapter 5 – Application to Finite Strain Plasticity. The modified version of our solu-
tion algorithm is compared with its unmodified variant in the computation of solutions for a
series of demanding time-incremental minimization problems stemming from the formulation
of finite strain plasticity in the framework of rate-independent systems. This allows for an
assessment to which extent the modifications developed in the previous chapter improve the
algorithmic efficiency of our method. Afterwards, the modified version of the algorithm is
employed in order to solve yet another finite strain plasticity problem with a more complex
problem geometry and yet another material model governing the response of the test object.
The latter is given by a metal paperclip and thus represents an illustrative example for finite
strain plasticity theory in everyday life.

Chapter 6 – Conclusion. The results of this thesis are summarized and put in perspective
with respect to open questions and current research on related topics.

Appendix. The appendix contains specifications on the implementation which are not elab-
orately explained in the main part of the manuscript. Additionally, we list the test machine
specifications and describe the availability of computational data from our numerical investi-
gations.

1.3 Some Notation

Let us here give a short overview over some standard notation which we will use across most
chapters in the following. While chapter- or even section-specific notation will be introduced
just where it is needed, we will cover some more general concepts here. Furthermore, a list of
symbols is included after the appendix.

Spaces and Norms

To make a start, the natural and real numbers are denoted by the symbols N and R. Let us
then consider some d ∈ N together with the corresponding d-dimensional Euclidean space Rd.
By ∥∥·∥∥ : Rd → R and 〈·, ·〉Rd : Rd × Rd → R

we refer to any of the equivalent norms and the Euclidean scalar product. Obviously, these
concepts can be transferred to more general spaces X where we will then write

∥∥·∥∥
X

for a
fixed one of the generally non-equivalent norms, and 〈·, ·〉X in case a scalar product is defined,
accordingly. On Hilbert spaces (X, 〈·, ·〉X), the norm is always induced by the scalar product
〈·, ·〉X unless otherwise stated.

As far as notable subsets of the general matrix space Rd×d are concerned, we will often use
the general linear group GL+(d) and, as a subset of the former, also the special linear group
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SL(d) defined by

GL+(d) :=
{

M ∈ Rd×d
∣∣ det(M) > 0

}
and SL(d) :=

{
M ∈ Rd×d

∣∣det(M) = 1
}
. (1.3.1)

Additionally, we write I ∈ Rd×d for the identity matrix.
Metric spaces (X, dX) endowed with some metric dX : X ×X → R allow us to define the

ball of radius r around an element x ∈ X by

Br(x) :=
{
y ∈ X

∣∣ dX(x, y) ≤ r
}
.

The space of continuous linear mappings between normed spaces (X,
∥∥·∥∥

X
) and (Y,

∥∥·∥∥
Y

) is
denoted by L(X,Y ) which also lets us introduce the dual space of X as X∗ := L(X,R). Then,
the evaluation of a linear functional ϕ ∈ X∗ for some v ∈ X is either emphasized by writing
〈ϕ, v〉 or simply denoted by ϕv in qualified situations for the sake of notational simplicity.

Differentiation, Integration, and Function Spaces

Lastly, let us shortly elaborate on the notation regarding differentiation, integration, and the
ensuing function spaces. By Dv we refer to the partial (weak) derivative of some functional with
respect to the placeholder variable v within its definition. The dot Ṗ signifies – depending on
the context of its use – either the (weak) time-derivative of the corresponding time-dependent
functional or the (weak) derivative of a parameterized curve with respect to the corresponding
parameter within its definition.

Let us now consider some function φ : X × V → R, (x, v) 7→ φ(x, v) on general Banach
spaces X,V . In case φ is convex concerning the placeholder variable v, the convex subdiffer-
ential with respect to v at any (x, v) ∈ X × V is referred to as

∂vφ(x, v) :=
{
ξ ∈ V ∗

∣∣ ∀ṽ ∈ V : φ(x, ṽ) ≥ φ(x, v) + 〈ξ, ṽ − v〉
}

(1.3.2)

where the variable indicator is omitted in case φ only depends on one variable. The above set
of subderivatives can be generalized to mappings ψ : X × V → R, (x, v) 7→ ψ(x, v), which are
non-convex also in the v-variable with the use of the Fréchet-subdifferential

∂vFψ :=

{
ξ ∈ V ∗

∣∣∣∣ lim inf
u→v

ψ(x, u)− ψ(x, v)− 〈ξ, u− v〉∥∥u− v∥∥
V

≥ 0

}
(1.3.3)

which coincides with ∂vψ in case ψ is convex with respect to v, cf. [51]. Also here, we omit
the variable indicator in the trivial case. The definitions of the generalized differentials ∂B
and ∂G will be given and elaborated on in Section 3.1.2.

As far as integration is concerned, both our notation and setup are straight-forward and
easy to understand. All appearing integrals are to be understood with respect to the corre-
sponding d-dimensional Lebesgue measure L d where d depends on the variable to be inte-
grated over. With this specification out of the way, for any subset Ω ⊂ Rd we can introduce the
Lebesgue spaces Lp(Ω) for 1 ≤ p ≤ ∞. These are defined as equivalence classes of (extended)
real valued functions defined on Ω that are finitely p-integrable, or essentially bounded with
respect to the Lebesgue measure when p =∞. The standard norms are

∥∥v∥∥
Lp(Ω)

:=
( ∫

Ω
|v(x)|pdx

) 1
p and

∥∥v∥∥
L∞(Ω)

:= ess sup
x∈Ω

|v(x)|
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for p <∞ and p =∞ respectively. When elements of these spaces are referred to as functions,
this is understood to mean the entire class of functions.

For an open set Ω ∈ Rd, the Sobolev space W k,p(Ω) contains all functions in Lp(Ω) with
finitely p-integrable weak derivatives up to order k ∈ N, i.e.,

W k,p(Ω) :=
{
v ∈ Lp(Ω)

∣∣∀|α| ≤ k : Dαv ∈ Lp(Ω)
}

where |α| :=
∑d

k=0 αk is the order of a multi-index α = (α1, ..., αd) ∈
(
N ∪ {0}

)d and Dαv de-
notes the corresponding mixed partial α-derivative. The standard norms of some v ∈W k,p(Ω)
are given by∥∥v∥∥

Wk,p(Ω)
:=
( ∑

0≤|α|≤k

∥∥Dαv
∥∥p
Lp(Ω)

) 1
p and

∥∥v∥∥
Wk,∞(Ω)

:= max
|α|≤k

∥∥Dαv
∥∥
L∞(Ω)

.

For bounded strong Lipschitz domains Ω ⊂ Rd, the (surjective) trace operator for the boundary
∂Ω is

tr : W 1,p(Ω)→W
1− 1

p
,p

(∂Ω) .

With this definition at hand, we can then consider

W 1,p
0 (Ω) :=

{
v ∈W 1,p(Ω)

∣∣ tr(v) = 0 a.e. on ∂Ω
}

where “a.e. on ∂Ω” is to be understood in sense of the (d− 1)-dimensional Hausdorff measure
on ∂Ω. For p = 2 and k ∈ N, the sets as defined above are Hilbert spaces and the standard
abbreviation Hk(Ω) := W k,2(Ω) together with Hk

0 (Ω) := W k,2
0 (Ω) is applied.



Chapter 2

Rate-Independent Finite Strain
Plasticity

The aim of this chapter consists of providing sufficient background knowledge for the main
application of our work, namely describing plastic deformations at finite strains. To this
end, in Section 2.1 we motivate, introduce, and study so-called rate-independent systems as
considered in [66]. These will constitute a fitting framework for investigating the finite strain
plasticity problem and provide an adequate concept of solutions together with an intuitive
way to approximately compute them numerically by solving a series of so-called homotopy
step problems. Later on, in Section 2.2, we deduce the elasto-plasticity problem at finite
strains from continuum mechanics and present a formulation of it fitting into the framework
of rate-independent systems. At last, we introduce and simplify the particular application
problem which we will later on consider in Chapter 5 for our numerical simulations.

2.1 Rate-Independent Systems

As mentioned above, we will now bring the mathematical theory for continuum mechanics of
elastic solids into a more general framework which is also capable of coping with for example
poling-induced piezoelectricity or viscodynamics: so-called rate-independent systems. The
theory behind these has been thoroughly investigated in [66] and the following section of the
present treatise is mainly a concise reformulation of selected contents presented there with
some additional elaborations and filled-in gaps.

We will motivate and define the notion of rate-independent systems in Section 2.1.1 and
afterwards give different approaches to formulating the general problem as well as provide
concepts of solutions to the latter in Section 2.1.2. Finally, in Section 2.1.3, we will give an
intuitively accessible version of the requirements for and motivate their contribution to the
proof of the central existence result for solutions of rate-independent systems – in particular
with regard to its application in the later stages of the present treatise.

2.1.1 Motivation and Definition

A central notion for the motivation and understanding of the concept of rate-independent
systems is the one of intrinsic time scales and their relation to each other. In order to on
the one hand understand the nature of intrinsic time scales and give a first and rather acces-
sible example of a rate-independent system, we will consider the following type of ordinary

6
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differential equations arising in mechanics, cf. [66, Chapter 1]:

Mq̈ + F (q̇) + Kq = ˆ̀(t) . (2.1.1)

The differential equation describes the evolution of the state q : [0, T ] → Rn for some T > 0
and n ∈ N. The symmetric and positive definite matrices M,K ∈ Rn×n represent the respective
mass and stiffness tensor of the underlying system. The vector-field F : Rn → Rn describes the
influence of (possibly non-linear) damping while ˆ̀ : [0, T ] → Rn is a time-dependent external
force.

Assuming for now that the damping is governed by some symmetric viscosity matrix V
via F (q̇) = Vq̇, we can characterize the aforementioned time-scales of the described system as
follows: Firstly, internal time scales which split up to the dynamic time scale corresponding
to oscillatory frequencies (eigenvalues of M−1K) and the viscous time scale corresponding
to viscous relaxation rates (eigenvalues of V−1K) in contrast to, secondly, the time scale of
external loading which can be characterized by

∥∥ d
dt

ˆ̀(t)
∥∥−1.

The concept of rate-independence now delineates the case where internal processes develop
significantly faster than the speed at which external loading takes place. This idealization
happens in the limit case for the respective time scale of external loading. In order to illustrate
this behavior in the framework of the above mechanical ordinary differential equation, we
consider a slowly varying load ˆ̀

ε(t) = `(εt) for some small ε > 0 and fixed ` : [0, T ] → Rn.
This reparameterization will help us manipulate the respective time scales within the system.

For better characterization of the ensuing equation, we choose a specific power-law friction
of the form F (q̇) = ν|q̇|α−1q̇ for the non-linear damping term with α, ν > 0. Since it is our
goal to keep the external loading time scale constant within the limit process, we rescale the
time variable by εt→ t and obtain

ε2Mq̈ + εαν|q̇|α−1q̇ + Kq = `(t)

where the interesting scenario of α→ 0 and (afterwards) ε→ 0 provides us with the differential
inclusion

∂R(q̇) + Kq 3 `(t) (2.1.2)

for the so-called dissipation potential R : Rn → R , R(w) := ν|w|.
A consequence of the limit process of ε → 0 after rescaling εt → t is the deterioration of

the internal time scales of the system. Thus, this limit system suffices our first idea for the
notion of rate-independence. Another helpful property which we will keep in mind for later
generalizations is the following: Every pair of some state q and external load ` solving (2.1.2)
can be rescaled to another pair (q̃, ˜̀) with q̃(t) = q(λt) and ˜̀(t) = `(λt) which then again also
solves (2.1.2) for any λ > 0.

General Rate-Independence and Characterization by Homogeneity

Our original, rather ideological characterization of rate-independence still has one quite un-
practical peculiarity hindering us to use it as a rigorous definition for the concept: Due to the
dependence on the relation of internal and external time scales it can only cope with systems
driven by a time-dependent loading input, thus restricting us to the area of non-autonomous
evolutionary systems. Additionally, internal time scales are rarely easy to determine.

For this reason, we will now allow for a more general time dependence within the differential
inclusion characterizing our system than just via ` : [0, T ] → Rn. In order to illustrate this
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ambition of ours, we again consider (2.1.2) on some more general state space Q and define the
stored energy functional

E : [0, T ]×Q→ R , E(t, q) :=
1

2
〈q,Kq〉Q − 〈`(t), q〉Q . (2.1.3)

Furthermore, we also generalize the dissipation potential R : Q → R to now be possibly
state dependent via R : Q×Q→ [0,∞], (q, v) 7→ R(q, v). More specifically, we assume that
the general dissipation potential suffices

R(q, ·) : Q→ [0,∞] is convex and lower semi-continuous , R(q, 0) = 0 (2.1.4)

for all states q ∈ Q. With these prerequisites at hand, the differential inclusion (2.1.2) takes
the form

0 ∈ ∂vR
(
q(t), q̇(t)

)
+ DqE

(
t, q(t)

)
(2.1.5)

for any t ∈ [0, T ]. We can give an illustrative interpretation of (2.1.5) in the form of a
force balance in Q∗ where the dissipative force ∂vR

(
q(t), q̇(t)

)
must equilibrate the potential

restoring force −DqE
(
t, q(t)

)
at time t ∈ [0, T ].

The formulation via (2.1.5) allows us to now define a suitable solution mapping if we
additionally prescribe some time interval together with a suitable initial condition. This then
leads to a complete description of the underlying system by referring to the following definition:

Definition 2.1.1: Rate-Independent Systems

Consider a time interval [0, T ] together with some Banach Space Q for the state, an
energy functional E : [0, T ] × Q → R and a dissipation potential R : Q × Q → [0,∞]
satisfying (2.1.4). For [t1, t2] ∈ J[0,T ] and q1 ∈ Q, we define the solution mapping

S(Q,E ,R) : J[0,T ] ×Q→W1,1
(
0, T ;Q

)
,(

[t1, t2], q1

)
7→
{
q : [t1, t2]→ Q

∣∣ q(t1) = q1 , ∀a.a.t ∈ [t1, t2] : (2.1.5) holds
}
.

Then, the triple (Q, E ,R) is called a rate-independent system if for every(
[t1, t2], q1

)
∈ J[0,T ] × Q and every strictly increasing continuous time reparameteri-

zation α : [t1, t2] → [t∗1, t
∗
2] ∈ J[0,T ] with α(ti) = t∗i , i = 1, 2, the following equivalence

holds:
q ∈ S(Q,E ,R)

(
[t1, t2], q1

)
⇔ q ◦ α ∈ S(Q,E ,R)

(
[t∗1, t

∗
2], q1

)
Remark. Note that the above definition of solutions for rate-independent systems considers
the Sobolev space W 1,1

(
0, T ;Q

)
which is, also in the Banach space valued case, continuously

embedded into C
(
[0, T ];Q

)
, cf. e.g. [27, Section 5.9.2, Theorem 2]. Thus, imposing the initial

condition q(t1) = q1 ∈ Q is legitimate. The respective state equation (2.1.5), however, can only
be satisfied almost everywhere on [t1, t2].

Let us point out here that in [66] rate-independent systems also have to satisfy two addi-
tional properties, namely the so-called concatenation and restriction property. The concate-
nation property states that merging two established solutions in time yields a solution for the
longer in-time problem. The restriction property states the opposite situation where restricted
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solutions are still solutions to the problem on a subset of [0, T ]. Since these properties do not
play a role for the existence of solutions and determining them numerically in our context, we
drop them here for the sake of simplicity.

Before we now give an insight to more accessible problem formulations and solution con-
cepts for rate-independent systems, we will formulate a sufficient condition for the dissipation
potential R such that the ensuing (Q, E ,R) is rate-independent.1 To this end, we introduce
the notion of p-homogeneity.

Definition 2.1.2: p-Homogeneity

Consider topological spaces X and Y . A mapping f : X → Y is called p-homogeneous
for some p ∈ N if it is positively homogeneous of degree p, i.e., for all λ > 0 and x ∈ X
we have f(λx) = λpf(x).

For some Banach space Q, a dissipation potential R : Q × Q → [0,∞] is called p-
homogeneous if the mapping R(q, ·) : Q→ [0,∞] is p-homogeneous for every q ∈ Q.

Using this definition together with the one of the convex subdifferential from (1.3.2), we
can directly identify an equivalent characterization of rate-independence for (Q, E ,R). While
the statement itself is given in [66], we supplement it with the “trivial” proof lacking there:

Proposition 2.1.3: Rate-Independence via 1-Homogeneity

Consider a Banach spaceQ, a time interval [0, T ], an energy functional E : [0, T ]×Q→ R
and a general dissipation potential R : Q×Q→ [0,∞] as in (2.1.4).

Then, 1-homogeneity of R(q, ·) for all q ∈ Q is equivalent to (Q, E ,R) being a rate-
independent system.

Proof. In order to show rate-independence, we consider a solution q ∈W 1,1
(
0, T ;Q

)
together

with an arbitrary strictly increasing continuous time reparameterization α : [t1, t2]→ [t∗1, t
∗
2] ∈

J[0,T ] with α(ti) = t∗i , i = 1, 2. Note that every monotone function is differentiable almost ev-
erywhere on its domain by a standard result first formulated by Lebesgue, cf. [35]. Apparently,
where it exists, this derivative α̇(t) is strictly positive.

Additionally, it is easy to see that an intuitive chain rule also holds for Banach space
valued W 1,p-functions, which leads us to the fact that for the rescaled solution q̃ : [0, T ]→ Q,
q̃(t) := q

(
α(t)

)
, we obtain d

dt q̃(t) = α̇(t)q̇
(
α(t)

)
, at least for almost every t ∈ [t1, t2]. This

lets us conclude that rescaling of time for a solution as in Definition 2.1.1 simply scales the
derivative by the corresponding factor.

Thus, verifying rate-independence is equivalent to showing that the subdifferential mapping
of our dissipation functional is 0-homogeneous, i.e., we can write

∂vR(q, λv) = λ0∂vR(q, v) = ∂vR(q, v)

for any λ > 0 and q, v ∈ Q. To this end, we write the determining inequality for the subdif-
ferential from (1.3.2) in the form

∀ṽ ∈ Q : R(q, ṽ)− 〈ξ, ṽ〉 ≥ R(q, v)− 〈ξ, v〉

and recognize that 0-homogeneity of ∂vR(q, ·) is equivalent to 1-homogeneity of R(q, ·) by the
linearity of ξ ∈ Q∗. This concludes the proof of the proposition.

1For the sake of simplicity, we write (Q, E ,R) instead of more accurately
(
Q, E ,R(q, ·)

)
.
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2.1.2 Problem Formulations and Solution Concepts

In what follows, we will deduce the solution concept which we will later on also pursue for
our formulation and solution of problems in finite strain plasticity. We still mainly reproduce
theory from [66] but give our own concise version of it here. To this end, we remember the
differential inclusion

∂vR
(
q(t), q̇(t)

)
+ DqE

(
t, q(t)

)
3 0 (2.1.6)

for some general dissipation potential as in (2.1.4) and an energy functional E : [0, T ]×Q→ R
on some time interval [0, T ]. For this formulation of the equation driving our rate-independent
system, we have already implicitly introduced a solution concept in Definition 2.1.1 which was
rather focused on the system than on the time-dependent state solving (2.1.6). To this end,
we formulate the following:

Definition 2.1.4: Differential Solutions

A mapping q ∈W 1,1
(
[0, T ];Q

)
is called a differential solution of the rate-independent

system (Q, E ,R) if the differential inclusion (2.1.6) holds in Q∗ for almost all t ∈ [0, T ]
together with q(0) = q0 for some suitable initial condition q0 ∈ Q.

In order to from here motivate and deduce the concept of so-called energetic solutions, we
will first take a look at equivalent formulations of the inclusion problem (2.1.6) in the form
of −DqE

(
t, q(t)

)
∈ ∂vR

(
q(t), q̇(t)

)
. We can reformulate the latter directly via the character-

izing inequality for the convex subdifferential and thereby obtain the so-called evolutionary
variational inequality

〈DqE
(
t, q(t)

)
, ṽ − q̇(t)〉+ R

(
q(t), ṽ

)
−R

(
q(t), q̇(t)

)
≥ 0 (2.1.7)

for all ṽ ∈ Q and almost all t ∈ [0, T ]. For a physical interpretation, we transform (2.1.7) to

R
(
q(t), ṽ

)
−R

(
q(t), q̇(t)

)
≥ 〈−DqE

(
t, q(t)

)
, ṽ − q̇(t)〉

which equivalently states the force balance from (2.1.6) in Q∗ insofar that, for any other rate
of state-change ṽ ∈ Q, the difference in the dissipation potential is larger (or equal) than the
potential restoring force −DqE

(
t, q(t)

)
evaluated along the “difference vector” ṽ − q̇(t).

Note that here we only took advantage of the definition of the convex subdifferential
which implies that (2.1.7) holds for general (convex) dissipation potentials. The notion of
rate-independence from Definition 2.1.1 does not appear in this formulation. As we have
seen in Proposition 2.1.3, rate-independence enters our system directly via 1-homogeneity of
the general dissipation potential in the form of R(q, ·) : Q → [0,∞] for any q ∈ Q. Since
the general dissipation potential occurs via its subdifferential in (2.1.6), the investigation of
convex subdifferentials of 1-homogeneous functionals is an intuitive next step. The following
assertion together with its proof can be found in [66, Lemma 1.3.1]:

Lemma 2.1.5: Convex Subdifferentials of 1-Homogeneous Functionals

Let R : Q → [0,∞] be lower semi-continuous, convex, and 1-homogeneous. Then, we
can characterize the convex subdifferential at any v ∈ Q as

∂R(v) =
{
η ∈ Σ

∣∣R(v) = 〈η, v〉
}
, where Σ := ∂R(0) . (2.1.8)
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Moreover, we have the characterization

ξ ∈ ∂R(v) ⇔ ∀w ∈ Q : R(w)− 〈ξ, w〉 ≥ R(v)− 〈ξ, v〉 = 0 .

Now, we will take the above characterization into account in order to reformulate the
differential inclusion (2.1.6). As we can see in (2.1.8), the inclusion of some dual space element
η ∈ Q∗ in the subdifferential ∂R(v) is split up into two separate statements. Firstly, the
inclusion η ∈ Σ := ∂R(0) where the latter set is often referred to as the abstract elasticity
domain in the context. Secondly, the equality R(v) = 〈η, v〉 has to hold.

In our case, where we have R = R
(
q(t), ·

)
and η = −DqE

(
t, q(t)

)
, this split also leads to

two separate relations governing the rate-independent system. These can be easily reformu-
lated as the following conditions which have to hold for almost all t ∈ [0, T ]:

local stability: ∀v ∈ Q : 〈DqE
(
t, q(t)

)
, v〉+ R

(
q(t), v

)
≥ 0 (2.1.9a)

power balance: 〈DqE
(
t, q(t)

)
, q̇(t)〉+ R

(
q(t), q̇(t)

)
= 0 (2.1.9b)

Let us also here comment on the physical interpretation of this split of conditions describing
the system under consideration: The local stability statement (2.1.9a), which stems from
0 ∈ ∂vR

(
q(t), 0

)
+ DqE

(
t, q(t)

)
, is a purely static condition since it does not include any

time derivatives q̇(t). Physically, this condition says that already the static frictional forces
∂vR

(
q(t), 0

)
must be strong enough to balance the potential restoring force −DqE

(
t, q(t)

)
.

Again, this is a force balance in Q∗ which becomes apparent by the fact that (2.1.9a) holds
for all other possible states v ∈ Q. Invariance under time-rescaling is apparent here since no
time-derivatives are incorporated.

The second condition (2.1.9b), which completes the description of our rate-independent sys-
tem, is the power balance which considers the power of the state-change 〈−DqE

(
t, q(t)

)
, q̇(t)〉,

i.e., the potential restoring force from before evaluated along the tangential state-vector in
time. This has to be equal to the dissipation rate R

(
q(t), q̇(t)

)
. Here, the 1-homogeneity of

R
(
q(t), ·

)
yields that the solution property of rescaled solutions remains preserved.

All in all, we can summarize the evolution of the rate-independent system as the purely
static condition (2.1.9a) and the scalar power relation (2.1.9b) which incorporates change rates
and thereby establishes a connection between state equations for fixed t ∈ [0, T ]. As mentioned
above, both conditions behave reasonably when exposed to time-rescaling of solutions and thus
also preserve our understanding of rate-independence.

The Maximum Dissipation Principle

Even though our ultimate goal for this section is the motivation and definition of energetic
solutions for rate-independent systems, we will now devote some short deliberations to the
physically motivated notion of the principle of maximal dissipation. As we will see later on
in Section 2.2.2, this relation is very illustrative in the context of motivating finite strain
plasticity which is why we will attribute some importance also to its formulation in general
rate-independent systems.

The derivation of the maximum dissipation principle can be summarized as a reformulation
of (2.1.9b) by results of convex analysis. To this end, we define the convex conjugate2 of our

2Convex conjugates are sometimes also referred to as Legendre-Fenchel Transforms.
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general dissipation potential by[
R(q, ·)

]∗
: Q∗ →]−∞,∞] ,

[
R(q, ·)

]∗
(ξ) := sup

v∈Q
〈ξ, v〉 −R(q, v) (2.1.10)

for any q ∈ Q. A thorough introduction to the concept of convex conjugates and their use in
convex analysis can be found in classical works like [25, Chapter I, Section 4] or [90, Chap-
ter 11]. Rate-independence of our system yields that the following representation of the convex
conjugate of the dissipation potential holds:

Lemma 2.1.6: Convex Conjugate of the Dissipation Potential

The convex conjugate (2.1.10) of the 1-homogeneous R(q, ·) : Q→ R takes the form

[
R(q, ·)

]∗
(ξ) = XΣ(q)(ξ) :=

{
0 , if ξ ∈ Σ(q)

∞ , otherwise
(2.1.11)

where the latter function is referred to as the characteristic function XΣ(q) of the
abstract elasticity domain Σ(q) := ∂vR(q, 0) for any state q ∈ Q. Thus, we have
the identity

R(q, v) = max
ξ̃∈Σ(q)

〈ξ̃, v〉 for any q, v ∈ Q . (2.1.12)

Proof. The 1-homogeneity of R(q, ·) as in Definition 2.1.2 directly implies R(q, 0) = 0 for any
q ∈ Q. Now, consider q ∈ Q fixed. For some arbitrary ξ ∈ Q∗, we now distinct the cases of
inclusion into Σ(q) = ∂vR(q, 0):

In the case of ξ ∈ ∂vR(q, 0), the subdifferential definition (1.3.2) immediately gives

0 ≥ 〈ξ, ṽ〉 −R(q, ṽ) for any ṽ ∈ Q

where the right-hand side in particular is equal to zero for ṽ = 0. Thus, we also have[
R(q, ·)

]∗
(ξ) = sup

v∈Q
〈ξ, v〉 −R(q, v) = 0

for ξ ∈ ∂vR(q, 0). In the remaining case we have 0 < 〈ξ, v̄〉−R(q, v̄) for some v̄ ∈ Q where the
right-hand side can be scaled arbitrarily by the 1-homogeneity of R(q, ·) and the linearity of
ξ ∈ Q∗. Thus, it is not bounded from above, the respective supremum from definition (2.1.10)
does not exist in R and

[
R(q, ·)

]∗
(ξ) =∞ holds. This concludes the proof of (2.1.11).

From here, (2.1.12) is in direct reach. Due to the convexity of R(q, ·), we can take advantage
of the biduality of proper, l.s.c. and convex functions, cf. [90, Theorem 11.1], together with
the definition of the convex conjugate and the indicator function XΣ(q) in order to obtain

R(q, v) =
[
XΣ(q)

]∗
(v) = sup

ξ̃∈Q∗
〈ξ̃, v〉 − XΣ(q)(ξ̃) = sup

ξ̃∈Σ(q)

〈ξ̃, v〉

for any q, v ∈ Q. The particular structure of the abstract elasticity domain yields that the
latter supremum is attained and can thus be written as a maximum.
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With the aid of (2.1.12), we can now reformulate the power balance (2.1.9b) via

〈ξ(t), q̇(t)〉 = max
ξ̃∈Σ(q(t))

〈ξ̃, q̇(t)〉 with ξ(t) ∈ −∂qE
(
t, q(t)

)
and Σ(q) := ∂vR(q, 0) (2.1.13)

where we also generalized the setting to possibly non-smooth, convex energy functionals E(t, ·).
In the smooth case, we obviously have ξ(t) = DqE(t, q). The adaption allows us to distinguish
between the not necessarily unique actual driving force ξ and the set of available driving forces
−∂qE(t, q).

The maximum dissipation principle as formulated in (2.1.13) now states that the actual
driving force maximizes the dissipation for fixed order-parameter rate q̇(t). The possible
driving force ξ̃ ∈ Q∗ varies freely over the set of all admissible driving forces Σ

(
q(t)

)
which

coincides with the abstract elasticity domain introduced beforehand.
Another interpretation of (2.1.13) implies that the rate q̃(t) is orthogonal to the abstract

elasticity domain, formerly introduced as the orthogonality principle in [118] which further
generalizes Onsager’s principle from [77]. As a consequence, the state q cannot evolve if the
driving force is in the interior of Σ(q). This understanding is compatible with the illustration
and development of plastic behavior described in Section 2.2.2 but for general rate-independent
systems provides a rather theoretical point of view.

As the previous arguments have demonstrated, the maximum dissipation principle (2.1.13)
is equivalent to the power balance (2.1.9b) and thus, if augmented with the local stability con-
dition (2.1.9a), fully describes the evolution in time of our rate-independent system according
to the inclusion formulation (2.1.6).

Generalization to Energetic Solutions

All of the previous problem formulations and solution concepts intrinsically require differen-
tiability of respective solutions in time. Generally, we cannot even expect absolute continuity
of solutions with respect to time but have to include solutions with jumps into our framework.
Additionally, for our application of the theory to finite strain elasto-plasticity later on, we can-
not even assume the state space Q to have linear structure since the corresponding problem is
formulated on a manifold. For this reason, we will avoid derivatives with respect to time and
state but still stick to the structure from above, i.e., have a static stability condition and an
energy inequality which we often formulate directly as an energy balance.

For this reason, the next step on the road to the definition of energetic solutions is an
integrated form of the power balance (2.1.9b). Thus, we take advantage of the chain rule for
the total time derivative

d

dt
E
(
s, q(s)

)
= 〈DqE

(
s, q(s)

)
, q̇(s)〉+ DtE

(
s, q(s)

)
for all s ∈ [0, T ]

together with the fundamental theorem of calculus in order to obtain

E
(
t, q(t)

)
+

t∫
r

R
(
q(s), q̇(s)

)
ds = E

(
r, q(r)

)
+

t∫
r

DtE
(
s, q(s)

)
ds . (2.1.14)

We can interpret the partial time derivative DtE(s, q(s)) as an actual power induced by the
temporal changes in the system. Since (2.1.9b) had to be fulfilled for almost all t ∈ [0, T ] the
integrated identity (2.1.14) now holds for all r, t ∈ [0, T ].
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Unfortunately, the integrated formulation above still contains a time derivative q̇ of our
solution. In order to remedy this flaw, we will generalize (2.1.14) even further. To this end, we
observe that the integral over R(q, q̇) measures the total dissipation along the curve q (which is
our solution) between times r and t. This total dissipation term can also be modelled in a more
general sense as we introduce the dissipation distance D : Q × Q → [0,∞] which canonically
can be conceived to be of the form D(q1, q2) = R(q2 − q1) for some dissipation functional R
and states q1, q2 ∈ Q. In general, we assume D to satisfy the triangle inequality but allow it
to be asymmetric.

Thus, D(q1, q2) measures the minimal amount of energy which is dissipated when the state
changes from q1 to q2. With this thought in mind, we can now formulate a new notion of the
total dissipation along a part [r, s] ⊂ [0, T ] of a parameterized curve q : [0, T ]→ Q via

DissD

(
q; [r, s]

)
:= sup


N∑
j=1

D
(
q(tj−1), q(tj)

)∣∣∣∣N ∈ N, r ≤ t0 < t1 < ... < tN−1 < tN ≤ s

 .

This notion of dissipation along curves can also be interpreted as the total variation with
respect to the dissipation distance D . It now lets us transform the power balance (2.1.9b) via
the integrated formulation (2.1.14) into an energy balance

E
(
t, q(t)

)
+ DissD

(
q; [0, t]

)
= E

(
0, q(0)

)
+

t∫
0

DtE
(
s, q(s)

)
ds (2.1.15)

for every t ∈ [0, T ] and some adequately defined dissipation distance D .
The last conceptual generalization which we introduce before finally turning our attention

to the definition of energetic solutions concerns the local stability condition (2.1.9a). This
formulation still contains the differential DqE which demands a linear structure of the under-
lying state space Q. Whenever the corresponding energy functional E(t, ·) is convex, (2.1.9a)
is equivalent to the global stability condition

E
(
t, q(t)

)
≤ E

(
t, q̃
)

+ R
(
q(t), q̃ − q(t)

)
for all q̃ ∈ Q . (2.1.16)

While convexity of the energy directly yields equivalence between (2.1.9a) and (2.1.16), for
general energy functionals the global stability merely implies the local one but not the other
way around.

The newly achieved absence of derivatives now also allows us to omit the linear structure
of our Banach space Q and thus replace it with some general space Q. Additionally, the above
formulation of the energy balance (2.1.15) does not depend on a dissipation potential R as
before but only relies on the dissipation distance D . These adaptations of the formulation for
rate-independent systems (Q, E ,R) from Definition 2.1.1 lead us to the new notion of Energetic
Rate-Independent Systems (ERIS) determined by the triple (Q, E ,D) for the description of
our problem at hand.

Definition 2.1.7: Energetic Rate-Independent Systems and Solutions

A function q : [0, T ] → Q is called an energetic solution of the ERIS (Q, E ,D) if it
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satisfies the stability condition (S) and the energy balance (E) for all t ∈ [0, T ]:

∀ q̃ ∈ Q : E
(
t, q(t)

)
≤ E

(
t, q̃
)

+ D
(
q(t), q̃

)
, (S)

E
(
t, q(t)

)
+ DissD

(
q; [0, t]

)
= E

(
0, q(0)

)
+

∫ t

0
DtE

(
s, q(s)

)
ds . (E)

The rate-independence as characterized in Definition 2.1.1 of the energetic formulation via
(S) and (E) from Definition 2.1.7 is apparent due to the purely static nature of the global
stability condition (S) and the fact that the energy balance (E) is also invariant under time
rescaling of solutions. Thus, referring also to ERIS (Q, E ,D) as rate-independent systems is
justified. Augmenting the above definition with a suitable initial condition q(0) = q0 ∈ Q, we
obtain the initial value problem (Q, E ,D , q0).

Formulating an initial value problem for a notion of solutions which does not require
solutions to be absolutely continuous in time and allows for jumps might sound controversial
at first and the question arises, in which way the initial value is actually attained. In (E),
q(0) appears which allows us to demand this estimate with the required initial value q0 ∈ Q.
Additionally, we will see later that the way in which we construct solutions via time-incremental
problems also allows to prescribe initial states of the solutions in a natural way.

In addition to the thoroughly discussed absence of derivatives and the resulting general-
ization to spaces Q, we will later on benefit from the energetic formulation in Definition 2.1.7
insofar that the corresponding existence theory can be derived solely from suitable lower semi-
continuity properties for E and D together with some compactness assumptions. We will
construct solutions via so-called time-incremental minimization problems for which we con-
sider the set of all partitions of some interval [r, s] given by

Part
(
[r, s]

)
:=
{

(t0, ..., tN )
∣∣ r = t0 < t1 < ... < tN = s

}
.

Important quantities of each partition Π ∈ Part
(
[r, s]

)
include its number of subintervals

NΠ := N from the above definition and its fineness ∅(Π) := max{tk − tk−1

∣∣ k = 1, ..., NΠ}.
Given an initial condition q0 ∈ Q and partition Π ∈ Part

(
[0, T ]

)
, we can thus formulate

(IMP)Π qk ∈ arg min
q̃∈Q

E
(
tk, q̃

)
+ D

(
qk−1, q̃

)
for k = 1, ..., NΠ .

We will use the solutions of these incremental problems, i.e., the minimizers of E
(
tk, q̃

)
+

D
(
qk−1, q̃

)
, in order to define sequences of piecewise constant interpolants which will – un-

der sufficient assumptions – converge to an energetic solution of the corresponding ERIS for
∅(Π)→ 0.

These incremental problems will constitute the underlying composite minimization prob-
lems for the algorithmic deliberations of Chapters 3 and 4 and are thus of crucial importance
not only for the analysis of the problem class but also for the application of algorithms devel-
oped for it later on.

2.1.3 Existence of Energetic Solutions

Before we now recall sufficient conditions from [66] under which energetic solutions defined
via Definition 2.1.7 exist, we will introduce an important modification to the above system
formulation. To this end, we split the state space Q into a non-dissipative component Y and
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a dissipative part Z via Q = Y × Z . As the denotation suggests, we thus assume that the
dissipation potential R only depends on the z-component in form of

R(q, q̇) = R(z, ż) and
(
R(z, ż) = 0 ⇒ ż = 0

)
.

In that case, the differential inclusion (2.1.2) can be reformulated as the coupled system

DyE(t, y, z) = 0 and 0 ∈ ∂vR(z, ż) + DzE(t, y, z) . (2.1.17)

Here, we can see that the split in components also leads to a different treatment of the y- and
the z-component. In particular, the so-called reduced energy functional

J (t, z) := min
y∈Y
E(t, y, z) (2.1.18)

automatically suffices the first equation of (2.1.17) such that we are left with the differential
inclusion

0 ∈ ∂vR(z, ż) + DzJ (t, z) (2.1.19)

and thus call
(
Z ,J ,R

)
the reduced RIS. This reformulation of rate-independent systems is also

reversible insofar that once z : [0, T ] → Z solves (2.1.19), we can recover the non-dissipative
component by determining y(t) := arg miny∈Y E

(
t, y, z(t)

)
such that then q(t) :=

(
y(t), z(t)

)
solves the original system.

From the standpoint of applications, we often (but not always) can view y as the observ-
able variables while z refers to internal variables which are neither directly observable nor
controllable from the outside. This interpretation of internal variables is emphasized by the
lack of time derivatives ẏ in (2.1.17) which implies that instantaneous changes of the observ-
able variable y cannot influence the changes of z. Thus, often y is referred to as the “fast”
component while the internal variable z is called “slow” in the context.

Assumptions on the Dissipation Distance and Stored Energy Functional

Let us now start with the formulation of sufficient assumptions for the existence of energetic
solutions. The first topic to be handled is the dissipation distance D : Z × Z → [0,∞],
which naturally only depends on the dissipative component and is assumed to be an extended
quasi-distance, i.e., we demand

(i) ∀z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) + D(z2, z3)

(ii) ∀z1, z2 ∈ Z : D(z1, z2) = 0⇔ z1 = z2
(D1)

allowing both non-symmetry and infinite values opposed to traditional distance measures.
Additionally, we require that

D : Z × Z → [0,∞] is lower-semicontinuous. (D2)

As far as the stored energy functional E : [0, T ]×Q→ R∪{∞} is concerned, the assumptions
are a bit more involved. The first one is the compactness of sublevels:

∀ t ∈ [0, T ] : E(t, ·) : Q→]−∞,∞] has compact sublevels. (E1)
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The second one concerns the domain dom E :=
{

(t, q) ∈ [0, T ]×Q
∣∣ E(t, q) < ∞

}
as well

as for any fixed t ∈ [0, T ] correspondingly dom E(t, ·) :=
{
q ∈ Q

∣∣ E(t, q) < ∞
}
. Thus, we

formulate the energetic control of power given by:

dom E = [0, T ]× dom E(t, ·) ,
∃ cE ∈ R, λE ∈ L1(0, T ), NE ⊂ [0, T ] of measure zero

∀ q ∈ dom E(0, ·) : E(·, q) ∈W 1,1(0, T ) ,

DtE(t, q) exists for t ∈ [0, T ] \NE and satisfies
|DtE(t, q)| ≤ λE (t)

(
E(t, q) + cE

)
.

(E2)

While this assumption might seem rather opaque at first sight, it simply ensures sufficient
regularity of the stored energy functional in time together with a bound which enables the
application of Gronwall’s inequality. The latter lets us conclude that the sublevels of E as a
whole are compact if and only if the sublevels of E(t, ·) are compact for all t ∈ [0, T ] which is
given by the prior assumption (E1). Compactness of sublevels on the other hand will be very
useful as far as the convergence of adequately chosen subsequences of approximate solutions is
concerned. Additionally, the compactness of non-empty sublevels of E(t, ·) yields lower semi-
continuity of said mapping which is important for solvability of the time-incremental problems
from (IMP)Π.

The stability condition (S) can also be formulated via time-dependent so-called sets of
stable states at some time t ∈ [0, T ] which are defined via

S(t) :=
{
q = (y, z) ∈ Q

∣∣ E(t, q) <∞, ∀q̂ = (ŷ, ẑ) ∈ Q : E(t, q) ≤ E(t, q̂) + D(z, ẑ)
}

such that (S) simply means that q(t) ∈ S(t) holds for all t ∈ [0, T ]. The properties of these
sets of stable states turn out to be crucial for deriving existence results.

With the assumptions on E and D motivated as well as the reformulation of the stability
condition at hand, key properties of the solutions of time-incremental problems (IMP)Π can
be verified, cf. [66, Proposition 2.1.4]:

Proposition 2.1.8: Properties of Time-Incremental Solutions

Let (D1) and (E2) hold. Every solution of (IMP)Π satisfies the following properties:

(i) ∀k ∈ {1, ..., NΠ} : qk ∈ S(tk), i.e., qk is stable at time tk.

(ii) ∀k ∈ {1, ..., NΠ} :
∫ tk
tk−1

DtE(s, qk) ds ≤ ek − ek−1 + δk ≤
∫ tk
tk−1

DtE(s, qk−1) ds

where we denoted ej := E(tj , qj) and δk := D(zk−1, zk).

(iii) If additionally (D2) and (E1) hold, then solutions of (IMP)Π exist.

In order to now transform these time-incremental solutions, which are only defined in
discrete time points tk, into functions actually approximating energetic solutions, piecewise
constant interpolants of the qk have to be defined. For these interpolants, crucial a priori
bounds can be verified. These a priori bounds can then be taken advantage of in the following
way: We choose a sequence of partitions Πj of the time-interval [0, T ] the fineness ∅

(
Πj

)
of which converges to zero, and consider the corresponding solutions of the time-incremental
problems (IMP)Πj . From this sequence of solutions, the formerly deduced bounds allow us to
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extract a converging subsequence by a suitable version of Helly’s selection principle.3 This is
at least possible for the z-component of said solutions for which we can control oscillations in
time better with the aid of the dissipation terms within above estimates.

For the non-dissipative y-component, however, we have to be a bit more deliberate about
the choice of converging subsequences. One possibility would be to additionally choose sub-
sequences for every t ∈ [0, T ] and thereby rely on the axiom of choice for our argumentation
(as in e.g. [30, 61]). We, however, keep following the steps of the authors in [66] who take
another path and assume metrizability of the underlying topology4 which is a slightly stronger
assumption in itself but yields a simpler convergence proof and guarantees the existence of
solutions which are measurable in time.

Compatibility Conditions and Existence of Energetic Solutions

As we have now picked converging subsequences and identified the corresponding limit func-
tions, we need to still make sure that the latter suffice the properties demanded of energetic
solutions according to Definition 2.1.7. To this end, we need to formulate further assump-
tions that involve both E and D expressing their compatibility since our prior assumptions
only consider either the stored energy or the dissipation on their own. The definition of these
conditions requires the notion of stable sequences (tm, qm)m∈N given by

sup
m∈N
E(tm, qm) <∞ and ∀m ∈ N : qm ∈ S(tm) .

The boundedness condition here intrinsically links the type of convergence of states to the
properties of E and D . Convergent stable sequences then help us to characterize the compati-
bility of these functionals via

∀ stable sequences (tm, qm)m∈N with (tm, qm)
[0,T ]×Q−→ (t, q) :

t ∈ [0, T ] \NE withNE from (E2) ⇒ DtE(t, q) = lim
m→∞

DtE(t, qm) , (C1)

q ∈ S(t) . (C2)

The first condition (C1) is referred to as the conditioned continuity of the power of external
forces and the second one (C2) is intuitively called closedness of the stability set. We formulated
the conditions just in the way they are utilized within the proof of existence of energetic
solutions but verifying their validity is often achieved via alternative characterizations. We
will not elaborate on the latter but refer to [66, Section 2.1.5] for further information on these
reformulations.

Now that we have introduced sufficiently strong assumptions on the stored energy func-
tional E and the dissipation functional D as well as have outlined their contributions to the
proof of existence of energetic solutions, we can finally formulate the central result of this sec-
tion as found in [66, Theorem 2.1.6]. While we have tried to at least sketch the proof within

3Named after Austrian mathematician Eduard Helly (1884-1943) – states that uniformly bounded sequences
of monotone real valued functions include a convergent subsequence. It can also be generalized to the com-
pactness of the space BVloc of functions of locally bounded variation, cf. [74, VIII.§4].

4Metrizability of a topological space (X, T ) describes the possibility to define a metric d : X ×X → [0,∞[
such that the topology induced by d is T . A famous example for a metrizability criterion is Urysohn’s Metriza-
tion Theorem (Pawel Urysohn, 1898-1924, cf. [113]) equivalent to a topological space being separable and
metrizable if and only if it is regular.
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the motivation of the above conditions, [66, Section 2.1.6] is entirely dedicated to giving a
detailed and comprehensive version of the argumentation.

Theorem 2.1.9: Existence of Energetic Solutions

Assume that E and D satisfy the assumptions (D1)-(D2) and (E1)-(E2) together with
the compatibility conditions (C1)-(C2). Furthermore, assume that the topology of Q
restricted to compact sets is separable and metrizable. Then, the following assertions
hold:

(i) For each q0 ∈ S(0), there exists an energetic solution q = (y, z) : [0, T ]→ Q to the
initial value problem (Q, E ,D , q0). Moreover, q : [0, T ]→ Q is measurable and for
almost all t ∈ [0, T ] we have:

DtE
(
t, q(t)

)
= DtE

(
t, y(t), z(t)

)
= sup

{
DtE(t, y, z)

∣∣∣∣ y ∈ arg min
ỹ∈Y

E(t, ỹ, z)

}
.

(ii) If
(
Πl

)
l∈N ⊂ Part

(
[0, T ]

)
is a sequence of partitions with fineness ∅

(
Πl

)
→ 0 for

l → ∞ and qΠl is the interpolant of a solution of the associated (IMP)Πl , then
there exist a subsequence qk := qΠlk and an energetic solution q̃ = (ỹ, z̃) to the
initial value problem (Q, E ,D , q0) such that the following holds:

∀ t ∈ [0, T ] : zk(t)
Z→ z̃(t) , (2.1.20a)

∀ t ∈ [0, T ] : DissD

(
zk; [0, t]

)
→ DissD

(
z̃; [0, t]

)
, (2.1.20b)

∀ t ∈ [0, T ] : E
(
t, qk(t)

)
→ E

(
t, q̃(t)

)
, (2.1.20c)

∀a.a. t ∈ [0, T ] : DtE
(
t, qk(t)

)
→ DtE

(
t, q̃(t)

)
. (2.1.20d)

Moreover, (E2) and (2.1.20d) imply DtE
(
t, qk(t)

)
→ DtE

(
t, q̃(t)

)
in L1(0, T ).

(iii) Suppose that the functional E(t, ·, z) has a unique minimizer y for each stable
point q ∈ (y, z) ∈ S(t). Then, taking ỹ(t) := arg min E

(
t, ·, z̃(t)

)
improves the

convergence in (2.1.20a) to

∀ t ∈ [0, T ] : qk(t)
Q→ q̃(t) .

The above existence result provides the basis for our plans to approximate solutions of the
finite strain plasticity problem numerically not only insofar that these energetic solutions do
exist in the first place but also insofar that they can be approximated by converging sequences
of time-incremental solutions. The question of exactly which form the corresponding time-
incremental minimization problems (IMP)Π take will be answered in Section 2.2 and the
question of how to then efficiently solve these problems numerically will be considered in
Chapters 3 and 4.
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2.2 Formulation of Finite Strain Plasticity

Now that we are aware of the theoretical framework which we want to place our finite strain
plasticity application problem in, we still have to consider how the latter fits into it. To
this end, in Section 2.2.1 we will give a continuum mechanical introduction to quasi-static
hyperelasticity which constitutes the foundation of the underlying theory. Afterwards, we will
build on that foundation by augmenting our until now purely elastic model with characteristic
features of plasticity in Section 2.2.2. After formulating the latter problem of continuum
mechanics as a rate-independent system in the sense of Section 2.1, we investigate sufficient
assumptions on the corresponding functionals and domain spaces for the existence of energetic
solutions in Section 2.2.3. Having then dealt with the problem in sufficient generality, in
Section 2.2.4 we deduce the specific form of the application problem for which we will employ
our solution algorithm in the later stages of the present treatise.

Notational Remark

Before departing on the endeavor mapped out above, let us give a notational remark: In order
to distinguish between mappings on the R3-domain Ω (, or Ω× [0, T ] respectively,) and their
placeholders within other functionals, we will always write the former in bold. As an example,
we will have a matrix-valued mapping P : Ω × [0, T ] → SL(d) to be inserted into e.g. energy
density functionals. In the definition of the latter, general matrix variables will then be referred
to as P in non-bold. This strategy particularly reveals potential space- and time-dependencies
even when they are mostly omitted for the sake of notational simplicity. All in all, we try to
find a healthy balance between requiring common sense and pursuing notational accuracy.

2.2.1 Quasi-Static Hyperelasticity

The first goal is to motivate and deduce the formulation of the time-dependent deformation
problem for finite strain elasticity with a constitutive equation governed by a stored energy
functional. Therefore, we consider a body in undeformed shape at initial time t = 0 described
by the set of points Ω for an open, non-empty set Ω ∈ Rd for d ∈ {2, 3}. The closure Ω is called
the reference configuration the boundary of which is split up to disjoint subsets ΓD,ΓN ⊂ ∂Ω
for Dirichlet and Neumann conditions, respectively, such that ΓD ∪ ΓN = ∂Ω.

Apparently, the theory of elasticity evolves around the change of this reference configuration
on account of internal and external forces acting on the body. The modelling of change within
the material configuration is based on the deformation vector field y and the corresponding
deformed configuration Ωt,y at time t ∈ [0, T ] defined via

y : Ω× [0, T ]→ Rd and Ωt,y := y
(
Ω, t
)

for which we will omit the time-dependence where not necessary in the context. For the
mapping y to be physically meaningful, we assume it to be both orientation preserving
(det(∇y) > 0, i.e., ∇y ∈ GL+(d)) and injective up to the boundary ∂Ω.

Both in analytical discussions and in applications, it is often more convenient to consider
the new relative position of a material point instead of its new absolute position. Thus, we
introduce the so-called displacement vector field

u : Ω× [0, T ]→ Rd , u(x, t) := y(x, t)− x
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with spatial gradient ∇u(x, t) = ∇y(x, t)− I .
As we have already mentioned above, the deformation of the considered material is gov-

erned by external loads. These are composed of volume and boundary forces which we assume
to be so-called dead loads, i.e., they do not depend on the body’s deformation and can there-
fore be represented by their corresponding time-dependent force densities in the reference
configuration Ω via

fΩ : Ω× [0, T ]→ Rd and fΓN : ΓN × [0, T ]→ Rd .

These density functionals describe the force exerted per unit volume and per unit area, re-
spectively, in the reference configuration. An illustration for the situation described above is
given in Figure 2.1.

x

xy

y

Ω

Ωy

{
x ∈ ΓN

∣∣ fΓN (x) 6= 0
}

fΓN

ΓD

Figure 2.1: The deformation mapping y : Ω→ R2 transforming the reference configuration Ω
to the deformed configuration Ωy according to boundary conditions on ΓD and ΓN .

The movements initiated by either external or internal forces on the material can be classi-
fied into two types the nature of which will continue to play an important role over the course
of what follows, cf. [6, Section 2.1.1]:

1. Rigid body movements: The distance between all points in the domain remains
unchanged, i.e., the corresponding deformation field y satisfies

∀x, x̃ ∈ Ω, t ∈ [0, T ] :
∥∥y(x, t)− y(x̃, t)

∥∥= ‖x− x̃‖ .

As seen in [34, page 49], these can also be characterized as the sum of a translation
and a rotation, i.e., continuous deformations of the form

y(x, t) = a(t) + Q(t)x with a(t) ∈ Rd, Q(t) ∈ SO(d,R)

for all x ∈ Ω and t ∈ [0, T ].

2. Distorting movements: The corresponding deformation field induces a change
in distance of material points. This might cause parts of the body to be compressed
while others might be stretched.

In order to now determine the response of the considered material body to distorting
movements, we have to measure the so-called strain induced by these deformations. Distortion
in general can be understood as the change in angles and lengths of material points over the
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course of the movement. As described in [36, Section 2.1], to this end we from now on omit
t ∈ [0, T ], consider a fixed point x ∈ Ω and two fibers of material particles emanating from x
which we denote by ∆x and δx. The corresponding fibers in the deformed configuration are
given by

∆y := y(x+ ∆x)− y(x) and δy := y(x+ δx)− y(x) .

Assuming sufficient differentiability of the deformation field, we consider the corresponding
Taylor series in order to arrive at the expressions

∆y = ∆x+ (∇u)∆x+ o
(
‖∆x‖

)
and δy = δx+ (∇u)δx+ o

(
‖δx‖

)
.

The difference of scalar products can thus be evaluated as

〈∆y, δy〉Rd − 〈∆x, δx〉Rd = 〈(∇u)∆x, δx〉Rd + 〈(∇u)δx,∆x〉Rd
+ 〈(∇u)∆x, (∇u)δx〉Rd + o

(
‖δx‖2 + ‖∆x‖2

) (2.2.1)

The geometrical interpretation of scalar products in R3 yields that, for rigid body movements,
the above difference vanishes. For the case of a distortion, infitesimal expressions are of special
interest. Thus, we will consider the limit of the above difference as the lengths of the fibers
tend to zero. We set h := max{‖δx‖, ‖∆x‖} as well as n := ∆x/h and m := δx/h as fixed
vectors with directions that are independent of h. Dividing both sides of (2.2.1) by h2 and
taking the limit h→ 0 then gives

lim
h→0

〈∆y, δy〉Rd − 〈∆x, δx〉Rd
h2

= 2〈n,Em〉Rd

where we identify E as the strain tensor associated with the displacement u defined by

E :=
1

2

[
∇u+ (∇u)T + (∇u)T∇u

]
=

1

2

[
(∇y)T∇y − I

]
. (2.2.2)

Considering special cases and orientations for the up to now arbitrary fibers ∆x and δx, we
can deduce the interpretation of the diagonal components of E as half the net change in length
(squared) of a material fiber originally oriented so that it points in the corresponding direction.
Similarly, off-diagonal elements of the tensor give a measure of the change in angle between
two fibers originally at right angles to each other and pointing towards the corresponding
index directions. This interpretation characterizes diagonal elements as direct strains whereas
off-diagonal elements are referred to as shear strains. Furthermore, E = 0 implies that the
body undergoes a rigid body motion.

For (infinitesimally) small displacements u and corresponding derivatives∇u, we recognize
that first order terms in E dominate those of second order. Thus, in the literature for so-called
small strain scenarios, the strain within the body is replaced by a linearized version of the
corresponding tensor at the vanishing displacement, leading to the infinitesimal strain tensor

ε :=
1

2

(
∇u+∇uT

)
. (2.2.3)

This expression is linear, symmetric and approximates E up to terms of o
(
‖∇u‖2

)
. These

favorable properties make the small strain approach interesting both from an analytical and
an application-oriented standpoint. Apparently, the approximation becomes poor for large
displacements and is thus not generally suited for our interests.
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With a measure for the distortion of the material in the form of the strain tensor E at
hand, our next considerations are laid on the internal resistance counteracting the deformation
and acting towards its resting position in the original shape. This internal resistance is often
referred to as stress. In order to now obtain a mathematical expression for this material
phenomenon, we consult the so called stress principle of Euler and Cauchy as stated in [14,
Axiom 2.2-1]. It states the existence of a vector field

ty : Ωy × S1(0)→ Rd (2.2.4)

such that both the Axiom of Force Balance and the Axiom of Moment Balance5 are satisfied
along every subdomain of the deformed configuration. The stress vector ty on its own then
describes the force measured in units of pressure on an infinitesimal surface, to which the
vector n ∈ S1(0) is normal at the point xy ∈ Ωy, as a reaction to the load on the body.

Of course, we want to express this crucial quantity of material response in terms of the
forces acting on the body, even if for now only in the deformed configuration. Gladly, we find
the following divergence-like dependence for a suitable tensor representing the stress vector,
cf. [14, Theorem 2.3-1]:

Theorem 2.2.1: Cauchy’s Theorem

Suppose that the internal and external force densities in the deformed configuration Ωy

are described by sufficiently regular vector fields fyΩ : Ωy → Rd and fyΓN : Γy
N → Rd.

Then, there exists the so-called Cauchy Stress Tensor

Ty : Ωy → Rd×d

such that the stress vector from (2.2.4) can be represented via

∀ (xy, n) ∈ Ωy × S1(0) : ty(xy, n) = Ty(xy)n .

Furthermore, the stress tensor is related to the external forces in the form

∀xy ∈ Ωy : − divy
(
Ty(xy)

)
= fyΩ(xy) and

∀xy ∈ Γy
N : Ty(xy)νy = fyΓN (xy) ,

where divy denotes the divergence operator with respect to the deformed configuration
and νy is the unit outer normal vector in xy on the deformed Neumann boundary Γy

N .

The problem with the above divergence relation for the Cauchy Stress Tensor Ty is that
it is stated in the deformed configuration with xy = y(x) as a variable. As pointed out
beforehand, we want to formulate the finite strain problem on the reference configuration and
will thus transform Ty to the so-called first Piola-Kirchhoff Stress Tensor T : Ω→ Rd×d via

T(x) := det
(
∇y(x)

)
Ty(xy)∇y(x)−T where xy = y(x) (2.2.5)

5Together, they state that any subdomain is in static equilibrium, in the sense that the torsor formed by
elementary forces normal to its boundary and the body forces is equal to zero. In particular, the resultant
vector (, i.e., the corresponding force,) and the resultant moment with respect to the origin vanish, cf. [14,
page 61].
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which in particular satisfies t(x, n) = T(x)n for the stress vector t(x, n) formulated on the
reference configuration. Generally, this tensor is non-symmetric which is often overcome by
modifying it to the second Piola-Kirchhoff Stress Tensor, cf. [14, Section 2.5]. We, however,
are interested in the differential equations formulated in terms of T.

Formulation on the Reference Configuration

Similar to the transformation of the stress tensor, also internal and external forces as well as the
divergence operator can be expressed via unknowns stemming from the reference configuration
by using the determinant of the deformation gradient. Additonally, as we incorporate time-
dependence to the problem by considering the body force −ρü for the mass density function
ρ : Ω→ [0,∞[, we thus arrive at the set of equations given by

ρü− div(T) = fΩ in Ω× [0, T ] ,

Tν = fΓN on ΓN × [0, T ]

with now div the divergence operator with respect to Ω and ν the unit outer normal vector in
x on the reference Neumann boundary ΓN .

Within the present treatise, we are interested in processes which happen very slowly in
time such that it seems reasonable to disregard the ρü term within the divergence equation
above. This assumption is often referred to as the elasticity problem being quasi-static. As
we then round out the formulation of the quasi-static equilibrium equations for elasticity by
imposing Dirichlet boundary conditions on the remaining portion of ∂Ω given by ΓD together
with suitable initial values, we obtain the following boundary value problem:

−div(T) = fΩ in Ω× [0, T ] ,

Tν = fΓN on ΓN × [0, T ] ,

u = 0 on ΓD × [0, T ] .

(2.2.6)

In its definition in (2.2.5), we have omitted the explicit dependence of T on the deformation
gradient ∇y. Commonly in the literature, cf. e.g. [14, Chapter 3], a material is referred to
as elastic if and only if each Piola-Kirchhoff stress tensor can be expressed in terms of the
material point x ∈ Ω and the corresponding deformation gradient ∇y(x) through a so-called
constitutive equation of the form

∀x ∈ Ω: T(x) = T̂
(
x,∇y(x)

)
where the response function T̂ : Ω×GL+(d)→ Rd×d characterizes the elastic material.

We are particularly interested in this representation of the first Piola-Kirchhoff tensor
since we want to consider so-called hyperelastic materials as introduced in [14, Chapter 4].
The latter are characterized by the existence of a continuously differentiable stored energy
function Ŵ : Ω×GL+(d)→ R such that the relation

∀x ∈ Ω , F ∈ GL+(d) : T̂(x,F) = DFŴ (x,F) (2.2.7)

holds. If this is the case, and if the applied forces are conservative6, solving the boundary
value problem from (2.2.6) is formally equivalent to finding a stationary point of a total energy

6Conservative body forces can be expressed as the Gâteaux derivative of an integrated functional. The
corresponding integrand is then called the potential of the applied body force.
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functional E . For dead loads7, we even have the representation

E(ψ,∇ψ) =

∫
Ω
Ŵ
(
x,∇ψ(x)

)
dx−

( ∫
Ω
〈fΩ(x), ψ(x)〉Rd dx+

∫
ΓN

〈fΓN , ψ〉Rd dS
)

(2.2.8)

for all admissible deformations ψ : Ω → Rd with det(∇ψ) > 0 and ψ(x) = x for all x ∈ ΓD.
Time-dependence of all occurring functionals can be inserted without problems in our quasi-
static case.

As formulated in [14, Theorem 4.1-1], this finally provides us with a variational principle
leading to the differential identity

∀ t ∈ [0, T ] : DψE
(
t,y(t),∇y(t)

)
θ = 0 (2.2.9)

for all sufficiently smooth maps θ : Ω → Rd vanishing on ΓD which is formally equivalent to
the boundary value problem from (2.2.6). The identity from (2.2.9) will later on also be a
central part of the rate-independent formulation of the elasto-plastic problem.

2.2.2 Yield Surfaces, Flow Rules, and Rate-Independence

While the theory introduced in Section 2.2.1 above adequately describes the elastic behavior of
the materials which we want to consider within our simulations later on, we will go beyond the
theory of elasticity for an adequate description of the response to external loads. To this end,
we will now give a comprehensive overview of both the motivation and theory behind plastic
behavior. The following physical background and motivation is based on the deliberations
from [36, Chapter 3].

In order to depict the fundamental features of elasto-plastic materials, it is reasonable
to consider the simple situation of uni-axial stress in a body. From an application-oriented
standpoint, one might consider a thin rod to which a force fΓN is applied at each end, acting
in different directions. The rather simple setup of this experiment is illustrated in Figure 2.2.

fΓN fΓN

Figure 2.2: An elasto-plastic rod in uni-axial stress T caused by the boundary force fΓN .

What we are interested in now is the response of the material to the uni-axial stress applied
to each end of the rod, i.e., the so-called stress-strain relationship. For this one-dimensional
scenario, we denote the stress ensuing from occurring external and internal forces by T, cf.
(2.2.5). In the above example, an adequate experiment is to gradually increase the force acting
on the rod leading to a change of length in the rod and thereby a corresponding increase in
strain E, cf. (2.2.2). This dependence allows to record the history of behavior during a
program of loading and is suited for the explanation of plastic contrary to purely elastic
material response.

Non-Linearity and Path-Dependence

Typical graphs of this stress-strain dependence are given in Figure 2.3. Up to the so-called
initial yield stress T0, we have linear elastic behavior in all three considered cases. If the

7As mentioned beforehand, the force density of dead loads is independent of the particular deformation y.
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E

T

T0

(a) Hardening behavior of plas-
tic materials (, e.g. rubber).

E

T

T0

(b) Softening behavior of plas-
tic materials (, e.g. concrete).

E

T

T0

(c) Stiffening behavior of plas-
tic materials (, e.g. metals).

Figure 2.3: Relationship of the uni-axial stress T induced by an increasing external force and
the corresponding strain E within an elasto-plastic rod for different materials.

applied force, and hence also the stress, is increased further, the behavior deviates from the
linear relation which is often used for an approximation in small strain elastic theory, cf.
[14, Section 6.3] or [36, 49, 101]. A widely spread feature is the decrease in the slope of the
corresponding curve which will continue until eventually a variety of phenomena may take
place. Depending on the application in question and on the range of stress which is expected
to be experienced, hardening (see Figure 2.3a, e.g. rubber,), softening (see Figure 2.3b, e.g.
in soil or concrete,), and stiffening (see Figure 2.3c, e.g. in some metals,) are common.

Up to now, our deliberations concerning plastic behavior only illustrate the inherent non-
linearity of the stress-strain relationship. This is by itself not a distinctive property of plasticity
but might also be modeled by employing non-linear purely elastic models. The feature which
rules out the latter possibility is the one of irreversibility or path-dependence of plastic defor-
mations. This phenomenon describes the circumstance that – unlike in the case of elasticity –
the state of strain does not revert to its original state upon removal of applied forces.

E

T

T0

−T′0

T1

−T′1

(a) Irreversibility (or path-dependence) and
elastic unloading.

E

T

T0

increase in loading-rate

(b) Loading at increasing rates for a rate-
dependent material.

Figure 2.4: Irreversibility and possible rate-dependence during loading for plastic materials.
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This characteristic feature of plastic material response can be retraced in Figure 2.4a.
Here, we also allow for negative values of T, i.e., compression of the material exhibiting similar
features as described above. Reversing the direction of loading at some stress T1 > T0 does
not cause the state to follow back the original curve to its initial configuration. Instead the
material behaves elastically and evolves along the straight line with the same slope as in the
original loading process. This phenomenon is referred to as elastic unloading.

Additionally, plastic deformation beyond the initial yield stress T0 (or −T′0) also affects
the so-called elastic region of the material. While the initial elastic range ]−T′0,T0[ includes
the original state, this might not be the case for subequent elastic ranges like ]−T′1,T1[ which
are only accessible by plastic deformation previously haven taken place.

While still on the topic of stress-strain relationships, let us shortly remark on the role and
physical background of rate-independence within elasto-plastic behavior. Therefore consider
the experiment from above to be repeated multiple times and each time the rate, at which
the external force is applied, is different. In many applications, it is observed that – while the
elastic response remains unchanged – the plastic behavior of the material differs with the rate
of loading. This phenomenon of rate-dependence as illustrated in Figure 2.4b will be neglected
within the present treatise in order to take advantage of the rich theory from Section 2.1.

Introduction of the Plastic Variable

In order to now get a grasp on the plastic phenomena of non-linearity and path-dependence
described above, it seems natural to introduce a new plastic variable P to our description
of material response. For the definition of this variable which measures the state of plastic
deformation, it is intuitive to decompose the total strain into a purely elastic and a purely
plastic component. This approach prevails in particular in small strain theory, cf. [36, 45, 59,
75], where an additive decomposition of the infinitesimal strain tensor from (2.2.3) via

ε = e+ p

is proposed. Thermodynamic considerations support this approach [36, Section 3.2] and it is
adequate for the vector space setting in which small strain theory is often formulated.

For the consideration of large deformations and thereby finite strain elasto-plasticity, a
manifold-based description within a Lie-group setting turns out to be advantageous, cf. [63]. In
order to enable this formulation of the underlying theory, we use a multiplicative decomposition
of the deformation gradient ∇y : Ω × [0, T ] → GL+(d) into an elastic part Fel : Ω × [0, T ] →
GL+(d) and a plastic part Fp : Ω× [0, T ]→ SL(d) via

∇y =: F = FelFp . (2.2.10)

In the following, we will again focus on a conceptional deduction of equations describing the
plastic behavior motivated beforehand. Thus, we will often notationally identify the mappings
introduced above with their corresponding images for fixed (x, t) ∈ Ω × [0, T ] and also omit
explicit time-dependence of occurring functionals.

The multiplicative split from (2.2.10) for the manifold-based description can be illustrated
by the existence of the so-called intermediate configuration which only depicts the internal
plastic state of the material. The deformation gradient as a whole can then be understood as
a concatenation of separate plastic and elastic deformation mappings, cf. [23, 47, 54] for first
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x

Ω

Ωp

Fp

y(x)

F = ∇y

Fel

y

Ωy

Figure 2.5: Illustration of the multiplicative split of the deformation gradient and introduction
of the intermediate configuration Ωp.

approaches to such formulations or [10, 91] for a brief historical overview. This understanding
is visualized in Figure 2.5.

The plastic variable itself can from here on be interpreted differently. While for analyt-
ical arguments as in [63], it is often advantageous to consider P := F−1

p ,8 application-based
approaches prefer to use P := Fp instead, cf. [66, Section 4.2.1] or our application problem
derived in Section 2.2.4. The resulting descriptions in the Lie-group scenario are equivalent
since in a manifold setting choosing between these alternatives for P can be viewed analogous
to considering different signs ± in vector spaces. For now, we will go with the former of these
choices in order to deduce the rate-independent formulation of finite strain plasticity.

The first step towards the generalization of the theory from Section 2.2.1 to plastic behavior
is the natural extension of the stored energy functional from (2.2.7) to incorporating a split
dependence on the elastic deformation gradient Fel and the plastic variable P at some (x, t) ∈
Ω× [0, T ] via

Ŵ : Ω×GL+(d)× SL(d)→ R , (x,F,P) 7→ Ŵ (x,F,P)

where we will mostly omit the explicit dependence on x ∈ Ω for the sake of notational sim-
plicity.

Yield Functions, Surfaces, and the Plastic Flow Rule

The characteristic plastic phenomena described beforehand and the evolution of the plastic
variable P can then be modeled by using so-called yield functions and surfaces. The yield
function Y : SL(d)×Rd×d → R, (P,Q) 7→ Y (P,Q), helps us to characterize the elastic region,
i.e., the interval ] − T′0,T0[ in the above example, via the sublevel set {Y < 0}, and its
boundary, the yield surface where plastic deformation takes place, via the level set {Y = 0}.
Thus, the yield function determines the plastic behavior of the considered material and is
assumed to depend on P as well as on the so-called plastic back-stress

Q : Ω× [0, T ]→ Rd×d , Q(x, t) = −DPŴ
(
x,Fel(x, t),P(x, t)

)
.

8In this case, we do not really consider the inverse of the mapping Fp : Ω × [0, T ] → SL(d) but interpret
P : Ω× [0, T ]→ SL(d), P(x, t) := Fp(x, t)

−1, as the corresponding pointwise inverse matrix.
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The latter can be seen as the conjugate variable to the Piola-Kirchhoff stress T characterized by
(2.2.7). For the sake of an easier analysis as in [66], we will now assume that the yield function
only depends on P and Q through the tensor Q̄ := PTQ, i.e., we have that Y (P,Q) = Ŷ (Q̄)
holds for an adequate function Ŷ : Rd×d → R, Q̄ 7→ Ŷ (Q̄). With this formulation at hand,
the principle of maximal dissipation provides us with the so-called associated flow rule for the
evolution of P, cf. [99, 100, 119]. As discussed previously in Section 2.1.2, the principle often
formulated via (2.1.13) constitutes a fundamental assertion within the physical description
and has crucial implications for the setting we find ourselves in. In particular, the flow rule
can then be formulated in Karush-Kuhn-Tucker form via

P−1Ṗ = λDQ̄Ŷ (Q̄) , with λ ≥ 0 , Ŷ (Q̄) ≤ 0 and λŶ (Q̄) = 0 . (2.2.11)

We, however will reformulate this statement for fixed (x, t) ∈ Ω × [0, T ] and to this end
introduce the set of admissible generalized stresses Q together with its characteristic function
XQ : Rd×d → [0,∞] by

Q :=
{

Q̄ ∈ Rd×d
∣∣ Ŷ (Q̄) ≤ 0

}
and XQ(Q̄) :=

{
0 , if Q̄ ∈ Q
∞ , otherwise.

Here, we assume convexity of Q together with the existence of r1, r2 > 0 such that Br1(0) ⊂
Q ⊂ Br2(0). The set Q mirrors the abstract elasticity domain from (2.1.11). In particular,
also XQ is thereby convex and we can reformulate (2.2.11) via

P−1Ṗ ∈ ∂XQ(Q̄) = NQ̄Q (2.2.12)

where the latter identity involves the outer normal cone which in general is defined via

NzC :=
{
z∗ ∈ Z∗

∣∣ ∀ ẑ ∈ C : 〈z∗, z − ẑ〉 ≤ 0
}

for a closed convex set C in the point z ∈ C within a Banach space Z with dual space Z∗.
Now, we define the dissipation functional as the convex conjugate of XQ by

∆: Rd×d → [0,∞] , ∆(ξ) := (XQ)∗(ξ) = sup
{
〈ξ, η〉

∣∣ η ∈ Q
}

and conclude convexity as well as homogeneity of degree 1 of said mapping. Classical duality
theory for convex functions (, cf. [90, Proposition 11.3],) thus provides us with the equivalence
of ξ ∈ ∂XQ(Q̄) and Q̄ ∈ ∂∆(ξ). Using ξ = P−1Ṗ, we can thereby reformulate the flow rule
from (2.2.12) in terms of

∆̂ :
(
SL(d)

)2 → [0,∞] , ∆̂(A,B) := ∆(A−1B)

via Q ∈ ∂B∆̂(P, Ṗ). The definition of Q then leads to the final pointwise version of the flow
rule as the following differential inclusion:

0 ∈ DPŴ (x,Fel,P) + ∂B∆̂(P, Ṗ) ⊂ Rd×d .

In order to now obtain the corresponding field equation, we consider the integrated total
energy functional from (2.2.8) (which now accordingly also depends on the plastic variable P)
together with the integrated dissipation functional

∆̂Ω :
(
Ω→ SL(d)

)2 → [0,∞] , ∆̂Ω(A,B) :=

∫
Ω

∆̂
(
A(x),B(x)

)
dx

and thus obtain the plastic flow rule:
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∀ t ∈ [0, T ] : 0 ∈ DPE(t,y,P) + ∂B∆̂Ω(P, Ṗ) . (2.2.13)

Together with the variational formulation of the elastic equilibrium equation from (2.2.9),
this constitutes a complete description of finite strain elasto-plasticity. Combining the differ-
ential inclusions (2.2.9) and (2.2.13) into one, we achieve

∀ t ∈ [0, T ] : 0 ∈ DqE
(
t, q(t)

)
+ ∂vR

(
q(t), q̇(t)

)
for the state variable q := (y,P) and the dissipation potential R := ∆̂Ω which is exactly the
differential inclusion from (2.1.5) for rate independent systems. The above formulation with
separated (2.2.9) and (2.2.13) can also be thought of as the coupled system from (2.1.17) which
allows for the interpretation of the deformation field y as the non-dissipative counterpart to
the dissipative plastic strain variable P. This concludes the rate-independent formulation of
elasto-plasticity and enables the discussion of the existence of corresponding energetic solutions
in what follows.

2.2.3 Existence of Energetic Solutions

Now that we have established the transition from continuum mechanics to a formulation of
finite strain plasticity within a rate independent system, the next goal is to lay out a general
framework of assumptions on the stored energy functional and the dissipation distance which
allows for energetic solutions as characterized in Section 2.1.2. We will also elaborate on
how the assumptions formulated here transfer to their abstract counterparts from the general
existence theory and thus give an idea how the proof of existence is structured without going
too much into technical detail. For a detailed elaboration, we refer to [66, Section 4.2.1].

As we have already mentioned beforehand, we will also here employ the multiplicative
decomposition of the deformation gradient but this time around interpret the plastic variable
as P := Fp. While a general assumption like P(x, t) ∈ GL+(d) is possible, we will continue
to use P(x, t) ∈ SL(d) together with Fel(x, t) ∈ GL+(d). In addition to P, we include further
plastic variables like hardening variables and slip strains that are combined into a vector-valued
mapping Π : Ω× [0, T ]→ Rm for m ∈ N.

As for the dissipative components before, we now write z = (P,Π) ∈ SL(d)×Rm in general,
z = (P,Π) for the corresponding mappings on Ω×[0, T ], and use A as a placeholder for images
of the (spacial) gradient contributions

∇z : Ω× [0, T ]→ Rd×d×d × Rm×d =: L(d,m) , ∇z(x, t) :=
(
∇P(x, t),∇Π(x, t)

)
.

The latter also characterize the models of plasticity which we are considering here, often
referred to as gradient theories or gradient plasticity.

With the main unknowns in place, we consider the stored energy density W as the sum of
an elastic part Wel and a part Whd including hardening and regularizing terms, i.e., we have

W (x,F,P,Π,A) = Wel(x,F,P) +Whd(x,P,Π,A) (2.2.14)

for all x ∈ Ω,F ∈ GL+(d),P ∈ SL(d),Π ∈ Rm and A ∈ L(d,m).
For notational simplicity, we will assume time-dependent Dirichlet-data yD : [0, T ]×ΓD →

R3 to drive the process instead of volume and surface forces. The changes to be made in order
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to include non-trivial forces can be retraced in [66, Remark 4.2.5]. Concisely, volume and
surface forces have to be chosen such that for

〈`(t), ỹ〉 :=

∫
Ω
〈fΩ(x, t), ỹ(x)〉Rd dx+

∫
ΓN

〈fΓN (t), ỹ〉Rd dS (2.2.15)

the functional inclusion ` ∈ W 1,1
(
0, T ;W 1,pdf (Ω;Rd)∗

)
holds with pdf > d to be determined

later. For the function governing time-dependent Dirichlet-data, we assume expandability
from the Dirichlet boundary of non-zero measure to R3 such that the derivative expressions
∇yD,∇ẏD, (∇yD)−1 are bounded and continuous on [0, T ] × Rd. Thus, we can write the
desired deformation field as the composition

y(x, t) = yD
(
ỹ(x, t), t

)
with ỹ(·, t) ∈ Y

for the space of admissible deformations Y given as

Y :=
{
ỹ ∈ Y

∣∣∀x ∈ ΓD : ỹ(x) = x
}

with Y := W 1,pdf
(
Ω;Rd

)
(2.2.16)

where we will specify d < pdf < ∞ later. With this definition at hand, we characterize the
domain of the internal variable by

Z :=
{

(P,Π) ∈ Z
∣∣P ∈ SL(d) a.e. in Ω

}
with Z :=

[
Lppl ∩W 1,pgr

](
Ω;Rd×d

)
×
[
Lphd ∩W 1,pgr

](
Ω;Rm

) (2.2.17)

again with ppl, pgr, phd ∈ ]1,∞[ to be determined later. Omitting the tilde on the deformation
field above, we recognize the stored energy functional E and the dissipation distance D as

E(t,y, z) :=

∫
Ω
W
(
t, x,∇yD

(
t,y(x, t)

)
∇y(x, t)P(x, t)−1, z(x, t),∇z(x, t)

)
dx ,

D(z1, z2) :=

∫
Ω
D
(
x, z1(x, t), z2(x, t)

)
dx .

(2.2.18)

Going on with formulating assumptions on the underlying mappings and domains, we demand
D to be an extended quasi-distance with

D : Ω×
(
SL(d)× Rm

)2 → [0,∞[ is a normal integrand,
∀x ∈ Ω, z1, z2 ∈ SL(d)× Rm : D(x, z1, z2) = 0⇐⇒ z1 = z2 ,

∀x ∈ Ω, z1, z2, z3 ∈ SL(d)× Rm : D(x, z1, z3) ≤ D(x, z1, z2) +D(x, z2, z3)

(2.2.19)

where a normal integrand a : Ω×Rm → R∞ is characterized by lower semi-continuity of a(x, ·)
for almost all x ∈ Ω and measurability of a as a whole.

As far as the stored energy density W : Ω×GL+(d)×
(
SL(d)×Rm

)
×L(d,m) →]−∞,∞] is

concerned, we have to put in some more deliberations. Firstly, we demandW to be polyconvex
together with a particular lower bound for coercivity on its domain. To this end, we introduce

the function M : Rd×d → Rµd with µd :=

(
2d
d

)
− 1 which maps a matrix to all its minors

(subdeterminants). Then, we can formulate the conditions
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∃W : Ω× Rµd × SL(d)× Rm × L(d,m) →]−∞,∞] :

(i) W is a normal integrand,
(ii) ∀ (x,F, z,A): W (x,F, z,A) = W

(
x,M(F), z,A

)
(iii) ∀ (x, z) : W

(
x, ·, z, ·

)
: Rµd × L(d,m) →]−∞,∞] is convex,

(2.2.20a)

∃ c >0, h ∈ L1(Ω), pel, ppl, phd, pgr > 1 ∀ (x,F,P,Π,A) ∈ domW :

W (x,F,P,Π,A) ≥ h(x) + c
(
‖F‖pel + ‖P‖ppl + ‖Π‖phd + ‖A‖pgr

)
.

(2.2.20b)

The polyconvexity assumption (2.2.20a), introduced in [5], together with the boundedness
and continuity of ∇yD, ∇ẏD and (∇yD)−1 provides weak lower semi-continuity of the stored
energy functional E(t, ·) : Y × Z → R as defined in (2.2.18) at every time t ∈ [0, T ] if the
relations

1

pel
+

1

ppl
=

1

pdf
<

1

d
, phd > 1 , and pgr > 1 (2.2.21)

hold for the Lebesgue exponents. This implication together with the corresponding proof can
be retraced in [66, Proposition 4.1.4].

While the assumptions in (2.2.20) only concern the stored energy density itself, we also
have to demand certain bounds and continuity estimates on the derivatives of W with respect
to elastic deformation placeholders F close to the identity. For this reason, we define a modulus
of continuity ω as a non-decreasing function with ω(ρ) → 0 for ρ >→ 0. Now, we are in the
position to formulate

∃ cW0 ∈ R, cW1 > 0, δ > 0, modulus of continuityω : ]0, δ[→]0,∞[

∀ (x,F, z,A) ∈ domW ∀N ∈ Nδ :=
{

N ∈ Rd×d
∣∣ ‖N− I‖ < δ

}
:

W (x, ·, z,A) is differentiable onNδF and (2.2.22a)∣∣DFW (x,F, z,A)FT
∣∣ ≤ cW1 (W (x,F, z,A) + cW0

)
(2.2.22b)∣∣DFW (x,F, z,A)FT −DFW (x,NF, z,A)(NF)T

∣∣
≤ ω

(
‖N− I‖

)(
W (x,F, z,A) + cW0

) (2.2.22c)

where we denoted images of F by NδF := {NF |N ∈ Nδ}. To give a short interpretation, we
can see (2.2.22b) as a multiplicative stress control since the so-called Kirchhoff stress tensor
DFW (x,F, z,A)FT is a “multiplicative stress” and is here estimated uniformly in terms of the
energy density W . Assumption (2.2.22c) states uniform continuity of this stress tensor even if
the energy density itself is considered as a weight – at least in a neighborhood of the identity.

Under the prerequisites which we have gathered until now, we can already formulate an
existence result for solutions of the increment problems from which energetic solutions are
constructed later on. These increment problems will be the focus of our algorithmic inves-
tigations in Chapters 3 and 4 which makes being aware of the assumptions needed for their
well-definedness in the context of finite strain plasticity desirable.
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Theorem 2.2.2: Existence of Solutions of Increment Problems

Consider Q := Y × Z according to (2.2.16) and (2.2.17) as well as the functionals E
and D from (2.2.18). Assume that polyconvexity and coercivity from (2.2.20) hold for
integrability powers pdf , pel, ppl, phd and pgr sufficing (2.2.21). Moreover, assume that
D satisfies (2.2.19) and (2.2.22) holds for W .

Then, for all partitions Π ∈ Part
(
[0, T ]

)
, solutions to the correspondingly formulated

time-incremental minimization problems (IMP)Π exist.

For the proof of the above theorem, we know from Proposition 2.1.8 that we require the
abstract conditions (E1) and (E2) for the energy functional as well as (D1) and (D2) for
the dissipation. We will explain how these can be deduced from their concrete counterparts
formulated here towards the end of the current section.

Let us now continue with the analysis of energetic solutions of the time-dependent problem.
For the formulation of the last assumption which we will need in order to guarantee the
validity of the compatibility conditions (C1) and (C2), we have to introduce yet another
class of functions. For j,m0,m1, ...,mj ∈ N, a mapping a : Ω × Rm1 × ... × Rmj → Rm0 is
called a Carathéodory function if a(·, r1, ..., rj) : Ω → Rm0 is measurable for all (r1, ..., rj) ∈
Rm1 × ... × Rmj and a(x, ·) : Rm1 × ... × Rmj → Rm0 is continuous for almost all x ∈ Ω.
Obviously, this notion can be extended to matrix-valued domains and we thus formulate

D : Ω×
(
SL(d)× Rm

)2 → [0,∞[ is a Carathéodory function and

∃h ∈ L1(Ω), C > 0, p1 ∈ [1, ppl[, p2 ∈ [1, phd[ :∣∣D(x,P0,Π0,P1,Π1)
∣∣ ≤ h(x) + C

(
‖P0‖p1 + ‖P0‖p1 + ‖Π0‖p2 + ‖Π0‖p2

) (2.2.23)

for all x ∈ Ω as well as (P0,Π0), (P1,Π1) ∈ SL(d) × Rm. This assumption on the dissipation
functional D is rather simple and restrictive concerning the applications in elasto-plasticity.
Furthermore, it can be loosened to more general but also complicated formulations, cf. [66,
Equation 4.2.11]. For our purposes of introducing kinematic hardening, however, this easily
comprehensible variant of conditions leading to compatibility is sufficient.

With all of the above assumptions at hand, we are finally in the position to formulate the
existence of energetic solutions in the framework of finite strain elasto-plasticity similar as in
[66, Theorem 4.2.1]:

Theorem 2.2.3: Existence of Energetic Solutions

Consider Q := Y×Z according to (2.2.16) and (2.2.17) as well as the functionals E and
D from (2.2.18). Assume that polyconvexity and coercivity from (2.2.20) together with
the multiplicative stress bounds from (2.2.22) hold for integrability powers pdf , pel, ppl,
phd and pgr sufficing (2.2.21). Moreover, assume that D satisfies (2.2.19) and (2.2.23).

Then, for all stable initial conditions q0 = (y0, z0) : Ω→ Rd×
(
SL(d)×Rd

)
, there exists

an energetic solution q : [0, T ]→ Q for
(
Q, E ,D, q0

)
.

Let us now shortly link together the assumptions formulated prior to the above existence
result and explain how they are utilized in order to verify their rather abstract counterparts
from Section 2.1. A detailed version of all arguments can be found in [66, Section 4.2.1].
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As we have already pointed out beforehand, the polyconvexity from (2.2.20a) together
with the regularity of the Dirichlet data driving the process lets us conclude weak lower semi-
continuity under the additional assumption (2.2.21) on the integrability powers. Additionally,
the coercivity from (2.2.20b) suffices to infer uniform boundedness of sublevels of E(t, ·) for
all t ∈ [0, T ] by the adequate use of Hölder’s inequality. These two steps then lead to the first
demand on E itself, i.e., the assumption (E1).

Going on, we then use the uniform continuity of the derivatives via (2.2.22b) in addition to
(2.2.20) and the regularity of the Dirichlet data in order to deduce in-time differentiability of
the stored energy functional together with a closed-form expression for ∂tE(t, q). From here,
we use Gronwall’s inequality for a uniform continuity estimate as in (2.2.22b) for the latter
time-derivative. At last, a modulus of continuity for the gradients of the Dirichlet data helps
us to conclude the energetic control of power as formulated in (E2).

The abstract requirements on the dissipation distance from (D1) and (D2) follow immedi-
ately from the assumptions we have made beforehand via (2.2.19).

As far as the compatibility conditions are concerned, an in-time uniform continuity result
for ∂tE on sublevels of E itself from the proof of (E2) together with (2.2.23) is used in order
to provide the requirements of an auxiliary result stating sufficient assumptions for (C1) and
(C2).

With all of the abstract assumptions on the corresponding initial value problem
(
Q, E ,D, q0

)
at hand, the existence result in Theorem 2.2.3 for the elasto-plastic problem is a direct conse-
quence of the more general result from Theorem 2.1.9.

2.2.4 Formulation of the Application Problem

In what follows, we will deduce the precise form of the d = 3-dimensional finite strain plasticity
application problem which we will consider later on in Chapter 5 – at least up to the concrete
object geometry and applied external forces. In particular, for a suitable initial state (y0,P0)
we will consider the time-incremental minimization problems

Find
(
y1,P1

)
, ...,

(
yNΠ ,PNΠ

)
such that for k ∈ {1, ..., NΠ} :(

yk,Pk
)
minimizes (y,P) 7→ E

(
tk,y,P

)
+D(Pk−1,P) .

(2.2.24)

as first formulated in (IMP)Π in Section 2.1.2 and reformulate them such that our solution
algorithm developed in Chapters 3 and 4 can be directly applied. All of these problems work
with fixed time points tk which is why even within all of the mappings marked as bold no
explicit time-dependence is present.

The time-incremental minimization problems from (2.2.24) are sometimes also referred to
as homotopy step problems. This designation stems from the idea that the discretization of
time-dependent boundary forces and conditions in time has to be fine enough in order to
resolve the homotopy of the underlying physical formulation.

Material Models and Hardening for the Stored Energy Functional

Our first deliberations concern the stored energy functional in the form of its corresponding
densities which are then integrated over the domain Ω ⊂ R3 of our test body. We remember
the split into elastic and plastic energy densities plus external influences from (2.2.14) and
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omit dependence of the material point x ∈ Ω. Thus, we formulate E : [0, T ]× Y × Z → R as

E(t,y,P) :=

∫
Ω
Wel

(
Fel(x)

)
+Whd

(
P(x)

)
dx+ 〈`(t),y〉

where the specific form of the external influences can be retraced in (2.2.15). For this split and
d = 3, the polyconvexity assumption from (2.2.20a) reduces to the existence of some convex
W : R3×3 × R3×3 × R→ R∞ such that we can write

Wel(F) = W
(
F, cof(F),det(F)

)
for all F ∈ GL+(3). As elaborated on in [66, Section 4.1.1], popular such models addition-
ally sufficing the corresponding coercivity bound Wel(F) ≥ c0 + c1

∥∥F
∥∥pel

F
for the Frobenius

norm
∥∥·∥∥

F
and some elastic growth rate pel > 1 are for instance the Mooney-Rivlin model

WMR : GL+(3)→ R from [72, 88] given by

WMR(F) := a
∥∥F
∥∥2

F
+b
∥∥cof(F)

∥∥2

F
+cdet(F)2 + V

(
det(F)

)
(2.2.25)

with constants a, b, c > 0 and some convex function V : R → R as well as the Ogden model
WOgden : GL+(3)→ R from [76] defined via

WOgden(F) :=
N∑
i=1

αitr
(
(FTF)pi

)
+ V

(
det(F)

)
(2.2.26)

with N ∈ N, constant prefactors αi > 0, exponents pi ≥ 1 for i ∈ {1, ..., N} and again some
convex V : R→ R.

Another very popular model from engineering literature is the so-called St. Venant-
Kirchhoff material model WSVK : GL+(3) → R which can be seen as an extension of the
geometrically linear elastic material model to the non-linear regime. It is defined via

WSVK(F) :=
1

2
CE: E =

1

2

3∑
i,j,k,l=1

CijklEijEkl (2.2.27)

where E = 1
2

[
FTF− I

]
is the Green-Lagrange strain tensor as it first appeared in (2.2.2) and

C = {Cijkl} is the fourth-order tensor of elastic moduli. The latter is usually assumed to
be positive definite and symmetric in the sense that it maps symmetric tensors to symmetric
tensors, i.e., we demand9

∃α > 0 ∀E ∈ R3×3
sym : CE: E ≥ α

∥∥E
∥∥2

F
, (2.2.28a)

∀i, j, k, l ∈ {1, 2, 3} : Cijkl = Cjikl = Cklij . (2.2.28b)

Assumption (2.2.28a) in particular yields that (2.2.27) is coercive of the form WSV K(F) ≥
ε0

∥∥F
∥∥4

F
− 1
ε0

for some ε0 > 0. On the downside, however, the energy density is neither poly-
nor quasiconvex10. Additionally, the Green-Lagrange tensor E is insensitive of the sign of F

9Here, R3×3
sym refers to the respective subset of symmetric matrices.

10Quasiconvexity is a generalization of polyconvexity as introduced in (2.2.20a) and under suitable additional
assumptions also yields weak lower semi-continuity of the stored energy functional, cf. [66, Proposition 4.1.5].
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and thus is incapable of implementing the non-interpenetration condition det(F) > 0 which
accordingly has to be treated rather as a separate constraint.

Material symmetry additionally reduces the number of independent constants in C. In
d = 3 and for so-called isotropic11 media, there are only two degrees of freedom and the St.
Venant-Kirchhoff model (2.2.27) reduces to

WSVK(F) =
1

2
λ|tr(E)|2 + µ

∥∥E
∥∥2

F
(2.2.29)

where the constants λ and µ are called Lamé coefficients and tr(A) denotes the trace of the
matrix A. The so-called shear modulus µ and the bulk modulus λ have to suffice µ > 0 and
λ + 2

3µ > 0 for the positive definiteness from (2.2.28a) to hold. The latter sum here is also
referred to as the modulus of compression.

As far as the second part of the stored energy density, the hardening density Whd, is
concerned, we consider a simple kinematic hardening term of the form

Whd(P) := k1

∥∥P∥∥ppl

F
+ k2

∥∥∇P
∥∥pgr

F
(2.2.30)

with hardening parameters k1, k2 > 0, a plastic growth rate ppl > 1 and an additional regulariz-
ing growth rate pgr > 1. The Frobenius norm of the 3-tensor ∇P is computed component-wise

by
∥∥∇P

∥∥
F

=
(∑3

i=1

∥∥DxiP
∥∥2

F

) 1
2 . Often, in particular in engineering literature, the case of no

gradient regularization, i.e., k2 = 0 in (2.2.30), is desired. Neglecting gradient terms within
the hardening density and thereby also within the whole of the stored energy density W rules
out the lower bound on the latter formulated in (2.2.20b). Thus, also the compactness of
sublevel sets required in its abstract counterpart (E2) is not satisfied. The importance of
this property for the existence of both solutions to the time-incremental minimization prob-
lems and energetic solutions in general has become apparent over the course of Section 2.1.3.
Since we want to stay as close as possible to existence theory for our underlying finite strain
plasticity problem, we will only consider computational examples with non-trivial gradient
regularization within our numerical investigations in Chapter 5.

Discussion About Compatibility With Existence Theory

Let us now shortly remark on how the above models fit into the theoretical framework of
existence of energetic solutions from Section 2.2.3: The main aspects of the requirements for
existence which we take into consideration here are the coercivity parameters pel, ppl, pgr from
(2.2.20b) satisfying (2.2.21), and the polyconvexity of the elastic energy density as formulated
in (2.2.20a). The value of phd is not of interest since we neglect additional internal variables
within our model. Usually in literature, so-called linear kinematic hardening which is governed
by quadratic norm terms, i.e., ppl = pgr = 2 in (2.2.30), is of interest. This does already
rule out existence of solutions according to our theory. Even for larger exponents within
hardening terms we encounter problems with models considered in engineering applications.
The Mooney-Rivlin energy density from (2.2.25) is polyconvex and coercive but only allows
for pel = 2 in (2.2.20b) which does not suffice. The also polyconvex Ogden material model
from (2.2.26) is more flexible in the choice of exponents and the corresponding parameter pel

is determined by the minimal pi within its definition. The accordingly high choice of both
11Isotropic media exhibit invariances under internal rotations. This means that the material “has no preferred

direction”.
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the hardening and Ogden exponent would then again leave us with an extremely unphysical
model which is irrelevant from an application-oriented standpoint. The last one of the popular
models considered above, the St. Venant-Kirchhoff energy density from (2.2.27), on the other
hand exhibits a relatively high pel = 4 and is cheap in computation but then again is ruled
out due to lacking polyconvexity.

Altogether, we conclude that theory and application exhibit a conflict of interest as far
as model parameters are concerned. The trade-off which we will take for the simulations
conducted later on in Chapter 5 is that we will pursue physical significance by using the
material models introduced above together with non-trivial gradient regularization.

Spinless Plastic Range and Dissipation Functional

With the complete description of the stored energy density and thereby functional at hand, we
can turn our attention to the concrete form of the plastic range and the adequate definition
of a corresponding dissipation functional. While in our section on general existence theory for
energetic solutions we have worked with the canonical choice

P(x, t) ∈ SL(3) =
{

M ∈ R3×3
∣∣ det(M) = 1

}
for all x ∈ Ω and t ∈ [0, T ], we have mentioned already there that different definitions of the
plastic range are possible and might be advantageous for the adequate formulation of particu-
lar finite strain plasticity problems. The above choice includes non-trivial both symmetric and
non-symmetric parts of the plastic strain. Non-symmetric parts are also referred to as rota-
tional parts of the corresponding matrix and can from a physical point of view be interpreted
as the so-called plastic spin. This choice is very general but efficient implementation strategies
struggle in rigorously aligning with existence theory. We will elaborate on these problems and
possibilities to work around them later on.

For our formulation here, we will consider the case of spinless plasticity which – most im-
portantly for us – allows both for moving within the bounds given by the assumptions from
existence theory and for exploiting the ensuing problem structure for an efficient implementa-
tion of our solution algorithm from Chapters 3 and 4. Hence, we use

P(x, t) ∈ SL(3)+
sym =

{
M ∈ SL(3)

∣∣M is symmetric and positive definite
}

for all x ∈ Ω and t ∈ [0, T ] as the definition of our plastic range. On this domain space for our
plastic variable, we have to now define the dissipation functional, i.e., a distance functional
which measures the energy that is dissipated when moving from one plastic state to another.
As given in (2.2.18), this mapping is typically given as an integral

D(P1,P2) :=

∫
Ω
D
(
P1(x),P2(x)

)
dx

over the test body domain Ω ⊂ R3 with respect to the dissipation density

D : SL(3)+
sym × SL(3)+

sym →]−∞,∞] .

As we have mentioned beforehand, cf. (2.2.19), this density needs to fulfill the triangle in-
equality and D(P1,P2) = 0 must hold if and only if P1 = P2 holds within the plastic range.
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However, the dissipation density does not have to be symmetric. We can construct distance
densities with these properties as lengths of shortest (weakly) differentiable paths

P(P1,P2) :=
{
P ∈W 1,1

(
0, 1; SL(3)+

sym

) ∣∣P(0) = P1 , P(1) = P2}

between two plastic states P1,P2 ∈ SL(3)+
sym. The corresponding lengths of these paths are

then measured by the dissipation potential R : SL(3)+
sym × T

(
SL(3)+

sym

)
→] −∞,∞] on the

tangent bundle T
(
SL(3)+

sym

)
. For our plastic range, R(P, Ṗ) :=

∥∥P−1/2ṖP−1/2
∥∥
F
is a possible

definition which leads to the dissipation density

D(P1,P2) := inf

{∫ 1

0
T0

∥∥P(s)−
1
2 Ṗ(s)P(s)−

1
2

∥∥
F

ds

∣∣∣∣P ∈ P(P1,P2)

}
. (2.2.31)

The scalar T0 > 0 here represents the yield stress of the plastic deformation as it has already
been considered in Section 2.2.2. This choice of the dissipation functional and ensuing density
align with our formerly established existence theory and thus allows for the investigation of
energetic solutions of the corresponding rate-independent system, cf. [66, Remark 4.2.9].

Due to the symmetry inherent to our choice of the plastic range SL(3)+
sym, arguments

from [63, Section 4] can be adopted in order to prove the following closed form expression of
the dissipation density from (2.2.31), cf. [66, Remark 4.2.9]. The steps to be taken for this
endeavor, however, dig deeply into the theory of the underlying manifold description of finite
strain plasticity. A comprehensive version of the rigorous argumentation can be retraced in
[43].

Lemma 2.2.4: Closed Form Expression for the Dissipation Density

Consider P1, P2 ∈ SL(3)+
sym. The dissipation distance as defined in (2.2.31) from P1 to

P2 in SL(3)+
sym is explicitly given by

D(P1, P2) = T0

∥∥log
(
δP+

sym

) ∥∥
F

where δP+
sym := P

− 1
2

1 P2P
− 1

2
1 denotes the so-called plastic increment from P1 to P2.

In particular, the above closed form expression shows that the dissipation distance as
defined in (2.2.31) from a plastic state P1 to another P2 only depends on the plastic increment

δP+
sym := P

− 1
2

1 P2P
− 1

2
1 .

As a consequence, this allows us to reconstruct the endpoint P2 of the transformation
within the plastic range SL(3)+

sym by using the so-called plastic update operator

∆+
sym : SL(3)+

sym × SL(3)+
sym → SL(3)+

sym , ∆(P, δP ) := P
1
2 δPP

1
2 (2.2.32)

insofar that with the above definitions P2 = P
1
2

1 δP
+
symP

1
2

1 = ∆+
sym(P1, δP

+
sym) holds. In par-

ticular, the plastic update operator is a well-defined mapping into the plastic range, i.e., it
preserves the symmetry and determinant of both arguments.

Reformulation of the Time-Incremental Minimization Problems

Since with the above formula for updating plastic states it suffices to know the initial state and
the plastic increment, we can now use the latter in order to reformulate the time-incremental
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minimization problems from (2.2.24) with the use of the plastic increment as a variable. In
particular, this allows us to efficiently take advantage of the closed form expression of our
dissipation distance from Lemma 2.2.4. Taking these first steps, we arrive at the problem of
finding the pair of mappings (yk, δPk) ∈ Y × Z which minimizes

(y, δP+
sym) 7→ E

(
tk,y,∆

+
sym

(
Pk−1, δP+

sym

))
+ T0

∫
Ω

∥∥log
(
δP+

sym(x)
)∥∥
F

dx (2.2.33)

and afterwards setting Pk := ∆+
sym

(
Pk−1, δPk

)
for all k ∈ {1, ..., NΠ}. Here, the closed

form expression of D is already helpful but still rather inconvenient to compute due to the
matrix-logarithm term. For this reason, we take advantage of yet another reformulation of
the increment search problem which is enabled by the following lemma. Again, the symmetry
assumption on our plastic range space SL(3)+

sym is very helpful here and the proof follows
directly from the eigenvector-decomposition.

Lemma 2.2.5: Exponential Representation of SL(3)+
sym-Matrices

For the domain space S3
0 :=

{
A ∈ R3×3

∣∣AT = A , tr(A) = 0
}
, the canonical matrix

exponential exp : S3
0 → SL(3)+

sym is bijective.

This allows us to rewrite the time-incremental problem (2.2.33) in terms of the exponential
representation of the global plastic increment δP+

sym = exp(δB) for a uniquely determined
function δB mapping x ∈ Ω to matrices from S3

0. These can also be understood as tangential
plastic increment mappings since – from a manifold standpoint – the newly acquired search
space is the tangent space to the former one at the identity. As a consequence, solving the time-
incremental minimization problems from (2.2.24) is equivalent to finding a pair of mappings
(yk, δBk) which minimize the objective functional defined via

F (y, δB) := E
(
tk,y,∆

+
sym

(
Pk−1, exp(δB)

))
+ T0

∫
Ω

∥∥δB∥∥
F

dx (2.2.34)

and afterwards setting Pk := ∆+
sym

(
Pk−1, exp(δBk)

)
in order to obtain the subsequent plastic

state for any k ∈ {1, ..., NΠ}.
Minimizing this objective functional features a handful of challenging aspects: Firstly, the

energy functional E is in general non-convex and, secondly, the dissipation functional given
by the scaled norm term is non-differentiable. Dealing with these peculiarities of the time-
incremental minimization problems and finding an efficient way to solve them will be the
central point of consideration within the rest of the present treatise.

Discussion about Incorporating Plastic Spin

Before taking on the challenge of designing an efficient solver for the finite strain plasticity
homotopy step problems formulated above, we want to shortly discuss the incorporation of
the aforementioned concept of plastic spin into our framework. As we have also pointed out
already, this general approach requires a different definition of the plastic range as the whole
of SL(3) and not only the subset of symmetric positive definite matrices. This choice for the
plastic range also comes with a different definition of the dissipation potential R(P, Ṗ) :=∥∥ṖP−1

∥∥
F
which leads to the dissipation density
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Dspin(P1,P2) := inf

{∫ 1

0
T0

∥∥Ṗ(s)P(s)−1
∥∥
F

ds

∣∣∣∣P ∈ P(P1,P2)

}
(2.2.35)

where now P(P1,P2) denotes the set of (weakly) differentiable paths connecting P1 and P2 in
SL(3). Again here, it can be shown that (2.2.35) only depends on the corresponding plastic
increment δP := P2P

−1
1 and the update operator from (2.2.32) can be defined correspondingly.

All of these generalizations of our symmetric framework from above still align with the theory
for existence of energetic solutions derived beforehand. Going on, however, problems regarding
the reformulation of the ensuing homotopy step problems (2.2.24) start to appear.

In accordance with the arguments from [63, Section 4], the closed form expression via the
log-formula from Lemma 2.2.4 for the above definition of the dissipation density with plastic
spin requires the restriction of the Frobenius norm within the dissipation functional to the
symmetric part of the plastic increment δP. This restriction, however, excludes the ensuing
definition of the dissipation functional from the theory for existence of energetic solutions due
to the lacking quasi-distance property.

A straight-forward approach to resolving this peculiarity is to decompose the plastic incre-
ment into a symmetric part and a plastic spin part which cancels out in the log-formula. From
there, the reduction to the S3

0 search space from above can be employed and the subproblem
can again be formulated as the search for symmetric plastic increments. Then, however, the
non-symmetric spin component has to be regarded in the update of the plastic state which lets
two further problems arise: The first one is that, then, one has to demand isotropy in order
to obtain a proper reformulation of the subproblem. The second and even greater problem
is that, due to an inconvenient appearance of the product rule, the gradient of the current
plastic state ∇P can not be computed straight-forwardly. In order to then still obtain an ef-
ficient implementation of a solution method, one has to neglect gradient regularization which
involves major problems with existence theory both for the energetic problem as a whole and
the time-incremental problems. We have already elaborated on the importance of gradient
regularization when it was introduced in (2.2.30).

However, also this problem with existence theory can be circumvented by arguing that for
sufficiently small homotopy steps within the time discretization scheme, it can be assumed that
also the plastic increments δP are very small in their Frobenius norm. From there, a straight-
forward computation shows that these small increments almost exclusively have a symmetric
part which in general suggests the assumption of symmetric plastic increments for a sufficiently
fine time discretization. As a consequence, Lemma 2.2.5 for the exponential representation
of plastic increments can be used in order to reformulate the time-incremental minimization
problems from (2.2.24) into a similar final form as we have established in (2.2.34).

A more diligent view onto the incorporation of plastic spin has been taken in [43] where both
approaches have additionally been compared numerically and the strong connection between
the formulations with and without plastic spin is investigated. As far as our considerations here
are concerned, however, we only note that the concept of plastic spin itself and its necessity
in modeling finite strain plasticity are subject to lively discussion, cf. [18]. Furthermore, the
spinless approach, which we have pursued over the course of this section, suffices to significantly
approve the functionality of our function space algorithm developed Chapters 3 and 4 for the
solution of a demanding real-world problem. For this reason, we decided to stay on the side
of rigorous existence theory of energetic solutions and well-definedness of the homotopy step
problems from (2.2.24) without further assumptions in the spinless formulation.



Chapter 3

Second Order Semi-Smooth Proximal
Newton Methods in Hilbert Spaces

As we have seen over the course of the last few sections, accurately modeling material behavior
using rate-independent systems and afterwards formulating finite strain plasticity problems in
function space is a very demanding endeavor. The goal now is to develop an efficient function
space algorithm in order to tackle the resulting non-convex and non-smooth minimization
problems in Hilbert spaces. We will devote the following two chapters to this task. In the
current one, we will on the one hand lay out the general framework concerning underlying
function spaces and assumptions on the objective functional and on the other hand focus on
the introduction and functionality of our Proximal Newton method.

Chapter Outline

Our approach to the development of such an algorithm can be summarized as follows: At
first, in Section 3.1 we will introduce basic notions of non-linear optimization, starting with
simple iterative descent methods like Gradient and Newton approaches but incrementally
softening the assumptions made on the smoothness of the objective function of the underlying
minimization problem. Afterwards, we present our approach to Proximal Newton methods
in Hilbert spaces in Section 3.2 with the emphasis on local fast convergence using exactly
computed update steps and globalization via an additional norm term in the subproblem
for step computation. As mentioned beforehand, the focus here rather lays on algorithmic
functionality than efficiency.

Notational Remark

Let us first give a short notational remark: As before, by n ∈ N we denote the dimension of
an underlying Euclidean space domain Rn endowed with some norm ‖ · ‖. For a differentiable
mapping f : Rn → R we then write f ′(x) for its derivative at some x ∈ Rn. This derivative is
then an element of the dual space of Rn, i.e., a linear functional. Whenever we need to refer to
its primal counterpart, we do so by writing ∇f(x) ∈ Rn for the gradient of f at x which suffices
〈∇f(x), v〉Rn = 〈f ′(x), v〉 for all v ∈ Rn. In general, we will often omit the typical notation of
the dual pairing 〈·, ·〉 for the sake of simplicity. In the same way, we distinguish second order
derivatives f ′′(x) (, i.e., bilinear forms,) from their matrix counterparts denoted by ∇2f(x).
Later, in a more general Hilbert space setting, we will take even more care concerning the
corresponding Riesz-Isomorphism R between a Hilbert space X and its dual space X∗.

41
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3.1 Basic Notions of Non-Linear Optimization

Before we will consider Proximal Newton methods in order to cope with non-smoothness
and non-convexity within a composite optimization problem, we will provide the basis for
formulating and elucidating the algorithm by introducing some basic notions of non-linear
optimization. The goal is to first present rather simple and comprehensible base algorithms
under a generous set of both differentiability and convexity assumptions in order to then
augment the algorithmic ideas both in view of requirements for convergence (like smoothness
and convexity) and methodical innovations (like damping, decrease criteria and inexactness).
Due to the introductory focus of this section, we will rather explain concepts than give rigorous
information about presented settings and methods, emphasizing central principles of non-linear
optimization which we will come back to in the design of our algorithm in Section 3.2.

Section Outline

The section is structured straight-forwardly: In Section 3.1.1 we consider unconstrained,
smooth optimization problems and present basic first and second order methods in order
to find stationary points. Afterwards, Section 3.1.2 introduces the notion of semi-smoothness
which constitutes an adequate framework for softening differentiability assumptions on the ob-
jective functional while still preserving advantageous convergence properties. At last, we set
the stage for composite minimization problems featuring a non-smooth part of the objective
functional in Section 3.1.3 and present Proximal Gradient and Newton methods in Euclidean
space. Later on, we will modify the latter in order to deal with the finite strain plasticity
problem presented beforehand.

3.1.1 Unconstrained Minimization Problems in Finite Dimensions

Let us start by considering the unconstrained optimization problem

min
x∈Rn

f(x) (3.1.1)

where the mapping f : Rn → R is given as a continuously differentiable objective function. In
general, the content of this section follows the elaborations of the introductory book [108].

In search of minimizers of f , we often draw back to optimality conditions. A necessary
first-order optimality condition for x∗ ∈ Rn to be a local minimizer of f is f ′(x∗) = 0. For
this reason, we call x∗ a stationary point in this case:

Definition 3.1.1: Stationary Point

The element x∗ ∈ Rn is called a stationary point of problem (3.1.1) if f ′(x∗) = 0
holds.

General Descent Methods

In order to now find a stationary point x∗ ∈ Rn of problem (3.1.1) we will consider so-called
general descent methods generating a sequence of iterates (xk)k∈N along which the objective
function value decreases. These methods can be structured as follows:
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Algorithm 1: Model Algorithm for General Descent Methods

Data: Starting point x0 ∈ Rn
Initialization: k = 0;
while f ′(xk) 6= 0 do

1. Compute an admissible search direction sk ∈ Rn;

2. Compute an admissible step size σk > 0;

3. Update the current iterate xk+1 := xk + σksk;

4. Update the sequence index k → k + 1.

end

There are two central algorithmic quantities which we have to specify in order to turn the
above model algorithm into a concrete method for solving (3.1.1). The first one is the notion
of admissible search directions. A first plausible property of search directions is that the slope
of f in the considered direction is negative. To this end, we consider

0
!
> lim

t→0+

f(x+ ts)− f(x)∥∥ts∥∥ =
f ′(x)s∥∥s∥∥

and thus call s ∈ Rn \ {0} a descent direction of the continuously differentiable function
f : Rn → R in the point x ∈ Rn if f ′(x)s < 0 holds. In order for s to then also be admissible
for our method we have to impose a second requirement which enables global convergence of
the procedure along adequately chosen subsequences:

Definition 3.1.2: Admissible Search Directions

A subsequence (sk)k∈K of search directions generated in Algorithm 1 is called ad-
missible if the following two properties hold:

(i) ∀k ∈ K : f ′(xk)sk < 0 (, i.e., all sk are descent directions).

(ii)
(
f ′(xk)sk∥∥sk∥∥

)
k∈K
→ 0 ⇒

(
f ′(xk)

)
k∈K → 0 .

We will later on see that in the rather illustrative Euclidean space setting the norm ‖f ′(xk)‖
characterizes the maximal slope.12 This implies that item (ii) in the above definition asserts
that if the slope of f along sk converges to zero along the considered subsequence, so does the
maximal slope.

The second algorithmic quantity to be determined is the step size σ which scales the descent
direction in order to obtain the update for our sequence of iterates. Also here, we formulate a
set of prerequisites which ensures a global convergence result of the ensuing descent method.

12In this section, we identify the norm on Rn with the one on its dual space and the one on the space of
bilinear forms, i.e., we also write ‖f ′(x)‖ and ‖f ′′(x)‖ without further specification.
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Definition 3.1.3: Admissible Step Sizes

A subsequence (σk)k∈K of step sizes generated in Algorithm 1 is called admissible
if along the corresponding subsequence (sk)k∈K of search directions the following two
properties hold:

(i) ∀k ∈ K : f(xk + σksk) ≤ f(xk) .

(ii)
(
f(xk + σksk)− f(xk)

)
k∈K → 0 ⇒

(
f ′(xk)sk∥∥sk∥∥

)
k∈K
→ 0 .

This minimal set of prerequisites is in particular fulfilled by so-called efficient step sizes.
Efficient step sizes σ for some descent direction s of f at x are characterized by

f(x+ σs) ≤ f(x)− γ
(
f ′(x)s∥∥s∥∥

)2

(3.1.2)

for some (in practice rather small) constant γ > 0. We will see later on that generalizations
of this concept are very useful also for more involved minimization problems.

As mentioned beforehand, we have designed the above demands on search directions and
step sizes such that the ensuing general descent method according to Algorithm 1 features
global convergence results to a stationary point. We formulate this property of such procedures
within the following theorem which can also be found in [108, Satz 8.7]:

Theorem 3.1.4: Global Convergence of General Descent Methods

Let f : Rn → R be continuously differentiable. Assume that Algorithm 1 does not
terminate after finitely many iterations and generates sequences (xk), (sk) and (σk).
Consider an accumulation point x∗ of (xk) and let (xk)k∈K be the corresponding sub-
sequence converging to x∗ such that the sequences (sk)k∈K of search directions and
(σk)k∈K of step sizes are admissible. Then, x∗ is a stationary point of f .

Even though the above specifications of general descent methods appear to be useful in
the context, the question of how to compute admissible search directions and step sizes still
remains open. We will close this gap within what follows now.

Gradient Methods

The most natural choice for search directions in Algorithm 1 are so-called directions of steepest
descent. For some continuously differentiable f as above at x these directions are characterized
by the minimization problem

d := arg min
‖δx‖=1

f ′(x)δx . (3.1.3)

Then, every element of the form s = λd for λ > 0 is referred to as a direction of steepest
descent. It is easy to see that (as long as we consider the norm ‖x‖ := (xTx)

1
2 ) the minimization

problem (3.1.3) has the unique solution d = − ∇f(x)
‖f ′(x)‖ which in particular determines directions

of steepest descent as s = −λ∇f(x) for any λ > 0.
So-called Gradient methods thus use the negative gradient sk := −∇f(xk) as a descent

direction. The admissibility of negative gradients as search directions according to Defini-
tion 3.1.2 is apparent. The determination of admissible step sizes can then be implemented by



CHAPTER 3. PROXIMAL NEWTON METHODS IN HILBERT SPACES 45

using the so-called Armijo-rule: For fixed parameters β ∈ ]0, 1[ and γ ∈ ]0, 1[ we thus choose
the largest number σk ∈ {1, β, β2, . . .} such that

f(xk + σksk)− f(xk) ≤ σkγf ′(xk)sk (3.1.4)

holds along the search direction sk. This procedure is well-defined and finite if sk is a descent
direction. Then, it yields an admissible sequence of step sizes according to Definition 3.1.3.

Another, rarely easy implementable but often analytically interesting choice for the step
size σ is the so-called minimization-rule which determines the minimal value of the objective
function along the given search direction. We can formalize this choice by defining

σk := arg min
σ∈[0,∞[

f(xk + σsk) (3.1.5)

at every iterate xk for the corresponding search direction sk. We note here that this strategy
is only well-defined under suitable convexity assumptions but then also provides us with an
admissible sequence of step sizes.

As mentioned beforehand, the above choices can be implemented into the algorithmic
framework of descent methods under suitable assumptions. Consequently, our global conver-
gence result from Theorem 3.1.4 can be applied to both scenarios:

Corollary 3.1.5: Global Convergence of Gradient Methods

Accumulation points of the sequences of iterates generated by Gradient methods (sk :=
−∇f(xk)) with step sizes chosen according to the Armijo-rule (3.1.4) or, with strong
convexity of f , the minimization-rule (3.1.5) are stationary points of problem (3.1.1).

In addition to the global convergence behavior, local convergence rates of iterative mini-
mization methods are often of interest:

Definition 3.1.6: Convergence Rates of Sequences

The sequence (xk)k∈N ⊂ Rn converges ...

(i) ... q-linearly with rate 0 < θ < 1 to x̄ ∈ Rn if there exists some k0 ∈ N such that

∀k ≥ k0 :
∥∥xk+1 − x̄

∥∥≤ θ∥∥xk − x̄∥∥ .
(ii) ... q-superlinearly to x̄ ∈ Rn if xk → x̄ holds together with∥∥xk+1 − x̄

∥∥= o
(∥∥xk − x̄∥∥) for k →∞ .

This requirement is equivalent to the convergence of the fraction∥∥xk+1 − x̄
∥∥∥∥xk − x̄∥∥ → 0 for k →∞ .

(iii) ... q-quadratically to x̄ ∈ Rn if xk → x̄ holds together with∥∥xk+1 − x̄
∥∥= O

(∥∥xk − x̄∥∥2) for k →∞ .

This requirement is equivalent to the existence of some constant C > 0 and k0 ∈ N
such that

∀k ≥ k0 :
∥∥xk+1 − x̄

∥∥≤ C∥∥xk − x̄∥∥2
.
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Remark. The above definitions can analogously be expanded to general metric spaces (X, dX)
by replacing norm difference terms in Rn by the corresponding metric expressions.

Let us fill these concepts with life by considering the convergence rate of the Gradient
method for a simple quadratic and strongly convex objective function f : Rn → R, i.e., defined
via

f(x) := 〈c, x〉Rn +
1

2
〈x,Cx〉Rn , c ∈ Rn , C ∈ Rn×n positive definite .

In this case, we can show that even if the minimization-rule (3.1.5) for step size choice is
employed, the corresponding Gradient method exhibits merely linear convergence with the
rate depending on the maximal and minimal eigenvalues of the matrix C, cf. [108, Satz 7.8].

We can overcome this upper bound on the speed of convergence (at least near stationary
points) for example by using second order information about our objective functional f which
leads us to so-called Newton methods.

Newton Methods

Originally, Newton’s method has been introduced as an iterative procedure in order to solve
non-linear systems of equations of the form

F (x) = 0 (3.1.6)

for some continuously differentiable F : Rn → R. The iterative nature of the method can be
explained as follows: For some given iterate xk ∈ Rn we want to find an update step sk ∈ Rn
such that F (xk + sk) = 0 holds or at least the ensuing sequence of iterates approaches a
solution of (3.1.6). To this end, we consider the Taylor-expansion of F via

F (xk + s) = F (xk) + F ′(xk)s+ ρ(s)

where due to the continuous differentiability of F we have |ρ(s)| = o
(
‖s‖
)
in the limit of s→ 0,

i.e., that the remainder term is very small for small updates s. This suggests that computing
the update sk by solving the linearized system

F (xk) + F ′(xk)sk = 0 (3.1.7)

yields a good approximation of the original problem F (xk+sk) = 0 at least if xk is already close
to a solution of (3.1.6). Before now considering both global and local convergence properties
of the ensuing method for solving non-linear systems of equations, we will transfer the above
idea to the problem of minimizing non-linear functions as in (3.1.1).

To this end, we now consider a twice continuously differentiable objective function f : Rn →
R. Newton methods for minimizing f can now be deduced coming from two different points of
view. The first one is considering first order optimality conditions according to the definition
of stationary points in Definition 3.1.1 and thereby solving

f ′(x) = 0

where f ′ : Rn → Rn is still a continuously differentiable function governing a non-linear set of
equations just as in (3.1.6). This yields the update system

f ′′(xk)sk = −f ′(xk) (3.1.8)
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to be solved in order to find an update step sk ∈ Rn.

The second approach to Newton methods for minimizing functions does not use its histori-
cal intention of solving non-linear systems of equations but directly considers the quadratic ap-
proximation of the objective function by the corresponding Taylor-expansion at some xk ∈ Rn
via

f(xk + s) = f(xk) + f ′(xk)s+
1

2
f ′′(xk)(s)

2 + o
(∥∥s∥∥) .

Similar as before, the idea is to now disregard the remainder term and only consider the
quadratic model of f . Thus, we compute the update step via

sk := arg min
s∈Rn

qk(s) := f(xk) + f ′(xk)s+
1

2
f ′′(xk)(s)

2 . (3.1.9)

This minimization problem is only well-defined if the quadratic model qk is convex, i.e.,
if the second order derivative f ′′(xk) is positive definite. Since we in particular want to
investigate Newton methods close to minimizers of (3.1.1) and have continuous second order
differentiability, we formulate the following second order sufficient conditions for strict local
minimizers, cf. [108, Satz 5.5]:

Theorem 3.1.7: Sufficient Second Order Optimality Conditions

Consider the twice continuously differentiable function f : U → R for some open set
U ⊂ Rn. A point x̄ ∈ U , which suffices the conditions

(i) f ′(x̄) = 0 (, i.e., x̄ is a stationary point of (3.1.1)) and

(ii) f ′′(x̄) is positive definite (, i.e., we have ∀d ∈ Rn \ {0} : f ′′(x)(d)2 > 0),

is a strict local minimizer of f .

As a consequence, the update rule (3.1.9) is well defined near (local) solutions of (3.1.1)
which feature sufficient second order optimality conditions. The optimality of the ensuing
update step sk on the other hand can be characterized by

0 = q′k(sk) = f ′(xk) + f ′′(xk)sk

which is an equivalent reformulation of the update computation system (3.1.8). To conclude
the above findings, we recognize that iteratively minimizing quadratic approximations of f
and applying the original Newton’s method for solving f ′(x) = 0 lead to the same procedure
for solving (3.1.1) when f is twice continuously differentiable.

With this update rule at hand, we can formulate the local version of Newton methods as
introduced above for minimization problems:
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Algorithm 2: Local Newton Method

Data: Starting point x0 ∈ Rn
Initialization: k = 0;
while f ′(xk) 6= 0 do

1. Compute the Newton update step sk by solving f ′′(xk)sk = −f ′(xk);

2. Update the current iterate xk+1 := xk + sk;

3. Update the sequence index k → k + 1.

end

As pointed out beforehand, the information on the second order derivative of f utilized
by Newton methods speeds up the local convergence of the ensuing algorithm. This expresses
itself in the following form, cf. [108, Satz 10.8]:

Theorem 3.1.8: Local Convergence of the Local Newton Method for Mini-
mization Problems

Consider f : Rn → R twice continuously differentiable with local minimum x∗ ∈ Rn
which features sufficient second order optimality conditions. Then, there exist δ > 0
and µ > 0 such that the following assertions hold:

(i) x∗ is the only stationary point in Bδ(x∗).

(ii) Minimal eigenvalues suffice λmin

(
f ′′(x)

)
≥ µ for all x ∈ Bδ(x∗).

(iii) For starting points x0 ∈ Bδ(x∗), Algorithm 2 either terminates with xk = x∗ or
generates a sequence (xk) ⊂ Bδ(x∗) converging q-superlinearly to x∗.

(iv) If f ′′ is Lipschitz-continuous on Bδ(x∗), i.e., there exists L > 0 such that

∀x, y ∈ Bδ(x∗) :
∥∥f ′′(x)− f ′′(y)

∥∥≤ L∥∥x− y∥∥
holds, the convergence rate from (iii) is q-quadratic and we have

∀k ∈ N :
∥∥xk+1 − x∗

∥∥≤ L

2µ

∥∥xk − x∗∥∥2
.

Obviously these local convergence rates are superior to the mere linear convergence of
Gradient methods which we have investigated beforehand. However, note that they only
consider the behavior close to minimizers of f which additionally feature sufficient second
order optimality conditions. A global convergence result as in Theorem 3.1.5 can not be
achieved for the simple version of Newton methods as in Algorithm 2. For some rather simple
examples of f , divergence of the ensuing method can be shown, cf. [108, Section 10.3].

To this end, within the framework of Newton methods we introduce another important
principle of non-linear optimization: globalization techniques. Globalization can be understood
as the modification of iterative optimization methods such that regardless of the starting point
x0 a solution of the underlying minimization problem will be found by the algorithm. For the
example of Newton methods, we still want to take advantage of the local fast convergence of



CHAPTER 3. PROXIMAL NEWTON METHODS IN HILBERT SPACES 49

the base algorithm which suggests a modification of Algorithm 2 of the following form:

Algorithm 3: Globalized Newton Method

Data: Starting point x0 ∈ Rn, β ∈ ]0, 1[, γ ∈ ]0, 1[, α1, α2 > 0 and p > 0
Initialization: k = 0;
while f ′(xk) 6= 0 do

1. Compute a search direction sk according to:
If Solving f ′′(xk)dk = −f ′(xk) is possible and the resulting dk suffices

−f ′(xk)dk ≥ min
{
α1, α2

∥∥dk∥∥p}∥∥dk∥∥2
:

Then Set sk = dk;
Else Set sk = −∇f(xk);

2. Compute the step size σk according to the Armijo-rule (3.1.4);

3. Update the current iterate xk+1 := xk + σksk;

4. Update the sequence index k → k + 1.

end

This algorithm uses (scaled) Newton update steps whenever possible and resorts to simple
Gradient method updates whenever problems with either computability of the Newton steps
occur or these Newton steps do not suffice the declared admissibility criterion. The latter
indeed implies admissibility of the search direction sk as introduced in Definition 3.1.2. A
global convergence result for Algorithm 3 thus again follows directly by Theorem 3.1.4.

Our original goal, however, was to also take advantage of the local fast convergence of
Algorithm 2. To this end, the transition to local convergence has to be guaranteed, i.e., that –
at least sufficiently close to minimizers of (3.1.1) – the computation of Newton steps is always
possible, yields a descent direction and the unit step size σk = 1 is accepted by the Armijo-rule
(3.1.4). We summarize these findings within the following lemma, cf. [108, Lemma 10.13]:

Lemma 3.1.9: Transition to Local Convergence of the Globalized Newton
Method

Consider f : Rn → R twice continuously differentiable and let x∗ be a local minimizer of
f featuring sufficient second order optimality conditions. Then, for any γ ∈ ]0, 1

2 [ there
exists δ > 0 such that for any x ∈ Bδ(x∗) the following assertions hold:

(i) The vector s := −
(
∇2f(x)

)−1∇f(x) is a descent direction of f at x.

(ii) The Armijo-condition is fulfilled for every σ ∈ ]0, 1]: f(x+σs)−f(x) ≤ σγf ′(x)s .

This result now ensures that locally our globalized version of Newton’s method from Algo-
rithm 3 transitions into the locally accelerated procedure from Algorithm 2 and we can thus
summarize its properties in the following theorem, cf. [108, Satz 10.14]:
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Theorem 3.1.10: Convergence Properties of the Globalized Newton Method

Consider f : Rn → R twice continuously differentiable. Assume that Algorithm 3 gener-
ates a sequence (xk) and let x∗ be an accumulation point of this sequence with positive
definite second order derivative f ′′(x∗). Then, the following holds:

(i) The point x∗ is an isolated local minimizer of f .

(ii) The whole sequence (xk) converges to x∗.

(iii) There exists k0 ∈ N such that for k ≥ k0 the algorithm adopts the update scheme
of the Newton method from Algorithm 2. In particular, it exhibits q-superlinear
convergence upgrading to q-quadratic convergence if f ′′ is Lipschitz-continuous in
a neighborhood of x∗.

Summary of Concepts

Over the course of the above investigation of both (globalized) Newton and Gradient methods,
we have gathered some key principles of non-linear optimization parallels to which we can also
draw in more involved scenarios later on: Firstly, we can introduce criteria for both search
directions and step sizes such that we can infer global convergence results for the ensuing
iterative method. Secondly, higher order information on derivatives of the objective function
can be very useful in order to gain better local convergence rates at least close to optimal solu-
tions. Thirdly, we have to use globalization strategies in order to avoid divergence of iterative
methods and ensure the successful minimization of the objective functional regardless of the
starting point of the algorithm. Lastly, we have to guarantee transition to local convergence
insofar that modifications from globalization techniques vanish as we approach solutions of
the underlying minimization problem. This allows us to then take advantage of faster local
convergence rates of higher order methods.

Inexact Newton Methods

Before we now head on to the task of softening smoothness assumptions on the objective func-
tional of (3.1.1) away from second order continuous differentiability, we will introduce another
slight modification of Newton methods as presented above. For large scale problems, the exact
solution of the Newton update system (3.1.7) using direct methods like Gauß-elimination can
be problematic or at least very expensive. Thus, iterative solvers for these subproblems are
often used.

A natural question arising from this circumstance is whether terminating these inner solvers
early and thereby only inexactly solving (3.1.7) still yields satisfying convergence results of
the ensuing method. Assuming that a relative error estimate in the residual of the form∥∥F (xk) + F ′(xk)sk

∥∥≤ ηk∥∥F (xk)
∥∥ (3.1.10)

for some small forcing term ηk ≥ 0 characterizes sufficient accuracy of the approximate solu-
tions sk of the subproblem, the following result about the so-called inexact Newton’s method
can be deduced, cf. [108, Satz 12.2]:
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Theorem 3.1.11: Local Convergence of Inexact Newton Methods

Consider F : Rn → Rn to be continuously differentiable and x∗ to be a root of F such
that F ′(x∗) is invertible. Then, there exist δ > 0 and η > 0 such that the following
assertions are true:

(i) For some starting point x0 ∈ Bδ(x∗) and update steps sk sufficing (3.1.10) with
ηk < η, the ensuing Inexact Newton Method either terminates with xk = x∗ or
generates a sequence (xk) converging to x∗ q-linearly.

(ii) If additionally ηk → 0 holds, the convergence is q-superlinear.

(iii) If even more ηk = O
(∥∥F ′(xk)∥∥) holds and F ′ is Lipschitz-continuous on Bε(x∗),

the convergence is q-quadratic.

This notion of inexact methods will be very useful for more involved minimization problems
since they in particular feature harder to solve subproblems for finding update steps. Thus,
inexactness in update step computation offers great potential of reducing computational effort
while preserving advantageous convergence properties.

3.1.2 Semi-Smoothness and Semi-Smooth Newton Methods

Even though the above convergence results for corresponding minimization algorithms are
satisfying in the context, the differentiability assumptions on the objective functions occur to
be rather restrictive for many applications to be considered. For that reason, we will now
introduce a generalized concept of smoothness and develop algorithms as well as convergence
results for it, tailored to lacking second order continuous differentiability.

On this endeavor, we use generalized differentials in order to establish the notion of finite
dimensional semi-smoothness and formulate semi-smooth Newton methods in the Euclidean
Rn. In order to extend the latter to Banach spaces, we first generalize the concept of semi-
smoothness and afterwards adapt the algorithm to the infinite dimensionality of the new
framework we find ourselves in. Our elaborations in general follow the ones in [111] where a
both comprehensible and detailed introduction to the topic is given together with application
of the concepts to demanding real-world problems.

Generalized Differentials and Finite Dimensional Semi-Smoothness

Let us consider a non-empty set V ⊂ Rn and a function F : V → Rm. By DF ⊂ V we denote
the set of all x ∈ V at which F admits a (Fréchet-)derivative F ′(x) ∈ L(Rn,Rm) represented
by the matrix ∇F (x) ∈ Rm×n following the notational scheme from before. Now suppose
that F is locally Lipschitz-continuous, i.e., for all x ∈ V there exists an open neighborhood
U(x) ⊂ V together with a constant Lx > 0 such that for all y ∈ U(x) we have the estimate:∥∥F (x)− F (y)

∥∥≤ Lx∥∥x− y∥∥ .
Generalized notions of differentiability and the corresponding derivatives now evolve around

the following classical theorem, cf. [120] or [28, Theorem 2.9.19]:
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Theorem 3.1.12: Rademacher’s Theorem

Suppose F : V → Rm is locally Lipschitz continuous for V ⊂ Rn. Then, F is differen-
tiable almost everywhere on V .

In the above scenario, we in particular infer that V \ DF has Lebesgue measure zero.
With this result at hand, the definition of the so-called B-subdifferential (B for Bouligand) is
straightforward. It has first been considered in [80] and is given by

∂BF (x) :=
{

M ∈ Rm×n
∣∣ ∃ (xk) ⊂ DF : xk → x , F ′(xk)→ M

}
.

The corresponding convex hull

∂GF (x) := co
(
∂BF (x)

)
:=

{
k∑
i=1

λiMi

∣∣∣∣ k ∈ N,
k∑
i=1

λi = 1, Mi ∈ ∂BF (x), 1 ≤ i ≤ k

}

as introduced in [15] is referred to as Clarke’s generalized Jacobian of F at x. While some
helpful properties of these generalized differentials can be verified, cf. [111, Proposition 2.2],
we are rather interested in their role within the definition of at least finite dimensional semi-
smoothness.

This has been done by Mifflin [68] for real-valued functions, and an extension to mappings
between two finite dimensional spaces has then been given by Qi [85] as well as Qi and Sun
[86]. The motivation for the concept is to develop locally q-superlinearly convergent Newton
methods which are applicable despite the general non-smoothness of the underlying mapping.
The following definition can be retraced to [68, 80, 86]:

Definition 3.1.13: Finite Dimensional Semi-Smoothness

Let V ⊂ Rn be non-empty and open. The function F : V → Rm is called semi-smooth
at x ∈ V if it is Lipschitz continuous near x and if the following limit exists for all
directions s ∈ Rn:

lim
M∈∂GF (x+τd)

d→s , τ >→0

Md .

If F is semi-smooth at all x ∈ V , we call F semi-smooth (on V).

This definition of semi-smoothness does not obviously exhibit the properties which we
demanded by our motivation for the concept. However, there are several connections between
directional differentiability and semi-smoothness as introduced above. For instance, the limit
from Definition 3.1.13 coincides with the corresponding directional derivative if both exist.
Additionally, we have the following characterizations of semi-smoothness which use directional
differentiability, cf. [111, Proposition 2.7]:

Proposition 3.1.14: Characterizations of Finite Dim. Semi-Smoothness

Consider an open set V ⊂ Rn and the function F : V → Rm. Then, for x ∈ V , the
following statements are equivalent:

(a) F is semi-smooth at x.
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(b) F is Lipschitz continuous near x, F ′(x, ·) exists, and

sup
M∈∂GF (x+s)

∥∥Ms− F ′(x, s)
∥∥= o

(
‖s‖
)
in the limit of s→ 0 .

(c) F is Lipschitz continuous near x, F ′(x, ·) exists, and

sup
M∈∂GF (x+s)

∥∥F (x+ s)− F (x)−Ms
∥∥= o

(
‖s‖
)
in the limit of s→ 0 . (3.1.11)

In particular, continuously differentiable functions are semi-smooth.

This shows that semi-smoothness as introduced in Definition 3.1.13 is equivalent to Lip-
schitz continuity and directional differentiability together with an approximation property of
the corresponding elements of Clarke’s generalized Jacobian ∂GF . These Clarke derivatives
either yield a direct approximation of the directional derivative or a first order model of F
itself. The latter property of semi-smooth functions will in particular be useful for the analysis
of Newton-type methods.

In Proposition 3.1.14, we have already mentioned that continuously differentiable functions
are in particular semi-smooth. Other examples for semi-smooth mappings are convex real-
valued functions, continuous and piecewise C1-functions, locally Lipschitz and tame (, in
particular, semi-algebraic) functions13, eigenvalues of symmetric matrices, singular values of
general matrices as well as spectral operators induced by semi-smooth functions, cf. [112].

With the finite dimensional notion of semi-smoothness at hand, we can now formulate and
analyze a Newton-like method for the solution of the equation (3.1.6) where now F : V → Rn
for an open V ⊂ Rn is semi-smooth at the solution.

Algorithm 4: Finite Dimensional Local Semi-Smooth Newton Method

Data: Starting point x0 ∈ Rn
Initialization: k = 0;
while F (xk) 6= 0 do

1. Choose Mk ∈ ∂GF (xk) and compute sk from Mksk = −F (xk);

2. Update the current iterate xk+1 := xk + sk;

3. Update the sequence index k → k + 1.

end

Under a suitable regularity assumption on the matrices Mk, k ∈ N, this iteration converges
locally q-superlinearly. We formulate this result within the following proposition, cf. [111,
Proposition 2.12]:

13For a definition of tame and semi-algebraic functions as well as a proof of their semi-smoothness, we refer
to [9].
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Proposition 3.1.15: Local Convergence of the Finite Dimensional Semi-
Smooth Newton Method

For an open set V ⊂ Rn and a mapping F : V → Rn, consider an isolated solution
x∗ ∈ Rn of (3.1.6). Assume the following:

(a) The approximation property (3.1.11) holds at x = x∗ (which, in particular, is
satisfied if f is semi-smooth at x∗).

(b) There exists a constant C > 0 such that for all k ∈ N the matrices Mk are
non-singular with the bound

∥∥M−1
k

∥∥≤ C.

Then, there exists δ > 0 such that for all x0 ∈ Bδ(x0) Algorithm 4 either terminates
with xk = x∗ or generates a sequence (xk) that converges q-superlinearly to x∗.

The regularity assumption (b) from Proposition 3.1.15 can be formulated as a general
assumption on F at the solution x∗ (so-called CD-regularity) instead of the above estimate for
the inverse of Mk at the iterates xk, cf. [111]. In [52], this requirement has been adapted to a
uniform injectivity condition (CI) which corresponds to the boundedness of inverse matrices
in norm here.

Generalization of Semi-Smoothness to Banach Spaces

As we have learned over the course of Chapter 2, many real-world applications are modeled
using infinite dimensional function spaces in which the corresponding minimization problems
then have to be solved by suitable solution algorithms. Thus, the natural question arises
whether semi-smooth Newton methods like Algorithm 4 can be developed in an infinite di-
mensional framework. In particular, this question is not only of theoretical interest but also
of practical importance since the performance of numerical methods is intimately related to
the infinite dimensionality of the underlying problem. In particular, rather than in develop-
ing discrete numerical methods for discretized problems, our interest lies in investigating a
well-behaved abstract algorithm for the infinite dimensional problem itself. The convergence
analysis of the latter is then able to predict the convergence properties of the numerical algo-
rithm very well, even for increasing accuracy of the discretization. Consequently, the adequate
approach to the development of robust, efficient, and mesh-independent numerical methods is
the investigation of corresponding algorithms within the original infinite dimensional problem
setting. The publications [41, 109, 110] have provided a rigorous basis for the later intensively
investigated and successfully applied semi-smooth Newton methods in function spaces.

As we have seen in the formulation of Proposition 3.1.15, the crucial point of semi-
smoothness for the analysis of Newton-type methods is the approximation property (3.1.11).
Using this estimate, we recall the following abstract concept of semi-smoothness for general
operators between Banach spaces from [111].

Definition 3.1.16: Semi-Smooth Operators in Banach Spaces

Consider Banach spaces X and Y together with an open subset V ⊂ X and a mapping
F : V → Y . Further, let a set-valued mapping ∂∗F : V ⇒ L(X,Y ) be given with
non-empty images, i.e., ∂∗F (x) 6= ∅ for all x ∈ V .

(a) We say that F is ∂∗F -semi-smooth at x ∈ V if F is continuous near x and the
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following approximation property holds:

sup
M∈∂∗F (x+s)

∥∥F (x+ s)− F (x)−Ms
∥∥
Y

= o
(∥∥s∥∥

X

)
in the limit of

∥∥s∥∥
X
→ 0 .

(b) We will refer to ∂∗F : V ⇒ L(X,Y ) as the generalized differential of F , and
the non-emptiness of its images will always be assumed. In particular, the ∂∗F -
semi-smoothness of F at a point x ∈ V shall automatically imply that the images
of ∂∗F are non-empty on V .

While the specific choice of ∂∗F depends on the application at hand, in general it can be
interpreted as a set-valued point-based approximation. For further elaborations, consider [52,
89, 116]. Basic properties of this infinite dimensional understanding of the concept like semi-
smoothness of continuously differentiable functions with respect to their (Fréchet-) derivative,
semi-smoothness of sums and direct products as well as a chain rule are developed in [111,
Section 3.2.2] and provide a variety of ways to combine semi-smooth operators in order to
construct new ones.

In this context, also the notion of Newton-differentiability and corresponding Newton-
derivatives often arises, cf. e.g. [16]. The definition of the former is closely connected to
our above generalized notion of semi-smoothness: A continuous mapping F : V → Y , V ⊂ X
open, between Banach Spaces X and Y is thus called Newton-differentiable at x ∈ X if there
exists a neighborhood N(x) ⊂ X and a mapping G : N(x)→ L(X,Y ) with∥∥F (x+ s)− F (x)−G(x+ s)s

∥∥
Y

= o
(∥∥s∥∥

X

)
in the limit of

∥∥s∥∥
X
→ 0 .

Any mapping M ∈
{
G(x̃)

∣∣ x̃ ∈ N(x)
}
is then called a Newton-derivative of F at x. However,

taking a closer look at that definition reveals a major flaw of this general concept of Newton-
differentiability: The mapping G characterizing Newton-derivatives can always be defined
depending on the base point x which makes Newton-differentiability a trivial property of
the underlying mapping F . For the application of the notion to minimization strategies,
concepts of differentiability are of particular interest at optimal solutions which are not known
a priori which makes the above definition even more questionable. Additionally, every mapping
M ∈ L(X,Y ) is a Newton-derivative in the above sense since the characterizing property of
G only narrows these down in the limit s→ 0.

One way to resolve this peculiarity of describing admissibility of a mapping for Newton-like
approaches to minimization has been described in [41] where the notion of slant-differentiability
has been used in order to study semi-smooth Newton methods. Slant-differentiability modifies
the above understanding of Newton-differentiability insofar that it is not formulated in a
certain point x ∈ X but on a whole subset U ⊂ D of the corresponding function domain.
This eliminates the possibility to simply tailor the corresponding mapping G to the point
where differentiability is investigated. Transferred to the context of Newton-methods, slant-
differentiability “parallels the hypothesis of knowledge of the domain within which a second
order sufficient optimality condition is satisfied for smooth problems”, cf. [41, Page 3].

Our approach towards the problem, however, is rather coined by the following thought:
More than in the existence of a mapping G and a corresponding concept of differentiability,
we are interested in whether the characterizing approximation property of such a mapping is
satisfied by a mapping which is given, e.g. within the framework of a minimization procedure.
Thus, the mapping in question has to be part of the definition and not only the existence of
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a mapping of such kind. This motivates the following notion which both works around the
above peculiarities of general Newton-differentiability and simplifies general semi-smoothness
insofar that we do not have to define a generalized differential. In particular, this slightly
different formulation is not considered in [111].

Definition 3.1.17: Semi-Smoothness with Respect to an Operator

Consider Banach spaces X,Y , an open subset V ⊂ X, a point x ∈ V , and a neighbor-
hood N(x) ⊂ V of x. The continuous mapping F : V → Y is called semi-smooth at
x with respect to the operator G : N(x)→ L(X,Y ) if the following approximation
property holds:∥∥F (x+ s)− F (x)−G(x+ s)s

∥∥
Y

= o
(∥∥s∥∥

X

)
in the limit of

∥∥s∥∥
X
→ 0 .

We then call G a Newton-derivative of F at x ∈ V .

Obviously, this notion is closely related to the one of ∂∗F -semi-smoothness from Defini-
tion 3.1.16: If some continuous mapping F is ∂∗F -semi-smooth at x ∈ V , the generalized
differential gives a plethora of possible mappings G with respect to which F is then semi-
smooth. At every point x̃ of, in this case, N(x) = V , we can choose G(x̃) ∈ ∂∗F (x̃) arbitrarily.
Conversely, with a mapping G : N(x) → L(X,Y ) at hand, we define ∂∗F arbitrarily outside
of the designated neighborhood N(x) and use the single-valued definition ∂∗F (x̃) = {G(x̃)}
for x̃ ∈ N(x) which then again yields ∂∗F -semi-smoothness of F .

Semi-Smooth Newton Methods in Banach Spaces

In addition to the adaptations of the concept of semi-smoothness to the infinite dimensio-
nality of the underlying problem, also the algorithmic strategy from Algorithm 4 itself has to
be augmented in order to cope with function space applications of the method. Let us consider
the following short motivational example from [111] for this adjustment:

A common field of application for semi-smooth Newton-like methods are Non-linear Com-
plementarity Problems (NCPs) of the form

u ≥ 0 , Γ(u) ≥ 0 , uΓ(u) = 0 on Ω

with u ∈ L2(Ω), an operator Γ: L2(Ω)→ L2(Ω), and Ω ⊂ Rn a bounded, measurable set with
positive Lebesgue measure. This problem can be reformulated with a very particular choice
of the NCP-function φ : R2 → R such that we obtain

Φ(u) = 0 , where Φ(u)(ω) = φ
(
u(ω), F (u)(ω)

)
for all ω ∈ Ω (3.1.12)

with F : Lp(Ω) → Lp
′
(Ω) for p, p′ ∈ ]1,∞], and Φ: L2(Ω) → L2(Ω) the latter of which needs

to be semi-smooth for our solution algorithm. In a quite general setting, however, we are
merely able to show that Φ: Lp(Ω)→ L2(Ω) is semi-smooth for p > 2. Embedding the latter
result into a semi-smooth Newton context, for convergence analysis it would be necessary to
assume that the operators Mk ∈ ∂∗Φ(uk) are boundedly invertible in L

(
Lp(Ω), L2(Ω)

)
, which

is usually not satisfied.
What resolves this technical peculiarity is the incorporation of so-called smoothing steps

into our algorithmic framework, cf. [111]. This enables us to work in a setting where, given the
availability of a suitable smoothing step, we only require the semi-smoothness of Φ: Lp(Ω)→
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L2(Ω) for some p > 2 together with the bounded invertibility of Mk in L
(
L2(Ω), L2(Ω)

)
which

appear to be both appropriate and verifiable in the context.
The construction and particular structure of such smoothing steps goes beyond the scope

of the present work but can be retraced for challenging applications in [109, Section 6] or
[111, Section 3.3]. In order to formulate the concept in an abstract setting, we consider
a further Banach space X0 (above L2(Ω)), in which X (above Lp(Ω)) is continuously and
densely embedded. Thus, we introduce the following semi-smooth Newton method for operator
equations in Banach spaces:

Algorithm 5: Local Semi-Smooth Newton Method in a Banach Space X

Data: Starting point x0 ∈ Rn
Initialization: k = 0;
while xk+1 6= xk do

1. Choose Mk ∈ ∂∗F (xk), compute sk from Mksk = −F (xk)

2. Set the intermediate iterate x0
k+1 := xk + sk.;

3. Perform a smoothing step: X0 3 x0
k+1 7→ xk+1 := Sk(x

0
k+1) ∈ X;

4. Update the sequence index k → k + 1.

end

Even though we have already elaborated on the significance of the smoothing step in
applications, it can be eliminated from the above algorithmic procedure by simply choosing
X0 = X and Sk(x0

k+1) = x0
k+1. In general, we will assume the corresponding non-trivial step

to satisfy the so-called smoothing condition which we formulate by the existence of a uniform
constant CS > 0 such that ∥∥Sk(x0

k+1)− x∗
∥∥
X
≤ CS

∥∥x0
k+1 − x∗

∥∥
X0

(3.1.13)

holds for all k ∈ N, where x∗ ∈ X solves (3.1.6). If we now as before additionally demand
the regularity condition, stating that the operators Mk map X0 continuously into Y and that
there exists a uniform constant CM−1 > 0 such that we have∥∥M−1

k

∥∥
L(Y,X0)

≤ CM−1 (3.1.14)

for all k ∈ N, we can establish the following local convergence result for Algorithm 5, cf. [111,
Theorem 3.13]:

Theorem 3.1.18: Local Convergence of the Infinite Dimensional Semi-
Smooth Newton Method

Consider Banach spaces X,Y and an open set V ⊂ X as well as a mapping F : V → Y
with generalized differential ∂∗F : V ⇒ L(X,Y ). Suppose that x∗ ∈ V is a solution of
(3.1.6) and that assumptions (3.1.13) and (3.1.14) hold. If then F is ∂∗F -semi-smooth
at x∗, there exists δ > 0 such that for all x0 ∈ Bδ(x∗) Algorithm 5 either terminates
with xk = x∗ or generates a sequence (xk) ⊂ V that converges q-superlinearly to x∗.

Having the above algorithmic framework and corresponding local convergence result in
place, there are still two crucial questions left to address before we move on:
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(a) Given a particular operator F , how should ∂∗F be chosen?

(b) Is there an easy way to verify that F is ∂∗F semi-smooth?

Giving satisfactory answers to these questions goes beyond the scope of this introductory
section for the concept of semi-smoothness. Generally, the answer to (a) depends on the ap-
plication at hand and, obviously, (b) is intimately tied to this specific choice of the generalized
differential. In our motivational example for the smoothing step in (3.1.12), we could already
get a glimpse of a central topic for the solution of non-smooth operator equations: so-called
superposition operators. In short, they can be understood as mappings of the form

Ψ: X → Lr(Ω) , Ψ(x)(ω) := ψ
(
G(x)(ω)

)
with mappings ψ : Rm → R and G : X → Πm

i=1L
ri(Ω) where it is assumed that 1 ≤ r ≤ ri <∞

holds, X is a real Banach space, and Ω ⊂ Rm is a bounded measurable set with positive
Lebesgue measure. In [111, Section 3.3] both of the above questions are answered for this
particular kind of mappings and the corresponding results are illustrated for the NCP example
from (3.1.12). An alternative approach to showing semi-smoothness of superposition operators
has been given in [97], which resulted in a more comprehensible proof and better understanding
of the concept as a whole. We will go more into detail on continuity results about superposition
operators when investigating second order semi-smoothness in Section 3.2.4.

Before heading on to incorporating actual non-differentiability into our optimization prob-
lem, let us also here shortly reflect on the main concepts we have learned about over the course
of this introductory section: Firstly, the notion of semi-smoothness both in an Euclidean and
in an infinite dimensional Banach space setting allows us to soften differentiability assumptions
insofar that only an approximation property of corresponding generalized derivatives is neces-
sary for the formulation of locally superlinearly convergent minimization algorithms. Secondly,
the transition from semi-smoothness in Rn to its infinite dimensional counterpart gave insights
into the development of generalized notions of differentiability as a whole: Instead of sticking
to existing concepts like in the finite dimensional case, in the more general setting it suffices to
use the approximation property which comprises the spirit of semi-smoothness, in particular
in view of its application for the construction of the corresponding Newton methods. We will
encounter a similar thought process within the development of second order semi-smoothness
later on in this chapter.

3.1.3 Proximal Methods for Composite Optimization

In addition to the softened differentiability assumptions in the form of semi-smoothness from
the previous section, we want to now incorporate actual non-differentiability into our formu-
lation, i.e., we will consider problems of the form

min
x∈Rn

F (x) := f(x) + g(x) (3.1.15)

which is for now posed in the finite dimensional Rn with a somewhat “smooth” f : Rn → R
and “non-smooth” g : Rn →] −∞,∞]. Special cases for these kind of problems among other
examples comprise the unconstrained smooth minimization problems from the previous sections
for g = 0, constrained minimization for g = XC with C some (convex) set to which x in (3.1.15)
is restricted, and so-called l1-regularized minimization for g = λ‖ · ‖1 a scaled 1-norm term
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which promotes sparsity within solutions of the respective minimization problem. While all
of these instances feature a rather “artificial” non-smooth term, a non-trivial function g also
can arise from a natural formulation like in the case of our time-incremental minimization
problems from (2.2.34) within the finite strain plasticity problem.

Proximal Gradient Methods

In order to now develop an iterative solution algorithm for problems of the form (3.1.15),
we will take a look at an equivalent way to compute the Gradient method update xk+1 =
xk − σk∇f(xk) for some appropriately chosen step size σk > 0 from Section 3.1.1. The
updated iterate from there can be rephrased by formulating the subproblem of the Gradient
method

xk+1 = arg min
x∈Rn

f(xk) + f ′(xk)(x− xk) +
1

2σk

∥∥x− xk∥∥2

which can also be interpreted as minimizing a regularized first order model of f based at the
current iterate xk ∈ Rn. Apparently, if we want to add a non-differentiable part g into this
formulation, we cannot use a Taylor series of some form but have to directly incorporate it
into the subproblem via

xk+1 := arg min
x∈Rn

f(xk) + f ′(xk)(x− xk) +
1

2σk

∥∥x− xk∥∥2
+g(x) . (3.1.16)

For the previously mentioned example of constrained optimization (g = XC) this leads to
an update scheme coinciding with the so-called Projected (Sub-)Gradient method, cf. e.g. [7,
Section 8.2]. Simple algebraic manipulation provides us with an alternative form of (3.1.16)
given by

xk+1 = arg min
x∈Rn

σkg(x) +
1

2

∥∥x− (xk − σk∇f(xk)
)∥∥2

.

This identity can be written in terms of the so-called Euclidean Proximal operator of some
function g : Rn →]−∞,∞] which we define as

proxg : Rn → Rn , proxg(y) := arg min
x∈Rn

g(x) +
1

2

∥∥x− y∥∥2 (3.1.17)

such that we obtain xk+1 = proxσkg
(
xk − σk∇f(xk)

)
for the updated iterate. This update

scheme justifies the designation of the ensuing procedure as the Proximal Gradient method
since a gradient step is followed up by the evaluation of a proximal mapping for the completion
of the update. Additionally, this formulation suggests the somewhat vague assumption that
g features an “easy to evalute” prox-operator. This is, for example, the case if g and also
the employed scalar product have diagonal structure. Then, the solution of the subproblem
within the proximity operator can be computed cheaply in a componentwise fashion. For
more elaborations on finite dimensional proximal operators, general properties, and closed
form expressions for common examples, we refer to [7, Chapter 6].

Originally, Fukushima and Mine introduced the Proximal Gradient method in the Eu-
clidean Rn for optimization problems of the above form (3.1.15), cf. [31]. More specifically,
this early version of the Proximal Gradient method constitutes a special case of a procedure
studied by Tseng and Yun, cf. [107]. Further research showed that variously defined line search
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techniques lead to global convergence of the algorithm even under appropriate inexactness con-
ditions for the solutions of the subproblem for step computation, cf. for example [11, 29, 32,
53, 96, 102]. For an illustration of the functionality and for giving an intuition about first
convergence results, we follow the elaborations from the introductory book [7, Chapter 10]:

To this end, we consider the following set of assumptions for the composite objective
functional: Let g : Rn →] −∞,∞] be proper, closed, and convex. Let f : Rn →] −∞,∞] be
proper and closed, dom(f) be convex with dom(g) ⊂ int(dom(f)) where int(A) denotes the
interior of some set A ⊂ Rn. Additionally, assume that f is continuously differentiable with
Lipschitz-continuous derivative and that the set of solutions of (3.1.15) is non-empty.

For the sake of an easier analysis, it is often useful to consider the step size σ from above in
terms of the fraction 1

L for some parameter L > 0 and with that define the so-called Euclidean
Composite Gradient mapping

Gf,gL : Rn → Rn , Gf,gL (x) := L

(
x− prox 1

L
g

(
x− 1

L
∇f(x)

))
(3.1.18)

which we will later on also generalize to a Hilbert space scenario. This mapping coincides with
the classical gradient of f for g = 0, vanishes if and only if x is a critical point of (3.1.15), and
allows us to rephrase the Proximal Gradient update from above via

xk+1 = xk −
1

Lk
Gf,gLk (xk)

where Lk > 0 is the value of L within the corresponding iteration. This representation of the
update also mirrors the behavior of the classical Gradient method from Section 3.1.1.

Furthermore, the above adaptation of the notion of derivatives not only helps us to charac-
terize critical points of our problem but also gives an intuition on how to find adequate values
of the regularization parameter L in order to achieve sufficient decrease. The first possibility
is rather of analytical nature and suggests choosing L ∈ ]

Lf
2 ,∞[ constantly where Lf denotes

the Lipschitz constant of f ′. From an algorithmic point of view, it seems reasonable to transfer
the procedure of the Armijo rule from (3.1.4) to the present Proximal Gradient scenario in the
form of the following Backtracking Procedure, cf. [7, Section 10.3.3]:

The strategy requires three parameters (s, γ, ζ), where s > 0, γ ∈ ]0, 1[, and ζ > 1. Then,
we choose Lk according to the following scheme: At first, we set Lk to be equal to the initial
guess s. Then, as long as F (xk+1)−F (xk) > − γ

Lk

∥∥Gf,gLk (xk)
∥∥2 holds, we increase the parameter

via Lk := ζLk. The resulting value can also be rephrased as Lk = sζik , where ik ∈ N is the
smallest exponent for which the following sufficient decrease criterion is satisfied:

F (xk+1)− F (xk) ≤ −
γ

sζik

∥∥Gf,g
sζik

(xk)
∥∥2
. (3.1.19)

Here, it is important to note that the above backtracking procedure is again finite, i.e., that
(3.1.19) is fulfilled after finitely often increasing Lk within one backtracking loop. This results
in the bound Lk ≤ max

{
s,

ζLf
2(1−γ)

}
which is in particular uniform concerning the iteration

index k ∈ N, i.e., over the course of the Proximal Gradient method as a whole.
With this algorithmic component at hand, we can summarize our first minimization strat-

egy for (3.1.15) as follows:
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Algorithm 6: Euclidean Proximal Gradient Method

Data: Starting point x0 ∈ Rn, backtracking parameters s > 0, γ ∈ ]0, 1[, and
ζ > 1;

Initialization: k = 0;
while Gf,gs (xk) 6= 0 do

1. Choose Lk according to the backtracking procedure with parameters s > 0
γ ∈ ]0, 1[, and ζ > 1;

2. Compute the updated iterate via xk+1 = prox 1
Lk
g

(
xk − 1

Lk
∇f(xk)

)
;

3. Update the sequence index k → k + 1.

end

The globalization via the backtracking procedure leading to a sufficient decrease estimate
(3.1.19) allows us to verify the following convergence results for the algorithmic strategy from
Algorithm 6, cf. [7, Theorem 10.15]. The definition of stationary points is carried over from
the smooth case in Definition 3.1.1 using the Fréchet-subdifferential ∂FF from (1.3.3).

Theorem 3.1.19: Convergence of the Euclidean Proximal Gradient Method
(Non-Convex)

Under the standing assumptions on f and g, let (xk)k∈N denote the sequence generated
by Algorithm 6. Then, the following assertions hold:

(i) The sequence
(
F (xk)

)
k∈N is non-increasing. In addition, we have F (xk+1) <

F (xk) if and only if xk is not a stationary point of (3.1.15).

(ii) The gradient mapping Gf,gs (xk) converges to zero for k →∞.

(iii) All accumulation points of the sequence (xk)k∈N are stationary points of (3.1.15).

As it is emphasized within the caption of the above convergence result, this formulation
does not assume convexity of the smooth part f of the composite objective functional. An addi-
tional convexity assumption on said mapping is sufficient to prove better convergence estimates,
in particular an O(1/k) decrease rate within function values as well as within the (minimal)
norm of gradient mappings along our sequence of iterates, cf. [7, Theorems 10.21 and 10.26].

This additional convexity assumption does not only help us to verify better convergence
results for the existing minimization method above but also allows for an algorithmic augmen-
tation which further boosts convergence. The idea is to follow a momentum-based approach,
i.e., going even further in the direction of the current Proximal Gradient update with an appro-
priately defined scaling factor stemming from the convergence analysis. This method is known
as the “fast iterative shrinkage-thresholding algorithm” (FISTA) which can be summarized
using the following scheme:
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Algorithm 7: Accelerated Proximal Gradient Method – FISTA

Data: Starting point x0 ∈ Rn, backtracking parameters s > 0, γ ∈ ]0, 1[, and
ζ > 1;

Initialization: k = 0, y0 = x0, t0 = 1;
while Gf,gs (xk) 6= 0 do

1. Choose Lk according to the backtracking procedure with parameters s > 0
γ ∈ ]0, 1[, and ζ > 1 (as well as yk instead of xk);

2. Compute the updated iterate via xk+1 = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
;

3. Set tk+1 =
1+
√

1+4t2k
2 ;

4. Compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk);

5. Update the sequence index k → k + 1.

end

This augmentation of the Proximal Gradient method from Algorithm 6 unlocks a O(1/k2) rate
in function values despite the fact that the dominant computational steps at each iteration of
both methods are essentially the same: one gradient evaluation and one prox computation.

Proximal Newton Methods

As we have seen over the course of our investigation of Newton methods in Section 3.1.1, there
is another possibility to accelerate the (at least local) convergence of minimization procedures:
taking advantage of second order information in case the objective is sufficiently differentiable.
In our case, the assumption of sufficient smoothness only is related to the smooth part f and
the resulting algorithm is then referred to as the Proximal Newton method. Since it is our goal
to elaborately develop a generally applicable and refined instance from this algorithmic class,
we will only give a short formal introduction here:

The second order information enters the computational scheme in the form of a second
order model of f instead of the first order one in (3.1.16). Additionally, the norm term is
generally omitted which results in the definition of a search direction via

∆xk := arg min
d∈Rn

f̂k(xk + d)− f(xk) + g(xk + d)− g(xk) (3.1.20)

where f̂k : Rn →] −∞,∞], f̂k(x) := f(xk) + f ′(xk)(x − xk) + f ′′(xk)(x − xk)2, denotes said
second order model of f based at the current iterate xk ∈ Rn. The ensuing update step is then
appropriately scaled by some step size σk > 0 in order to obtain the new iterate according to
xk+1 := xk + σk∆xk. Global convergence results are then, as before, achieved by an adequate
choice of σk such that some sufficient decrease criterion in the spirit of the Armijo rule (3.1.4)
holds. This formulation is in particular used in [55] which gives an illustrative overview of
Proximal Newton methods together with some adaptations in the Euclidean Rn. From there,
we also take the basic results of the introductory elaborations here.
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In this framework, for the update step computation subproblem from (3.1.20) to be well-
defined, uniform positive definiteness of the second order derivatives f ′′(xk) together with
convexity of g is demanded. In the strongly convex case and if f ′′ is additionally Lipschitz-
continuous, it is thus easy to see that the ensuing method still exhibits the local quadratic
convergence typical for Newton-type procedures.

In many applications of the method, it seems reasonable to allow for approximations of
the possibly not positive definite f ′′(xk) in the form of general bilinear forms Hk having the
demanded positive-definiteness property. As long as these approximations suffice the so-called
Dennis-Moré condition

∥∥(Hk − f ′′(x∗)
)
(xk+1 − xk)

∥∥∥∥xk+1 − xk
∥∥ → 0 for k →∞ (3.1.21)

at some optimal solution x∗ ∈ Rn of (3.1.15), the ensuing Proximal Quasi-Newton method still
exhibits at least local superlinear convergence.

Another algorithmic principle which we have already addressed for general Newton methods
is the one of inexactness in update step computation. In the Euclidean space setting which
we find ourselves in here, it is reasonable to generalize the inexactness criterion from (3.1.10)
with the aid of the composite gradient mapping defined in (3.1.18) and thus formulate

∥∥Gf̂k,gM (xk + ∆sk)
∥∥≤ ηk∥∥Gf,gM (xk)

∥∥ (3.1.22)

as a requirement for the inexact candidate ∆sk where M denotes a uniform upper bound on
the eigenvalues of the bilinear forms Hk used for update step computation. By f̂k, we refer to
a second order model of f at the current iterate xk ∈ X and the so-called forcing term ηk ≥ 0
controls the extent of inexactness within step computation. The criterion can be understood
as a minimal decrease requirement for the gradient mapping which signifies sufficient “quality”
of the corresponding update. Note that for the evaluation of (3.1.22), knowledge of M is
essential which is not accessible in general applications. Additionally, we will later on see why
an inexactness criterion of this form is not adequate for a function space scenario and the
inherent infinite dimensionality of the corresponding formulation.

In the Euclidean Rn, however, (3.1.22) allows to prove that – in spite of inexact computation
of update steps – local linear convergence of the ensuing method is achieved if the forcing terms
ηk stay below some upper bound. If the latter additionally converge to zero along the sequence
of iterates, even local superlinear convergence can be verified. For the sake of completeness,
let us write down the algorithmic procedure described above:
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Algorithm 8: Euclidean Inexact Proximal Quasi-Newton Method

Data: Starting point x0 ∈ Rn, initial forcing term η0;
Initialization: k = 0;
while Gf,gM (xk) 6= 0 do

1. Choose second order bilinear forms (Hk)k∈N with (3.1.21);

2. Choose forcing term ηk ≥ 0;

3. Compute search direction ∆sk sufficing (3.1.22) for ηk via (3.1.20) with Hk;

4. Choose step size σk according to sufficient decrease criterion;

5. Set xk+1 = xk + σk∆sk;

6. Update the sequence index k → k + 1.

end

The convergence results which we have gathered beforehand will now be summarized within
the following theorem which constitutes a selection of assertions from [55]:

Theorem 3.1.20: Convergence Properties of the Inexact Proximal Quasi-
Newton Method

Consider the minimization problem (3.1.15) where f, g : Rn →] − ∞,∞] are proper,
convex and f is twice continuously differentiable with Lipschitz second order derivative.
Additionally, let f be strongly convex at the unique optimal solution of (3.1.15).

Then, the sequence of iterates computed by Algorithm 8 converges globally to that
optimal solution. Locally, the unit step length σk = 1 is accepted and the convergence
rate is ...

(i) ... q-linear if ηk < η̃ < m
2 for m a lower bound on the eigenvalues of the Hk.

(ii) ... q-superlinear if ηk → 0 for k →∞.

(iii) ... q-quadratic if the second order bilinear forms are chosen as Hk = f ′′(xk).

Also within this development of a suitable minimization strategy, we recognize the algo-
rithmic principles which we have summarized towards the end of Section 3.1.1: Globalization
by sufficient decrease criteria, local acceleration by second order information, transition to local
convergence by admissibility of the unit step length, and inexactness which reduces computa-
tional effort but preserves convergence properties in qualified situations. We will keep these
principles in mind for later.

Even though sufficient for introductory purposes, the above formulation still exhibits some
major flaws: Convexity and differentiability assumptions are much too restrictive for demand-
ing applications and the Euclidean domains do not allow for the treatment of function space
problems.

Before dealing with these problematic properties of existing Proximal Newton methods, let
us give a short overview, how problems of the form (3.1.15) are approached in the literature:
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Obviously, further assumptions on the form of the composite objective functional open the door
to more specific adaptions of the solution algorithm. For example in [22, 56, 104], the authors
assume convexity and self-concordance14 of the smooth part f in order to employ damped
Proximal Newton methods. Alternatively, reformulations of the original minimization problem
can be useful. As a consequence, methods which have been proven to work for other problem
classes can also be applied in our case. For instance, in [12, 13, 57] fixed point algorithms are
employed, or consider [4] for a reformulation of (3.2.1) as a constrained problem which opens
up a whole field of different suitable solution approaches.

A different point of view onto this class of problems was taken by Milzarek and Ulbrich in
[70]. For g(x) := λ

∥∥x∥∥
1
with λ > 0, they consider a semi-smooth Newton method with filter

globalization which Milzarek later on generalizes to work also for arbitrary convex functions
for g, cf. [69].

Rather recently, Kanzow and Lechner have discussed a globalized, inexact and possibly non-
convex Proximal Newton-type method in Euclidean space Rn, cf. [44]. There, the algorithm
resorted to Proximal Gradient steps in the case of insufficient descent together with a line-
search procedure in order to achieve global convergence and cope with lacking convexity of
the objective functional.

The restrictive convexity assumptions from above can also be taken care of by trust region
methods in order to make the step computation subproblem well-defined in spite of lacking
convexity of the corresponding objective. This approach is pursued in [3], where the authors
thoroughly study the respective Quasi-Newton method and present a rich convergence analysis.

14A function f ∈ C3(R;R) is called self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2 holds for all x ∈ R. Self-concordant
functions within Proximal Newton methods can be used in order to describe and modify the so-called covariance
selection problem from [20], see [56].
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3.2 Exact Computation of Update Steps

Even though many of the aforementioned works have accomplished significant progress with
respect to formulating Proximal Newton methods for a wide range of applications, we will
generalize the notion of this type of methods even further in order to allow for the solution of
non-convex, non-smooth variational problems in function space like the finite strain plasticity
problem presented in Chapter 2. To this end, we will add innovative modifications to the
established algorithmic ideas in order to evade the existing rather restrictive assumptions
concerning both the underlying vector-spaces and objective functions to be minimized. In
that regard, our goal is to address three major deficiencies of present methods: Firstly, they
are often presented in a finite dimensional framework prohibiting the application to function
space problems. Secondly, convexity of the objective functions is a common assumption which
we can not guarantee in general. Lastly, we will also replace classical differentiability with
adequate notions of semi-smoothness which still yield desirable convergence results for our
algorithm. The content of this section is closely related to the published paper [84].

Let us depart on this endeavor by reminiscing the generally considered optimization prob-
lem which now reads

min
x∈X

F (x) := f(x) + g(x) (3.2.1)

where f : X → R is assumed to be smooth in some adequate sense and g : X →] −∞,∞] is
possibly not. The domains of both f and g are given by subsets of an arbitrary real Hilbert
space (X, 〈·, ·〉X) with corresponding norm

∥∥v∥∥
X

=
√
〈v, v〉X and dual space X∗. The Hilbert

space structure of X also gives us access to the Riesz-Isomorphism R : X → X∗, defined by
Rx = 〈x, ·〉X , which satisfies

∥∥Rx∥∥
X∗

=
∥∥x∥∥

X
for every x ∈ X. Since R is non-trivial in

general, we will not identify X and X∗.

Assumptions on the Smooth Part

We will assume the smooth part of our objective functional f : X → R to be continuously
differentiable on its domain with Lipschitz-continuous derivative f ′ : X → X∗, i.e., we can
find some constant Lf > 0 such that for every x, y ∈ X the estimate∥∥f ′(x)− f ′(y)

∥∥
X∗
≤ Lf

∥∥x− y∥∥
X

(A1)

holds.15

Similar as in the introductory section for (Proximal) Newton methods, we will refer to
the quadratic part within the second order model of f at some x ∈ X as Hx ∈ L(X,X∗).
Furthermore, we will notationally identify the linear operators Hx ∈ L(X,X∗) with the cor-
responding symmetric bilinear form Hx : X ×X → R, and write (Hxv)(w) = Hx(v, w), using
the abbreviation Hx(v)2 := Hx(v, v). We will assume uniform boundedness of Hx along the
sequence (xk) of iterates by the existence of some uniform M > 0 such that

∀ k ∈ N :
∥∥Hxk

∥∥
L(X,X∗)

≤M (A2)

holds. In addition, we assume the existence of a mapping κ1 : X → R bounded from below
such that along the sequence of iterates (xk) we have the bound

15In what follows, referring to (A1) in particular implicitly demands continuous differentiability of f .
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∀ k ∈ N ∀v ∈ X : Hxk(v)2 ≥ κ1(xk)
∥∥v∥∥2

X
(A3)

which can be interpreted as an ellipticity assumption on Hxk if κ1(xk) is positive. In this case,
when considering exact (and smooth) Proximal Newton methods, where Hx is given by the
Hessian of f at some point xk ∈ X, (A3) is equivalent to κ1(xk)-strong convexity of f at xk.
When considering general bilinear forms H without dependence on some xk, we will refer to
(A3) in the sense of H(v)2 ≥ κ1 for some constant κ1 ∈ R and all v ∈ X.

While in a sufficiently smooth setting Hx := f ′′(x) is common, for most of the paper we
may choose Hx freely in the above framework. For fast local convergence, however, we will
impose a semi-smoothness assumption in the form of an approximation property according to
its introduction in Section 3.1.2, see (3.2.11) for the explicit formulation within the current
scenario. Furthermore, in order to guarantee transition of our globalization scheme to fast
local convergence, we suppose f to suffice the notion of second order semi-smoothness (cf.
Section 3.2.4) with respect to the mapping having the above Hx as images. This concept gen-
eralizes second order differentiability in our setting and its definition is directly distinguishable
from the one of semi-smoothness of f ′ in (3.2.11).

Assumptions on the Non-Smooth Part

We assume that the non-smooth part g : X →]−∞,∞] is proper, lower semi-continuous, and
satisfies a bound of the form

g(sx+ (1− s)y) ≤ sg(x) + (1− s)g(y)− κ2

2
s(1− s)

∥∥x− y∥∥2

X
(A4)

for some uniform κ2 ∈ R where x, y ∈ X and s ∈ [0, 1] can be chosen arbitrarily.16 For κ2 > 0
estimate (A4) represents κ2-strong convexity of g. It is known that κ2-strong convexity of g
implies that g is bounded from below, its level-sets Lαg are bounded for all α ∈ R, and their
diameter shrinks to 0 if α→ infx∈X g. In the case of κ2 < 0, g is allowed to be non-convex in
a limited way. This scenario is sometimes also referred to as (−κ2)-weak convexity of g stating
that g − κ2

2

∥∥·∥∥2

X
is convex for that κ2 < 0.

As we have pointed out within the assumption on g in the introductory Section 3.1.3,
an important practical aspect of splitting methods, such as Proximal Newton, is that the
non-smooth part g of the composite objective functional F yields a proximal operator proxg
that can be evaluated easily. In function space problems, in particular if Sobolev spaces are
involved, it is known that instead of a diagonal structure for the underlying scalar product,
a multi-level structure should be used in order to reflect the topology of the function space
properly. For this reason, diagonal proximal operators would suffer from mesh-dependent con-
dition numbers. In our numerical computations, we therefore employ non-smooth multigrid
techniques to compute the Proximal Newton steps, in particular Truncated Non-smooth New-
ton MultiGrid methods (TNNMG). For a more detailed description of the method, we refer to
Section A.1 in the appendix, and for convergence results and applications to other (standalone)
problems, consider [33, 92].

The theory behind Proximal Newton methods and the respective convergence properties
evolves around the convexity estimates stated in (A3) and (A4). We will assign particular

16Also here, when demanding (A4) we implicitly include the assumption of g being proper and lower semi-
continuous.
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importance to the interplay of the convexity properties of f and g, i.e., the sum κ1(x)+κ2 will
continue to play an important part over the course of the current chapter. Estimates (A1)-
(A4) constitute the standing assumptions on our composite objective functional and implicitly
hold in what follows even though they might not always be listed explicitly.

Section Outline

With the above assumptions on the underlying space and objective functional at hand, the
rest of the section is structured as follows: At first, in Section 3.2.1, we will introduce a helpful
tool for the convergence analysis of our method, the so-called Dual Proximal Mappings, and
elaborate on some of their key properties. Next, in Section 3.2.2, we will consider undamped
update steps computed as the solution of an adequately formulated subproblem and prove
local superlinear convergence of the ensuing method. Afterwards, in Section 3.2.3, we present
a modification of the aforementioned subproblem in order to damp update steps and globalize
the Proximal Newton method. This enables the proof of optimality for all limit points of the
sequence of iterates generated by our method. Section 3.2.4 then concerns the introduction of
second order semi-smoothness for f and showcases how it helps to verify the admissibility of
both full and damped update steps sufficiently close to optimal solutions in Section 3.2.5. This
in turn enables the transition to local fast convergence of our globalized method. Lacking nu-
merical robustness of the globalization strategy is addressed and improved by the introduction
of an alternative sufficient decrease criterion in Section 3.2.6. In Section 3.2.7, the performance
of this stage of the algorithm is substantiated by numerical results considering a rather simple
model problem in function space.

3.2.1 General Dual Proximal Mappings

Similar to the update scheme for the Euclidean case from (3.1.20), we compute a full step for
the Proximal Newton method at a current iterate x ∈ X by solving the subproblem

∆x := arg min
δx∈X

f ′(x)δx+
1

2
Hx(δx)2 + g(x+ δx)− g(x) . (3.2.2)

If a minimizer exists, we determine the next iterate via x+ := x+∆x. We will consider this
update scheme and investigate its convergence properties close to optimal solutions. In partic-
ular, we will be able to prove fast local convergence if Hx is adequately chosen from the image
of a Newton-derivative as introduced in the context of semi-smoothness in Definition 3.1.17.

Sufficient convexity yields unique solvability of the step computation subproblem:

Proposition 3.2.1: Well-Definedness of Full Update Steps

If κ1(x) + κ2 > 0, then (3.2.2) admits a unique solution.

Proof. By assumption, the functional to be minimized is lower semi-continuous, and κ1(x) +
κ2 > 0 implies that it is strictly convex as well as radially unbounded. Since X is a Hilbert
space, a minimizer exists and is unique.

Let us shortly elaborate on both constants κ1(x) and κ2 as well as the assumption κ1(x) +
κ2 > 0. While κ2 is a global convexity constant for g, κ1(x) is a purely local quantity which
differs from iterate to iterate together with the corresponding second order bilinear form Hx.
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This has two immediate consequences: On the one hand, ellipticity of the second order bilinear
forms can locally compensate for non-convexity of g and on the other hand (global) convexity
of g enables us to locally use non-ellipticHx even close to optimal solutions of our minimization
problem. Comparing these convexity assumptions to similar works on the topic, we recognize
that the authors in e.g. [44] and [55] require ellipticity of their∇2f(x∗) in addition to convexity
of g. In contrast, our (κ1, κ2)-formalism from above suitably quantifies the contribution to
convexity of both f and g.

Later, for the globalization of our method, we will introduce a modification which will
allow us to drop the assumption κ1(x) + κ2 > 0. For now though, we will hold on to it in
order to keep the focus on local convergence behavior. For an adequate definition of proximal
mappings in Hilbert space we reformulate (3.2.2) directly for the updated iterate x+ via

x+ = arg min
y∈X

f ′(x)(y − x) +
1

2
Hx(y − x)2 + g(y)− g(x) . (3.2.3)

In the literature, existence of a continuous inverse H−1
x : X∗ → X is frequently assumed,

giving rise to a mapping H−1
x f ′ : X → X. Then (3.2.3) can be rearranged to

x+ = arg min
y∈X

g(y) +
1

2
Hx

(
y − [x−H−1

x f ′(x)]
)2
. (3.2.4)

In [55], this form of the updated iterate is considered and – as an adaption of (3.1.17) – the
notion of a scaled proximal mapping proxHg : Rn → Rn is introduced via

proxHg (x) := arg min
y∈Rn

g(y) +
1

2
(y − x)TH(y − x) = arg min

y∈Rn
g(y) +

1

2

∥∥y − x∥∥2

H

such that there (3.2.4) takes the form x+ = proxHxg
(
x −H−1

x f ′(x)
)
. Another formal compu-

tation lets us transform first-order optimality conditions of (3.2.4) to

x+ = (Hx + ∂g)−1 (Hx − f ′
)
x

for the (in this scenario) convex subdifferential ∂g. The standing invertibility assumption on
Hx then provides the equivalent formulation

x+ =
(
Id +H−1

x ∂g
)−1 (

Id−H−1
x f ′

)
x

which in particular substantiates the common interpretation of proximal-type methods as so-
called forward-backward splitting algorithms. At first, a “forward Newton step in f ” is taken
followed by a “backwards subgradient step in g”. Note that in particular the subdifferential of
g is evaluated at the updated point x+.

However, in this work we want to follow a different, rather direct approach towards proximal
mappings which allows us to use the structure of the dual space X∗ more accurately and
dispense with an invertibility assumption on Hx ∈ L(X,X∗). In [104], (scaled) proximal
mappings are introduced for X = Rn according to

PHg : Rn → Rn , PHg (x) := arg min
y∈Rn

g(y) +
1

2
yTHy − xT y .

Observing that xT represents a dual space element in Rn here, we generalize this notion to
the setting of Hilbert spaces and consider
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PHg : X∗ → X , PHg (ϕ) := arg min
y∈X

g(y) +
1

2
H(y)2 − 〈ϕ, y〉 , (3.2.5)

obtaining a mapping from the dual space back to the primal space. With this definition in
mind, (3.2.3) can directly be rewritten as

x+ = arg min
y∈X

g(y) +
1

2
Hx(y)2 −

(
Hx(x)− f ′(x)

)
(y) = PHxg

(
Hx(x)− f ′(x)

)
. (3.2.6)

Our notion allows us to dispense with the use of the inverse H−1
x , which would in addition

indirectly restrict us to κ1(x) > 0. We will refer to (3.2.5) as the direct or dual formulation of
scaled proximal mappings.

We can shift convexity properties of the respective parts of the composite objective func-
tional by inserting adequate bilinear form terms. However, this procedure does not affect the
sequence of iterates generated by the update formula from above:

Lemma 3.2.2: Shifting Convexity Properties Between f and g

Let q : X → R be a continuous quadratic function and denote its second derivative
(which is independent of x) by Q := q′′(x) : X → X∗. Consider the modified (but
obviously equivalent) minimization problem

min
x∈X

F̃ (x) := f̃(x) + g̃(x) where

f̃(x) := f(x)− q(x) and g̃(x) := g(x) + q(x) .
(3.2.7)

Then, the update steps computed via (3.2.6) are identical for both problems (3.2.1) and
(3.2.7) if we choose H̃x = Hx −Q as the corresponding bilinear form.

Remark. If we choose q(x) := κ
2

∥∥x∥∥2

X
for some κ ∈ R, the modified quantities H̃x and g̃

suffice estimates (A3) and (A4) for κ̃1(x) = κ1(x) − κ and κ̃2 = κ2 + κ. In particular,
κ1(x) + κ2 = κ̃1(x) + κ̃2 remains unchanged and g̃ is (κ+ κ2)-strongly convex for κ > −κ2.

Proof. The only claim which is not apparent is the identity of update steps. To this end, we
consider the fundamental definition of the update step for problem (3.2.7) at some x ∈ X
given by

∆x̃ = arg min
δx∈X

f̃ ′(x)δx+
1

2
H̃x(δx)2 + g̃(x+ δx)− g̃(x)

and consequently recognize that for q(y) = 1
2Q(y)2 + `y + c with constant ` ∈ X∗ and c ∈ R,

the identity

x̃+ = arg min
y∈X

(
f ′(x)− q′(x)

)
(y − x) +

1

2

(
Hx − q′′(x)

)
(y − x)2 + g(y) + q(y)

= arg min
y∈X

(
f ′(x)− (Qx+ `)

)
(y − x) +

1

2

(
Hx −Q

)
(y − x)2 + g(y) +

1

2
Q(y)2 + `y

= arg min
y∈X

g(y) +
1

2
Hx(y)2 −

(
(Hx −Qx)− (f ′(x)−Qx)

)
y

= PHxg (Hx(x)− f ′(x)) = x+
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holds, which directly shows the asserted identity of update steps.

Remark. If the bilinear forms for update step computation Hx and H̃x are chosen from the
image of Newton-derivatives as in Definition 3.1.17 in the respective cases, we have H̃x =
Hx −Q, automatically.

Remark. In particular, only quadratic functions as above can be shifted from the smooth to
the non-smooth part and vice versa without affecting update step computation. The equality
of step computation subproblems crucially depends on the fact that the second order model of
q above coincides with q itself. Higher order non-linearities would enter the direct decrease
within the non-smooth part differently than in the respective second order model of the smooth
part and thus lead to possibly different minimizers of (3.2.2).

3.2.2 Regularity and Local Convergence Properties

The representation of the updated iterate as the image of a scaled proximal mapping in (3.2.6)
will turn out to be very useful in what follows which is why we dedicate the next two propo-
sitions to the properties of scaled proximal mappings in our scenario.

Properties of Scaled Dual Proximal Mappings

The first proposition generalizes the assertions of the so-called second prox theorem, cf. e.g.
[7, Theorem 6.39], to our notion of dual proximal mappings:

Proposition 3.2.3: General Proximal Inequality

Let H and g satisfy the assumptions (A3) and (A4) with κ1 + κ2 > 0. Then, for any
ϕ ∈ X∗, the image of the corresponding proximal mapping u := PHg (ϕ) satisfies the
estimate [

ϕ−H(u)
]
(ξ − u) ≤ g(ξ)− g(u)− κ2

2

∥∥ξ − u∥∥2

X

for all ξ ∈ X.

Proof. The proof of the estimate above is an easy consequence of the characterization of the
convex subdifferential of gH := g + 1

2H(·)2 together with (A4). First order conditions of the
minimization problem in (3.2.5) yield

ϕ ∈ ∂
(
g +

1

2
H(·)2

)
(u) = ∂gH(u)

where ∂ denotes the convex subdifferential since in particular gH is convex due to the positivity
of the sum κ1 + κ2. This inclusion directly implies the estimate

ϕ(y − u) + g(u) +
1

2
H(u, u) ≤ g(y) +

1

2
H(y, y)

for arbitrary y ∈ X which is equivalent to[
ϕ− 1

2
H(y + u)

]
(y − u) ≤ g(y)− g(u) . (3.2.8)

As pointed out before, now we want to take advantage of the convexity assumptions on g
according to (A4). To this end, we pick an arbitrary ξ ∈ X and insert y = y(s) := sξ+(1−s)u
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above for s ∈ ]0, 1] as an element along the straight line connecting u and ξ. Using (A4) on
the right-hand side of (3.2.8) then yields

s
[
ϕ−H(u)− s

2
H(ξ − u)

]
(ξ − u) ≤ s

[
g(ξ)− g(u)− κ2

2
(1− s)

∥∥ξ − u∥∥2

X

]
where we now divide by s 6= 0 and subsequently evaluate the limit of s to zero. This procedure
provides us with the asserted estimate for ξ, ϕ and u as specified above.

The inequality from Proposition 3.2.3 can be used in order to prove several useful continuity
results for general scaled proximal mappings in Hilbert spaces. However, for our purposes it
suffices to assert and verify the following result, which generalizes non-expansivity of proximal
mappings in Euclidean space, cf. [7, Theorem 6.42], to our setting. It plays a similar role as
boundedness of the inverse of second order derivatives in Newton methods (, cf. Section 3.1.1,)
or bounded invertibility of elements from the generalized differential within the semi-smooth
Newton context (, cf. (3.1.14)).

Corollary 3.2.4: Regularity of Scaled Dual Proximal Mappings

Let H and g satisfy the assumptions (A3) and (A4) with κ1 + κ2 > 0. Then, for all
ϕ1, ϕ2 ∈ X∗, the following Lipschitz-estimate holds:∥∥PHg (ϕ1)− PHg (ϕ2)

∥∥
X
≤ 1

κ1 + κ2

∥∥ϕ1 − ϕ2

∥∥
X∗

.

Proof. Let us choose H, g, and ϕ1, ϕ2 as stated above. According to Proposition 3.2.3, the
first order conditions for the respective minimization problems yield the inequalities

(ϕ1 −H(u1))(u2 − u1) ≤ g(u2)− g(u1)− κ2

2

∥∥u2 − u1

∥∥2

X
(3.2.9a)

(ϕ2 −H(u2))(u1 − u2) ≤ g(u1)− g(u2)− κ2

2

∥∥u1 − u2

∥∥2

X
(3.2.9b)

for ui = PHg (ϕi), i ∈ {1, 2}, since we can choose ξ := u2 or ξ := u1, respectively. Now, we add
(3.2.9a) and (3.2.9b) which yields

(ϕ2 − ϕ1 +H(u1 − u2))(u1 − u2) ≤ −κ2

∥∥u1 − u2

∥∥2

X
.

As we rearrange this inequality, we obtain

H(u1 − u2)2 + κ2

∥∥u1 − u2

∥∥2

X
≤ (ϕ1 − ϕ2)(u1 − u2) ≤

∥∥ϕ1 − ϕ2

∥∥
X∗

∥∥u1 − u2

∥∥
X

and eventually assumption (A3) on H yields the assertion of the proposition.

Full Update Steps near Optimal Solutions

Even though the above continuity result for proximal mappings will turn out to be an important
tool for the proof of local acceleration of the Proximal Newton method, we still have to
deduce some crucial properties of the full update step ∆x from (3.2.2). These will help us to
characterize optimal solutions of (3.2.1) as fixed points of the method and then verify local
acceleration afterwards. Let us shortly clarify the solution concepts which we will use in the
Proximal Newton context within the following definition:
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Definition 3.2.5: Stationary Points and Optimal Solutions

We call x∗ ∈ X a stationary point of problem (3.2.1) if the Fréchet subdifferential
inclusion 0 ∈ ∂FF (x∗) holds. By simple subdifferential calculus, this is equivalent to
−f ′(x∗) ∈ ∂F g(x∗).

By the notion of an optimal solution of (3.2.1), we refer to local minimizers of F on the
domain of g. These solutions thus are not optimal in the sense of global minimization
but in the sense of what we can achieve with the application of minimization algorithms
to (3.2.1).

Let us now turn our attention back to properties of full update steps. For the first one, we
generalize the notion of descent directions from Section 3.1.1 to the missing differentiability of
our composite objective functional here. Descent directions now do not have to yield negative
slope as was previously required. Instead, it is sufficient that they provide objective decrease
if sufficiently scaled:

Lemma 3.2.6: Full Update Steps as Descent Directions

Suppose that f is continuously differentiable with Lipschitz derivative and that Hx ∈
L(X,X∗) suffices (A3) with κ1(x) + κ2 > 0 and κ2 from (A4) for g. The undamped
update steps computed via (3.2.2) are descent directions of the composite objective
functional, i.e., the following estimate holds:

F (x+ s∆x) ≤ F (x)− s
(
κ1(x) + κ2

)∥∥∆x
∥∥2

X
+O(s2) .

Proof. Since f is assumed to be continuously differentiable and g suffices the estimate (A4),
we can deduce the following bound on the composite objective functional:

F (x+ s∆x) ≤ f(x) + sf ′(x)∆x+O(s2)

+ sg(x+ ∆x) + (1− s)g(x)− κ2

2
s(1− s)

∥∥∆x
∥∥2

X

≤ F (x) + s(f ′(x)∆x+ g(x+ ∆x)− g(x)− κ2

2

∥∥∆x
∥∥2

X
) +O(s2) .

(3.2.10)

Let us now deduce an estimate for the term in brackets on the right-hand side of (3.2.10). To
this end, we remember the proximal mapping representation of updated iterates in (3.2.6) and
consider the corresponding estimate from Proposition 3.2.3 for ξ := x which is given by[

Hx(x)− f ′(x)−Hx(x+)
]
(x− x+) ≤ g(x)− g(x+)− κ2

2

∥∥x+ − x
∥∥2

X
.

In equivalence to this statement we obtain

f ′(x)∆x+ g(x+ ∆x)− g(x)− κ2

2

∥∥∆x
∥∥2

X
≤ −Hx(∆x)2 − κ2

∥∥∆x
∥∥2

X

≤ −
(
κ1(x) + κ2

)∥∥∆x
∥∥2

X

which we insert into (3.2.10) and directly obtain the asserted inequality. Note that over the
course of this section we assume the positivity of the sum κ1(x) + κ2 which indeed implies
from above that ∆x is a descent direction.

As mentioned beforehand, this directly enables a more insightful characterization of optimal
solutions of the composite minimization problem:
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Corollary 3.2.7: Optimal Solutions as Fixed Points

Consider f continuously differentiable together with H ∈ L(X,X∗) which satisfies (A3)
with κ1 + κ2 > 0 and κ2 from (A4) for g. Then, the search direction ∆x∗ computed
according to (3.2.2) with Hx∗ = H is zero at every optimal solution x∗ ∈ X of problem
(3.2.1). In particular, we obtain the fixed point equation

x∗ = PHg
(
H(x∗)− f ′(x∗)

)
.

Proof. Since x∗ is a local minimizer, we have F (x∗+ s∆x∗) ≥ F (x∗) for any sufficiently small
s > 0. By Lemma 3.2.6 this implies ∆x∗ = 0 for the update computed with respect to any
second order bilinear form H ensuring strong convexity of subproblem (3.2.2). This then yields

x∗ = x∗ + ∆x∗ = x∗,+ = PHg
(
H(x∗)− f ′(x∗)

)
and thereby the asserted fixed point equation for x∗.

Fast Local Convergence

Having these properties of update steps and optimal solutions in addition to the continuity
result for scaled proximal mappings from Proposition 3.2.4 at hand, we can now prove the
local acceleration result for our Proximal Newton method with undamped steps near optimal
solutions.

For this reason, we additionally impose the following semi-smoothness assumption on
f ′ : X → X∗ at an optimal solution x∗ ∈ X of our problem (3.2.1): We require f ′ to be
semi-smooth at x∗ with respect to the mapping H : X → L(X,X∗), x 7→ Hx, i.e., we assume
that the following approximation property holds:∥∥f ′(x∗)− f ′(x)−Hx(x∗ − x)

∥∥
X∗

= o
(∥∥x− x∗∥∥X) in the limit of x→ x∗ . (3.2.11)

As pointed out before, this implies that adequate definitions of Hx can be taken from the
image of a Newton-derivative of f ′ at x∗ as characterized in Definition 3.1.17 for Lipschitz-
continuous operators in finite dimension as well as for corresponding superposition operators,
cf. Section 3.1.2.

Furthermore, let us note here that smoothing steps as considered in Section 3.1.2 would
also fit into our semi-smooth framework here. In particular, they could serve the same purpose
of providing an easier way to show semi-smoothness of the corresponding mappings also here.
Since this is not a problem which we address over the course of the present treatise, we decided
not to incorporate them for the sake of simplicity.

Theorem 3.2.8: Superlinear Convergence Close to Optimal Solutions

Suppose that x∗ ∈ X is an optimal solution of problem (3.2.1). Consider two consecutive
iterates x, x+ ∈ X which have been generated by the update scheme from above and
are close to x∗. Furthermore, suppose that (3.2.11) holds for Hx in addition to the
standing assumptions (A1)-(A4) with κ1(x) + κ2 > 0. Then, we obtain:∥∥x+ − x∗

∥∥
X

= o
(∥∥x− x∗∥∥X) in the limit of x→ x∗.
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Proof. Consider the proximal mapping representations deduced above for both the updated
iterate x+ in (3.2.6) and for the optimal solution x∗ in Corollary 3.2.7 with H = Hx via

x+ = x+ ∆x = PHxg
(
Hx(x)− f ′(x)

)
and x∗ = PHxg

(
Hx(x∗)− f ′(x∗)

)
.

Next, we directly take advantage of these identities together with the continuity result for
scaled proximal mappings from Proposition 3.2.4 in order to deduce the estimate∥∥x+ − x∗

∥∥
X

=
∥∥PHxg (

Hx(x)− f ′(x)
)
− PHxg

(
Hx(x∗)− f ′(x∗)

)∥∥
X

≤ 1

κ1(x) + κ2

∥∥Hx(x)− f ′(x)− (Hx(x∗)− f ′(x∗))
∥∥
X∗

=
1

κ1(x) + κ2

∥∥Hx(x− x∗)− (f ′(x)− f ′(x∗))
∥∥
X∗

= o
(∥∥x− x∗∥∥X)

in the limit of x → x∗ where for the last identity the semi-smoothness of f ′ as required in
(3.2.11) played a crucial role. This directly verifies the asserted local acceleration result.

In particular, this implies local superlinear convergence of our Proximal Newton method
if we can additionally verify global convergence to an optimal solution. Note that even for the
local acceleration result, ellipticity of the second order approximations Hx does not necessarily
have to be demanded. Also here, all that matters is strong convexity of the model of the
composite functional within the subproblem (3.2.2). This might be surprising since what
actually accelerates the method is the second order information on the (possibly non-convex)
but differentiable part f with semi-smooth derivative f ′. As a consequence, this means that
the (strong) convexity of g can not only contribute to the well-definedness of update steps as
solutions of (3.2.2) but also to the local acceleration of our algorithm.

The main reason for this generalization of the local acceleration result is our slightly gener-
alized notion of proximal mappings. In particular, we have not deduced (firm) non-expansivity
in the scaled norm as for example in [55] but also in that regard took advantage of the strong
convexity of the composite model in the form of assumptions (A3) and (A4) with κ1(x)+κ2 > 0.

Note that for the above results to hold it has been crucial that the current iterate x is
already close to an optimal solution of problem (3.2.1) which is why over the course of the
next sections we will address one possibility to globalize our Proximal Newton method. We
will later also realize that, eventually, we will be in the position to use undamped update
steps for the computation of iterates and thereby benefit from the local acceleration result in
Theorem 3.2.8.

3.2.3 Globalization via an Additional Norm Term

As we have learned over the course of the introductory section 3.1, a common way to globalize
minimization algorithms is to compute fixed search directions which are then scaled by an
appropriately chosen step size σk for the computation of the subsequent iterate. Lemma 3.2.6
from above suggests that this approach can also be taken here in case sufficient convexity of
the underlying functionals is present. Such a convexity assumption, however, is one of the
crucial requirements which we want to get rid of within our algorithmic formulation.

The Modified Model Decrease Functional and Damped Update Steps

To this end, let us consider an adequate augmentation of (3.2.2) and define the damped update
step at a current iterate x ∈ X directly as a minimizer of the regularized second order model
decrease functional λx,ω : X →]−∞,∞] which is defined by
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λx,ω(δx) := f ′(x)δx+
1

2
Hx(δx)2 +

ω

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x) . (3.2.12)

Following this idea, we define

∆x(ω) := arg min
δx∈X

λx,ω(δx) . (3.2.13)

Here, the regularization (or damping) parameter ω ≥ 0 can be used to achieve both convexity
of the second order model λx,ω and – as we will see later on – global convergence of the
ensuing iterative method. Setting H̃ := Hx + ωR with the Riesz-Isomorphism R : X → X∗,
we observe that (A3) holds also for H̃ with now κ̃1(x) = κ1(x) + ω as the corresponding
mapping. Additionally, (3.2.13) is of the form (3.2.2) which implies that the existence and
regularity results of the previous sections apply using the modified quantities:

Proposition 3.2.9: Well-Definedness of Damped Update Steps

If ω + κ1(x) + κ2 > 0 holds, then (3.2.13) admits a unique solution.

Additionally, the results of Lemma 3.2.2 apparently also hold in the globalized case. How-
ever, note that here the Hilbert space structure of X is important not only with regard to the
existence of the Riesz-isomorphism but also for the strong convexity of functions of the form
g + ω

2

∥∥·∥∥2

X
with g as in (A4) for arbitrary κ2 ∈ R. In a general Banach space setting, we can

not assume additional norm terms to compensate disadvantageous convexity assumptions, cf.
[7, Remark 5.18].

The updated iterate then takes the form x+(ω) := x+ ∆x(ω). As a consequence of Propo-
sition 3.2.9, for what follows, we only consider ω > −

(
κ1(x)+κ2

)
in order to guarantee unique

solvability of the update step subproblem. The full update steps from (3.2.2) are here damped
along a the so-called proximal arc in X which is parameterized by the regularization parameter
ω ∈ ] − (κ1(x) + κ2),∞[. This stands in contrast to the simple line search approach where
update steps are damped along the straight line in direction of fixed ∆x ∈ X. Apparently, the
choice of the underlying norm

∥∥·∥∥
X

affects the shape of the proximal arc which additionally
allows for algorithmic deliberations in that regard.

Let us now take a look at how we can rearrange the subproblem for finding an updated
iterate by using the scalar product 〈·, ·〉X as well as the Riesz-Isomorphism R:

x+(ω) = arg min
y∈X

f ′(x)(y − x) +
1

2
Hx(y − x)2 + g(y)− g(x) +

ω

2

∥∥y − x∥∥2

X

= arg min
y∈X

g(y) + f ′(x)y +
1

2
Hx(y)2 −Hx(x, y) +

ω

2

∥∥y∥∥2

X
−ω〈x, y〉X

= arg min
y∈X

g(y) +
1

2

(
Hx + ωR

)
(y)2 −

(
Hx(x) + ωRx− f ′(x)

)
y .

As a consequence of this representation, we can now summarize our update strategy in terms
of scaled dual proximal mappings via

x+(ω) := x+ ∆x(ω) = PHx+ωR
g

(
(Hx + ωR)x− f ′(x)

)
. (3.2.14)
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We remember here that Hx + ωR : X ×X → R satisfies (A3) with constant κ1(x) + ω such
that the combination of g and Hx + ωR still suffices the requirements for the results from
Proposition 3.2.3 and Corollary 3.2.4 for all ω > −(κ1(x) + κ2).

Together with the formulation of updated iterates via the above scaled proximal mapping,
this enables us to establish a helpful estimate for the damped update steps ∆x(ω):

Proposition 3.2.10: Descent Properties of Damped Update Steps

Under the assumptions (A3) for Hx and (A4) for g the inequality

f ′(x)∆x(ω) + g
(
x+ ∆x(ω)

)
− g(x) ≤ −

(κ2

2
+ ω

)∥∥∆x(ω)
∥∥2

X
−Hx

(
∆x(ω)

)2
holds for the update step ∆x(ω) as defined in (3.2.13) and arbitrary regularization
parameters −

(
κ1(x) + κ2

)
< ω <∞.

Proof. The proof here follows along the same lines as the derivation of the auxiliary estimate
for the bracket term in the proof of Lemma 3.2.6. Due to the structure of the update formula
in (3.2.14), we can take advantage of the estimate from Proposition 3.2.3 with

ϕ = (Hx + ωR)x− f ′(x) , H = Hx + ωR and ξ = x

which yields u = PHg (x) = x+(ω) and thereby

Hx

(
∆x(ω)

)2
+ ω

∥∥∆x(ω)
∥∥2

X
+f ′(x)∆x(ω) ≤ g(x)− g

(
x+(ω)

)
− κ2

2

∥∥∆x(ω)
∥∥2

X
.

This inequality is equivalent to the asserted estimate.

The Sufficient Decrease Criterion

With the above estimate for damped update steps at hand, let us now formulate a criterion
for sufficient decrease which will help us to verify a global convergence result of our Proximal
Newton method:

Definition 3.2.11: Admissible Regularization Parameters and Update Steps

We call a value of the regularization parameter ω > −
(
κ1(x)+κ2

)
and the corresponding

update step ∆x(ω) admissible if the (original) sufficient decrease criterion

F
(
x+ ∆x(ω)

)
≤ F (x) + γλx,ω

(
∆x(ω)

)
(3.2.15)

is satisfied for some prescribed and uniform sufficient decrease parameter γ ∈ ]0, 1].

This formulation adequately generalizes the concepts of efficient step sizes from (3.1.2)
and the Armijo-rule from (3.1.4) to our Proximal Newton scenario here. Furthermore, we may
interpret λω

(
∆x(ω)

)
as a predicted decrease and rewrite the condition (3.2.15) as follows:

F
(
x+ ∆x(ω)

)
− F (x)

λx,ω
(
∆x(ω)

) ≥ γ .

This is the classical ratio of actual decrease and predicted decrease which is often used for
trust-region algorithms, cf. [17, Chapter 6.1]. Before now trying to verify that adequate
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backtracking procedures for the above decrease criterion are again finite, i.e. that (3.2.15)
is fulfilled for sufficiently large values of ω, we note that the assertion in Proposition 3.2.10
implies the insightful estimate

λx,ω
(
∆x(ω)

)
≤ −

(κ2

2
+ ω

)∥∥∆x(ω)
∥∥2

X
−1

2
Hx

(
∆x(ω)

)2
+
ω

2
‖∆x(ω)‖2X

≤ −1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
.

(3.2.16)

By this inequality, we realize that once the sufficient decrease criterion (3.2.15) is satisfied,
update steps unequal to zero provide norm-like descent in the composite objective functional
F according to

F
(
x+ ∆x(ω)

)
− F (x) ≤ −γ

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
. (3.2.17)

Let us now take a look at the existence of sufficiently large values of the regularization
parameter ω for (3.2.15) to be satisfied. Here, the Lipschitz-constant Lf of f ′ from (A1)
explicitly comes into play for the first time:

Lemma 3.2.12: Satisfiability of the Sufficient Decrease Criterion (3.2.15)

For f , Hx and g as in (A1)-(A4) the criterion for sufficient decrease introduced in
(3.2.15) is satisfied for γ ∈ ]0, 1] if ω suffices

ω ≥
Lf − κ1(x)− (1− γ)

(
κ1(x) + κ2

)
2− γ

.

Proof. The Lipschitz-continuity of f ′ directly yields the estimate

f(x+(ω)) = f(x+ ∆x(ω)) ≤ f(x) + f ′(x)∆x(ω) +
Lf
2

∥∥∆x(ω)
∥∥2

X

from where we immediately obtain an estimate for the descent in the composite objective
functional via

F
(
x+(ω)

)
− F (x) ≤ f ′(x)∆x(ω) +

Lf
2

∥∥∆x(ω)
∥∥2

X
+g(x+(ω))− g(x)

= f ′(x)∆x(ω) +
1

2
(Hx + ωR)

(
∆x(ω)

)
+ g(x+(ω))− g(x)

+
Lf − ω

2

∥∥∆x(ω)
∥∥2

X
−1

2
Hx

(
∆x(ω)

)2
≤ λω(∆x(ω)) +

Lf − κ1(x)− ω
2

∥∥∆x(ω)
∥∥2

X
.

(3.2.18)

By our lower bound on ω from the assertion and by (3.2.16) we obtain

Lf − κ1(x)− ω
2

∥∥∆x(ω)
∥∥2

X
≤ 1− γ

2
(ω + κ1(x) + κ2)

∥∥∆x(ω)
∥∥2

X
≤ −(1− γ)λx,ω

(
∆x(ω)

)
.

Inserted above this yields

F
(
x+(ω)

)
− F (x) ≤ λx,ω

(
∆x(ω)

)
− (1− γ)λx,ω

(
∆x(ω)

)
= γλx,ω

(
∆x(ω)

)
.

This estimate is equivalent to (3.2.15) and thereby concludes the proof of the assertion.
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Remark. Let us shortly remark on a special case, in which a different bound for ω than
formulated above suffices for admissibility. In the last step of (3.2.18) the bound

ω ≥ Lf − κ1(x) (3.2.19)

allows us to omit the norm term and use the non-positivity of λx,ω
(
∆x(ω)

)
according to (3.2.16)

in order to achieve the sufficient decrease criterion. The bounds coincide for γ = 1 and, in
general, (3.2.19) relaxes the one from Lemma 3.2.12 if

Lf − κ1(x)− (1− γ)
(
κ1(x) + κ2

)
2− γ

> Lf − κ1(x)

holds which is equivalent to κ2 < −Lf . In particular, note that κ2 is generally perceived as
the largest constant such that (A4) holds. This means that every smaller κ̃2 also suffices the
requirement and can be used for any of the estimates which we deduce from (A4). Mostly,
however, κ2 only appears in order to estimate images of dual proximal mappings with respect
to g. In those estimates positivity of ω+κ1(x)+κ2 has always been crucial for well-definedness
of occurring quantities. Thus, artificially considering κ̃2 < κ2 also yields an implicit increase
of ω which makes the ensuing bound on ω facile. In order to obtain a meaningful bound on the
actually used regularization parameter, we should always refer to κ2 as the largest constant for
which (A4) is satisfied.

On this note, let us also remark here that all of the bounds on ω deduced above are invariant
under shifting convexity as formulated in Lemma 3.2.2 since the Lipschitz constant Lf of f ′ also
changes when adding/subtracting quadratic norm terms to the respective parts of the objective
functional.

Global Convergence by Regularization

In particular, the above result implies the boundedness of the sequence of regularization pa-
rameters (ωk) as long as these are increased by no more than a factor in case the sufficient
decrease criterion (3.2.15) fails. Additionally, for global convergence, similar as we did for
admissible step sizes in Definition 3.1.2 in the framework of Gradient methods, we have to
guarantee that

λx,ωk
(
∆x(ωk)

)
→ 0 implies

∥∥∆x(ωk)
∥∥
X
→ 0 (3.2.20)

in order to achieve global convergence. A simple way to guarantee this is to prescribe an upper
bound M > 0 and with that impose the restriction∥∥∆x(ωk)

∥∥2

X
≤ −Mλxk,ωk

(
∆x(ωk)

)
. (3.2.21)

Let us shortly discuss the relation of this additional requirement for update steps with the
similar bound (3.2.16) from before. By the assumption of well-definedness of our update steps
via ω + κ1(x) + κ2 > 0, it is tempting to think that (3.2.21) is unnecessary. In that regard,
consider the scenario where κ1(x) + κ2 < 0 holds close to a stationary point of (3.2.1). Then,
the prefactor in (3.2.16) might deteriorate which destroys the implication from (3.2.20). Thus,
we have to additionally impose a uniformity condition for that estimate as done in (3.2.21).
On the other hand, (3.2.16) is still helpful in the context by providing (3.2.21) if ω is chosen
sufficiently large. Furthermore, in case we have (κ1(x) + κ2) > 1/M (, e.g. close to optimal



80 3.2. EXACT COMPUTATION OF UPDATE STEPS

solutions), also ω = 0 suffices in that regard. Generally, M constitutes an algorithmic safety
parameter which we can choose very large in practice. All in all, this results in the following
algorithm:

Algorithm 9: Second Order Semi-Smooth Proximal Newton Method

Data: Starting point x0 ∈ dom g, sufficient decrease parameter γ ∈ ]0, 1], initial
value ω0 ≥ 0, threshold ε > 0 for stopping criterion

Initialization: k = 0;
while (1 + ωk)

∥∥∆xk(ωk)
∥∥
X
≥ ε do

Compute a trial step ∆xk(ωk) according to (3.2.13);
while bound (3.2.21) or sufficient decrease criterion (3.2.15) is not satisfied
do

Increase regularization parameter ωk adequately;
Recompute trial step ∆xk(ωk) as above;

end
Update the current iterate to xk+1 ← xk + ∆xk(ωk);
Decrease ωk appropriately to some ωk+1 < ωk for next iteration;
Update the sequence index k ← k + 1 ;

end

Now that we have formulated the algorithm and can be sure that we can always damp
update steps sufficiently such that they yield decrease according to (3.2.15), our next goal is
to verify the stationarity of limit points of the sequence of iterates generated by Algorithm 9.
To this end, we will first prove that the norm of the corresponding update steps converges to
zero along the sequence of iterates if F is bounded from below:

Lemma 3.2.13: Convergence of Update Step Norms

Let (xk) ⊂ X be the sequence generated by the Proximal Newton method from
Algorithm 9. Then, either F (xk) → −∞ or

(
λxk,ωk

(
∆xk(ωk)

))
k∈N and thereby(∥∥∆xk(ωk)

∥∥
X

)
k∈N converge to zero for k →∞.

Proof. By (3.2.17), the sequence F (xk) is monotonically decreasing. Thus, either F (xk) →
−∞ or F (xk)→ F for some F ∈ R and thus in particular F (xk)− F (xk+1)→ 0. Since γ > 0
holds, we also have λxk,ωk(∆x(ωk))→ 0. From there, assumption (3.2.21) immediately implies∥∥∆xk(ωk)

∥∥
X
→ 0 as discussed beforehand.

In the following, we will assume throughout that
(
F (xk)

)
k∈N is bounded from below. As

a consequence, the result from Lemma 3.2.13 enables us to take further steps towards global
convergence. The distance of 0 ∈ X∗ to the Fréchet-subdifferential of F can be considered a
meaningful quantity in the context. We formulate its limit behavior in the following proposi-
tion.

Proposition 3.2.14: Convergence of the Fréchet Subdifferential Distance

Along the sequence generated by the Proximal Newton method from Algorithm 9 we
have dist(∂FF (xk), 0)→ 0 for k →∞.
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Proof. Taking a look at the optimality conditions for update step computation in (3.2.13) at
some x ∈ X, we recognize

(Hx + ωR)x− f ′(x) ∈ ∂gHxω (x+(ω))

with the convex subdifferential of gHxω : X →] − ∞,∞], y 7→ g(y) + 1
2Hx(y)2 + ω

2

∥∥y∥∥2

X
on

the right-hand side. This directly yields the existence of some Fréchet-subderivative η ∈
∂F g(x+(ω)) such that

η + f ′(x+(ω)) = rx,ω
(
∆x(ω)

)
with rx,ω(v) := f ′(x+ v)− f ′(x)−

(
Hx + ωR

)
v . (3.2.22)

For any sequence index k ∈ N, this implies the estimate

dist(∂FF (xk+1), 0) = dist
(
f ′(xk+1) + ∂F g(xk+1), 0

)
≤
∥∥rxk,ωk(∆xk(ωk))∥∥X∗ .

Thus, by Lemma 3.2.13 and∥∥rxk.ωk(∆xk(ωk))∥∥X∗≤ (Lf +
∥∥Hxk

∥∥
L(X,X∗)

+ωk
)∥∥∆xk(ωk)

∥∥
X

together with the bounds on bilinear form norms from (A2) and on regularization parameters
from the remark following Lemma 3.2.12 we obtain the desired convergence.

The above estimates let us conclude that we can indeed interpret
∥∥∆xk(ωk)

∥∥
X
≤ ε as a

condition for the optimality of the subsequent iterate up to some prescribed accuracy. However,
small step norms

∥∥∆xk(ωk)
∥∥
X
can also occur due to very large values of the damping parameter

ωk, cf. Lemma 4.2.1. As a consequence, the algorithm would stop even though the sequence
of iterates has not yet reached an optimal solution of the problem. In order to rule out this
inconvenient case, we consider the scaled version (1+ωk)

∥∥∆xk(ωk)
∥∥
X

as the stopping criterion
in Algorithm 9.

Now, we are in the position to discuss at least subsequential convergence of our algorithm
to a stationary point as introduced in Definition 3.2.5. We start with the case of convergence
in norm:

Theorem 3.2.15: Stationarity of Accumulation Points

Under the standing assumptions (A1)-(A4), all accumulation points x̄ ∈ X (in norm)
of the sequence of iterates (xk) generated by the Proximal Newton method from Algo-
rithm 9 are stationary points of problem (3.2.1).

Proof. For the sake of notational simplicity, we will by (xk)k∈N refer to the subsequence which
converges to the accumulation point x̄ in norm.

Let us consider a modified version of our minimization problem as in (3.2.7) in Lemma 3.2.2
and choose q(x) = 1

2Q(x)2 for Q : X ×X → R such that g̃ = g + q is (strongly) convex on its
domain. This is always possible by (A4). According to Lemma 3.2.2, the sequence of iterates
remains unchanged and step computation takes the form

xk+1 = x̃k+1 = arg min
y∈X

g̃(y) +
1

2

(
Hxk −Q+ ωR

)
(y)2 −

(
(Hxk + ωkR)xk − f ′(xk)

)
y
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with first order optimality conditions

(Hxk + ωkR)xk − f ′(xk) ∈ ∂g̃(xk+1) +
(
Hxk −Q+ ωR

)
(xk+1)

where ∂g̃(xk+1) denotes the convex subdifferential of g̃ at xk+1. Consequently, we know that
there exists some η̃k ∈ ∂g̃(xk+1) such that

η̃k +
(
f ′(xk+1)−Qxk+1

)
= rxk

(
∆xk(ωk)

)
holds with the remainder term on the right-hand side as before given by

rx,ω(v) := f ′(x+ v)− f ′(x)−
(
Hx + ωR

)
v .

Again, this remainder term rxk.ωk
(
∆xk(ωk)

)
∈ X∗ tends to zero for k → ∞. In particular,

this allows us to conclude the existence of the limit expression η̃ := limk→∞ η̃k = −f ′(x̄) +Qx̄
by the continuity of f ′ and the convergence of (xk) in norm. The definition of the convex
subdifferential ∂g̃ together with the lower semi-continuity of g̃ directly yields

g̃(ξ)− g̃(x̄) = g̃(ξ)− g(x̄)− 1

2
Q(x̄)2 ≥ g̃(ξ)− lim inf

k→∞
g(xk)− lim

k→∞

1

2
Q(xk)

2

= lim inf
k→∞

g̃(ξ)− g̃(xk) ≥ lim inf
k→∞

η̃k(ξ − xk)

= lim
k→∞

η̃k(ξ − xk) = η̃(ξ − x̄)

for any ξ ∈ X which proves the inclusion η̃ ∈ ∂g̃(x̄). The evaluation of the latter limit
expression can easily be retraced by splitting

η̃k(ξ − xk) = η̃k(ξ − x̄) + (η̃k − η̃)(x̄− xk) + η̃(x̄− xk) . (3.2.23)

In particular, we recognize η̃ ∈ ∂g̃(x̄) as−f ′(x̄)+Qx̄ ∈ ∂g̃(x̄) and equivalently−f ′(x̄) ∈ ∂F g(x̄)
for the Frechét-subdifferential ∂F . This implies 0 ∈ ∂FF (x̄), i.e., the stationarity of our limit
point x̄ as in Definition 3.2.5.

Also note that – in general – the above global convergence result does not rely on the
strong convexity of the composite objective function F but yields stationarity of limit points
also in the non-convex case of κ1(xk) + κ2 < 0 if ωk > −

(
κ1(xk) + κ2

)
is chosen adequately.

In particular, this ensures that also independent of strong convexity assumptions near optimal
solutions, the algorithm approaches the optimal solution and can then benefit from additional
convexity at later iterations.

While bounded sequences in finite dimensional spaces always have convergent subsequences,
we can only expect weak subsequential convergence in general Hilbert spaces. As one conse-
quence, existence of minimizers of non-convex functions on Hilbert spaces can usually only be
established in the presence of some compactness. On this count, we note that in (3.2.23) even
weak convergence of xk ⇀ x̄ would be sufficient. Unfortunately, in the latter case we can not
evaluate the limit of f ′(xk)→ f ′(x̄).

In order to extend our proof to this situation, we require some more structure for both
of the parts of our composite objective functional. To this end, we remember the following
well-known definition of compact operators:
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Definition 3.2.16: Compactness of Linear Operators

A linear operator K : X → Y between two normed vector spaces X and Y is called
compact if one of the following equivalent statements holds:

(i) The image of the unit ball of X is relatively compact in Y (, i.e., its closure is
compact).

(ii) For any bounded sequence (xn)n∈N ⊂ X the image sequence (Kxn)n∈N ⊂ Y
contains a strongly convergent subsequence

(
xnk
)
k∈N ⊂ X.

With this notion at hand, we can formulate the following global convergence theorem:

Theorem 3.2.17: Global Convergence Under Additional Structural Assump-
tions

Let f be of the form f(x) = f̂(x)+ f̌(Kx) where K is a compact operator. Additionally,
assume that g + f̂ is convex and weakly lower semi-continuous in a neighborhood of
stationary points of (3.2.1). Then, weak convergence of the sequence of iterates xk ⇀ x̄
suffices for x̄ ∈ X to be a stationary point of (3.2.1).

If F is strictly convex and radially unbounded, the whole sequence xk converges weakly
to the unique minimizer x∗ ∈ X of F . If F is κ-strongly convex, with κ > 0, then
xk → x∗ in norm.

Proof. We can employ the same proof as above replacing g by g+ f̂ and using that due to the
additional compactness assumption, we now have f̃ ′(Kxk) → f̌ ′(Kx̄) in norm. Finally, this
then shows

(g + f̂)(u)− (g + f̂)(x̄) ≥ η(u− x̄) ,

i.e., η = −f̌ ′(Kx̄)K ∈ ∂(g + f̂)(x̄) = ∂F g(x̄) + {f̂ ′(x̄)} which in particular implies

−f ′(x̄) = −f̌ ′(Kx̄)K − f̂ ′(x̄) ∈ ∂F g(x̄) .

This again constitutes 0 ∈ ∂FF (x̄) and thereby the stationarity of the weak limit point x̄.
Let us now consider the second assertion: F being strictly convex as well as radially

unbounded yields that problem (3.2.1) has a unique solution x∗. Additionally, we know that
our sequence of iterates is bounded as a consequence of which we can select a weakly convergent
subsequence. The first assertion of the theorem then implies that the limit of each subsequence
we choose is a stationary point of problem (3.2.1), and thus by convexity the unique optimal
solution x∗. A standard weak subsubsequence argument then shows that the whole sequence
converges to x∗ weakly.

If F is κ-strongly convex, then – as discussed below (A4) – the diameter of the level sets
LF (xk) tends to 0 as k →∞, since F (xk)→ F (x∗). This implies ‖xk − x∗‖X → 0.

Remark. Note that here we did not shift the “non-compact” part of the smooth part f to g
in the sense of Lemma 3.2.2 but considered the (apparently equivalent) composite optimization
problem with smooth part f̌(K·) and non-smooth part g + f̂ . Even though the ensuing Prox-
imal Newton method generally leads to a different sequence of iterates than for the original
formulation, global convergence follows by the proof from above.
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As it is to be expected, additional structural assumptions on the composite objective
functional like convexity and compactness lead to stronger convergence results concerning
the sequence of iterates generated by our method. However, the stationarity result from
Theorem 3.2.15, which has been formulated under minimal structural assumptions, is satisfying
in the context and enables application of Algorithm 9 to a large variety of problems.

3.2.4 Second Order Semi-Smoothness

In order to be able to benefit from the local acceleration result in Theorem 3.2.8, we have to
ensure that under our standing assumptions on F , eventually also full steps are admissible
for sufficient decrease according to the criterion formulated in (3.2.15). To this end, we will
introduce a new notion of differentiability, which we call second order semi-smoothness, and
investigate how it interacts with our Proximal Newton method.

For the smooth part f of our composite objective function F we define a second order
semi-smoothness estimate at some x ∈ domf by the second order approximation property

f(x+ ξ) = f(x) + f ′(x)ξ +
1

2
Hx+ξ(ξ, ξ) + o(

∥∥ξ∥∥2

X
) for ξ → 0 . (3.2.24)

This will be precisely the assumption which we need in order to conclude the transition to fast
local convergence in the following section.

General Definition and Calculus

We will now give a general definition for operators and develop the standard results to be
expected in the context: Denote by L(2)(X,Y ) the normed space of bounded vector valued
bilinear forms X ×X → Y , equipped with the usual norm defined by∥∥B∥∥L(2)(X,Y )

:= sup
ξ1,ξ2 6=0

∥∥B(ξ1, ξ2)
∥∥
Y∥∥ξ1

∥∥
X

∥∥ξ2

∥∥
X

.

Our definition intuitively lifts the approximation property, which determines semi-smoothness
in Definition 3.1.16, to the second order level. This also motivates the name of the concept:

Definition 3.2.18: Second Order Semi-Smoothness of Continuously Differen-
tiable Operators

Let X,Y be Banach Spaces and let V ⊂ X be an open subset on which the operator
T : V → Y is defined. Consider a set-valued mapping ∂(2)T : V ⇒ L(2)(X,Y ) with
non-empty images, i.e., ∂(2)T (x) 6= ∅ for all x ∈ V .

(a) We say that T is ∂(2)T -second-order-semi-smooth at x ∈ V if T is continuously
differentiable near x and the following approximation property holds:

sup
M∈∂(2)T (x+ξ)

∥∥T (x+ ξ)− T (x)− T ′(x)ξ − 1

2
M(ξ, ξ)

∥∥
Y

= o
(∥∥ξ∥∥2

X

)
for ξ → 0 .

(b) Accordingly, we refer to ∂(2)T : V ⇒ L(2)(X,Y ) as the generalized second
order differential of T. We will always assume non-emptiness of its images.
Implicitely, ∂(2)T -second-order-semi-smoothness of T at x ∈ V shall automatically
imply non-emptiness of images at least in a neighborhood of x.
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As was the case for the generalized differential in first order semi-smoothness from Defi-
nition 3.1.16, the specific choice of ∂(2)T is far from unique and depends on the application
at hand. As pointed out beforehand, our algorithmic approach to the concept for transition
to local convergence of Proximal Newton methods benefits more from a rather direct char-
acterization via image elements of the generalized second order differential. Again here, we
avoid the peculiarities arising from defining a general notion of Newton-differentiability and di-
rectly generalize the concept of Newton-derivatives from Definition 3.1.17 to our second order
scenario:

Definition 3.2.19: Second Order Semi-Smoothness with Respect to an Oper-
ator

Consider Banach spaces X,Y , an open subset V ⊂ X, a point x ∈ V , and a neighbor-
hood N(x) ⊂ V of x. The continuously differentiable mapping T : V → Y is called sec-
ond order semi-smooth at x with respect to the operator T : N(x)→ L(2)(X,Y )
if the following approximation property holds:∥∥T (x+ ξ)− T (x)− T ′(x)ξ − 1

2
T (x+ ξ)(ξ, ξ)

∥∥
Y

= o
(∥∥ξ∥∥2

X

)
for ξ → 0 .

We then call T a second order Newton-derivative of F at x ∈ V .

As was the case in the first order scenario, this notion is intimately connected to the one
of ∂(2)T -second-order-semi-smoothness from Definition 3.2.18: The generalized second order
differential of a continuously differentiable and ∂(2)T -second-order-semi-smooth mapping F
as before allows us to define mappings with respect to which F is second order semi-smooth.
Having such a mapping in place, on the other hand, enables the construction of a generalized
second order differential ∂(2)T such that F is then ∂(2)T -second-order-semi-smooth.

In what follows, we will develop a standard set of calculus rules for our notion of second
order semi-smoothness with respect to operators. For a start, twice continuously differentiable
operators apparently are second order semi-smooth:

Proposition 3.2.20: Second Order Semi-Smoothness by Classical Second Or-
der Differentiability

Assume that T : V → Y is twice continuously differentiable at x ∈ V . Then, T is second
order semi-smooth at x with respect to the ordinary second order derivative T ′′.

Proof. While continuous differentiability of T is apparent, the second order approximation
property follows by a simple computation:

T (x− ξ)−
[
T (x) + T ′(x)ξ +

1

2
T ′′(x+ ξ)(ξ, ξ)

]
=
[
T (x− ξ)− T (x)− T ′(x)ξ − 1

2
T ′′(x)(ξ, ξ)

]
+

1

2

[
T ′′(x)− T ′′(x+ ξ)

]
(ξ, ξ) .

In their respective Y -norm, both terms in square brackets are o
(∥∥ξ∥∥2

X

)
. The first by Fréchet

differentiability of T , the second by continuity of T ′′.

It is an obvious remark that the sum of two second order semi-smooth functions is second
order semi-smooth again with linear and quadratic terms defined via sums. Furthermore, the
following chain rule can be shown:
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Theorem 3.2.21: Second Order Semi-smooth Chain Rule

Consider Banach spaces X,Y and Z together with open subsets DS ⊂ X, DT ⊂ Y .
Additionally, suppose that S : DS → Y and T : DT → Z with S(DS) ⊂ DT are second
order semi-smooth at x ∈ DS and y = S(x) ∈ DT with respect to S and T , respectively.
Then T ◦ S is second order semi-smooth with respect to T S defined as follows:

T S(x)(ξ1, ξ2) := T (y)(S′(x)ξ1, S
′(x)ξ2) + T ′(y)S(x)(ξ1, ξ2) .

Proof. Apparently, T ◦S is continuously differentiable by the classical chain rule. For the proof
of the non-trivial approximation property, we introduce the notations xξ = x+ ξ, yξ = S(xξ),
and η = yξ − y. With these prerequisites we can, as usual for chain rules, split the remainder
term as follows:

(T ◦ S)(xξ)− (T ◦ S)(x)− (T ◦ S)′(x)ξ − 1

2
T S(xξ)(ξ, ξ)

= T (yξ)− T (y)− T ′(y)S′(x)ξ

− 1

2

(
T (yξ)(S

′(xξ)ξ, S
′(xξ)ξ) + T ′(yξ)S(xξ)(ξ, ξ)

)
= T (yξ)− T (y)− T ′(y)η − 1

2
T (yξ)(η, η) (3.2.25)

+ T ′(y)

(
S(xξ)− S(x)− S′(x)ξ − 1

2
S(xξ)(ξ, ξ)

)
(3.2.26)

+
1

2
(T ′(y)− T ′(yξ))S(xξ)(ξ, ξ) (3.2.27)

+
1

2

(
T (yξ)(η, η)− T (yξ)

(
S′(xξ)ξ, S

′(xξ)ξ
))
. (3.2.28)

We will show that each of the expressions (3.2.25)-(3.2.28) is o
(
‖ξ‖2X

)
: For (3.2.25) this follows

from second order semi-smoothness of T while second order semi-smoothness of S implies the
desired result for (3.2.26). Continuity of T ′ and boundedness of S yield that (3.2.27) is
o
(
‖ξ‖2X

)
. Finally, (3.2.28) can be reformulated via the third binomial formula:∥∥T (yξ)(η, η)− T (yξ)

(
S′(xξ)ξ, S

′(xξ)ξ
)∥∥
Z

=
∥∥T (yξ)

(
η + S′(xξ)ξ, η − S′(xξ)ξ

)∥∥
Z

≤
∥∥T (yξ)

∥∥
L(2)(Y,Z)

∥∥η + S′(xξ)ξ
∥∥
Y

∥∥η − S′(xξ)ξ∥∥Y .
By continuous differentiablity of S (which is a prerequisite of second order semi-smoothness
by our definition), we estimate

∥∥η + S′(xξ)ξ
∥∥
Y

= O
(
‖ξ‖X

)
together with∥∥η − S′(xξ)ξ∥∥Y≤ ∥∥η − S′(x)ξ

∥∥
Y

+
∥∥(S′(x)− S′(xξ))ξ

∥∥
Y

= o
(
‖ξ‖X

)
which finally yields the desired result.

Remark. In the case T ′(y) = 0, we observe from (3.2.26) that S only needs to be continuously
differentiable and we may set S = 0.

Second order semi-smoothness of T and semi-smoothness of T ′ as in (3.2.11) are closely
related but not equivalent in general. In case we additionally have continuity of the Newton-
derivative, we have the following connection if we choose T from Definition 3.2.19 as a Newton-
derivative of T ′ in the sense of Definition 3.1.17:
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Proposition 3.2.22: Second Order Semi-Smoothness by Semi-Smoothness

Let the operator T : V → Y , V ⊂ X open, be continuously differentiable and let
T ′ : V → L(X,Y ) be semi-smooth at x ∈ V with respect to the Newton-derivative
T : X → L(2)(X,Y ). Furthermore, assume that T is continuous at x.

Then, T is second order semi-smooth at x with respect to T as a second order Newton-
derivative.

Proof. By the fundamental theorem of calculus and the continuous differentiability of T , we
obtain the following identity for any ξ ∈ X such that x+ ξ ∈ V :

T (x+ ξ)− T (x)− T ′(x)ξ − 1

2
T (x+ ξ)(ξ, ξ)

=

∫ 1

0
T ′(x+ sξ)ξ ds− T ′(x)ξ − 1

2
T (x+ ξ)(ξ, ξ)

=

∫ 1

0

[
T ′(x+ sξ)− T ′(x)− T (x+ ξ)(sξ)

]
ξ ds

=

∫ 1

0

[
T ′(x+ sξ)− T ′(x)− T (x+ sξ)(sξ)

]
ξ ds+

∫ 1

0

[
T (x+ sξ)− T (x+ ξ)

]
(sξ, ξ) ds .

In norm, it is easy to see with the mean value theorem for integration that the latter two
expressions are both o(‖ξ‖2X) in the limit of ξ → 0: the first one by semi-smoothness of T ′

with respect to T and the second one by continuity of T .

Remark. Conversely, we cannot deduce semi-smoothness from second order semi-smoothness
even under the additional continuity assumption for the second order Newton-derivative. All
we can achieve in that scenario is an estimate of the form∥∥T ′(x+ ξ)ξ − T ′(x)ξ −Hx+ξ(ξ, ξ)

∥∥
Y

= o
(∥∥ξ∥∥2

X

)
in the limit of ξ → 0 which in particular does not imply the approximation property for semi-
smoothness in sufficient generality.

Without the continuity of the Newton-derivative, however, this connection between second
order semi-smoothness of T and semi-smoothness of T ′ can not be established. Let us shortly
give a both simple and illustrative example: Consider the function

h : R→ R , h(x) :=

{
x3 sin

(
1
x

)
, x 6= 0

0 , x = 0

which is continuously differentiable with h′(x) = x
[
3x sin

(
1
x

)
−cos

(
1
x

)]
, x 6= 0, and h′(0) = 0.

The cubic asymptotics of h suggest that H ≡ 0 is a possible definition for second order semi-
smoothness of h at x∗ = 0 as above. Apparently, we obtain for x ∈ R and δx = x− x∗ = x:

|h(x)− h(x∗)− h′(x∗)δx−
1

2
H(x)(δx)2| = |δx|3

∣∣ sin (1

x

)∣∣ = O
(
|δx|3

)
for δx→ 0 ,

i.e., that h is indeed second order semi-smooth at x∗ = 0 with respect to H. On the other
hand, we have

|h′(x∗)− h′(x)−H(x)(x∗ − x)| = |δx|
∣∣3x sin

(1

x

)
− cos

(1

x

)∣∣ 6= o
(∣∣δx∣∣) for δx→ 0 ,
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which implies that h′ is indeed not semi-smooth at x∗ = 0 with respect to the same H.
However, in many cases of practical interest, both conditions can be shown to hold.

Second Order Semi-smoothness of Superposition Operators

The function φ : R → R, φ(x) := max{0, x}2, for instance, is of particular importance in the
optimization literature, e.g. for the reformulation of certain optimal control problems with
the help of the introduction of adjoint states, cf. [97, Section 6]. These reformulations are an
interesting alternative which then naturally describe algorithms based on the discretization
idea of [42]. The real valued variant of φ here is second order semi-smooth at the point x = 0
with respect to

P : R→ R , P(x) :=

{
0 , x < 0

1 , x ≥ 0
(3.2.29)

as well as twice Fréchet differentiable (and thus also second-order semi-smooth, cf. Proposi-
tion 3.2.20) at any other point x 6= 0 with the same φ′′ = P .17 In its most common use in
optimization with PDE’s, however, φ is mostly used in the form of a superposition operator
the concept of which we have shortly elaborated on towards the end of Section 3.1.2.

For this reason, it seems fitting to investigate how we can lift second order semi-smoothness
as introduced in Definition 3.2.19 to superposition operators on Lp-spaces for appropriate
p. Fortunately, it turns out that this is possible and that we are able to transfer standard
arguments in the context to our second order scenario.

For convenience, we recapitulate the following lemma, which is a slight generalization of
a standard result on the continuity of superposition operators. For further context and a
comprehensible proof, we refer to [97, Lemma 3.1].

Lemma 3.2.23: Continuity of Superposition Operators

Let Ω be a measurable subset of Rd and ψ : R× Ω→ R. For each measurable function
x : Ω→ R, assume that the mapping Ψ(x) defined by Ψ(x)(ω) = ψ(x(ω), ω) is measur-
able. Let x ∈ Lp(Ω,R) be given. Then, the following assertion holds:

If ψ is continuous in the first component at (x(ω), ω) for almost all ω ∈ Ω, and Ψ
maps Lp(Ω,R) into Ls(Ω,R) for 1 ≤ p, s < ∞, then Ψ is continuous at x in the norm
topology.

The standard text book result, cf. [117, Proposition 26.7(a)] or [25, Proposition IV.1.1],
requires ψ to be a Carathéodory function as introduced prior to (2.2.23), and thus in particular
continuous in the first component for all t ∈ Ω. This assumption is slightly weakened here
to the almost everywhere sense. It is known, for example, that pointwise limits and suprema
of Carathéodory functions yield superposition operators that map measurable functions to
measurable functions, cf. e.g. [95, p. 21.4]. This class of mappings is also referred to as the
one of Baire-Carathéodory functions. The mapping P from (3.2.29) is an example.

As has been done in its original appearance in [97], the above continuity result for super-
position operators can be used in several scenarios to show convergence of accordingly defined
remainder term operators. Thus, it constitutes a both easily comprehensive and powerful tool

17Here and in the following, we identify both bilinear forms from L(2)(R,R) and linear mappings from L(R,R)
with the corresponding real number in R.
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to prove all sorts of smoothness results of arbitrarily involved superposition operators. This
approach adequately simplifies the treatment of such problems.

Since our ensuing results considering second order semi-smoothness of superposition oper-
ators crucially depend on the assumptions made for the exponents s and p in Lemma 3.2.23,
it seems reasonable to shortly discuss them here as was done in [97, Remark 3.2]:

(i) In order to ensure that Ψ maps Lp(Ω) into Ls(Ω) one has to verify the following growth
condition for ψ:

|ψ(x, ω)| ≤ a(ω) + b|x|p/s for some a ∈ Ls(Ω) and b ∈ R .

(ii) In case we have p < ∞ and
∥∥Ψ(x)

∥∥
L∞(Ω)

≤ M uniformly for all x ∈ Lp(Ω), the proof
of Lemma 3.2.23 simplifies but its assertions still only hold for all s < ∞ and not for
s = ∞ (except for the case of constant Ψ). In particular, this will result in a so-called
norm gap which is commonly observed in the analysis of semi-smooth Newton methods,
cf. [111, Example 3.57]. For s =∞, only a weak form of the above continuity result can
be shown, cf. [97, Section 5].

(iii) For p = ∞ and s < ∞, the proof of Lemma 3.2.23 carries over in a modified way. The
case p = s =∞, on the other hand, can not be handled analogously. Here, the continuity
of ψ at x(t) in the first component has to be uniform in Ω which is usually a too strong
assumption in the context of semi-smoothness.

With this continuity result at hand, we can now investigate how second order semi-
smoothness of real valued mappings transfers to the correspondingly defined superposition
operators. It turns out that also here known concepts from first order semi-smoothness theory
shine through:

Proposition 3.2.24: Second Order Semi-smoothness of Superposition Oper-
ators

Consider a real-valued function φ : R→ R with globally Lipschitz-continuous derivative
φ′ : R → R. Suppose that φ is second order semi-smooth with respect to the bounded
mapping P : R→ R.
Let Ω ⊂ Rd be a set of finite measure and assume that the composition P ◦ u : Ω→ R
is measurable for any measurable function u : Ω→ R.

Then, for each p > 2 and x ∈ Lp(Ω), the superposition operator Φ : Lp(Ω) → L1(Ω),
Φ(x)(ω) := φ

(
x(ω)

)
, is second order semi-smooth at x with respect to the operator

P : Lp(Ω)→ L(2)(Lp(Ω), L1(Ω)) , P(x)(ξ1, ξ2)(ω) = P(x(ω))ξ1(ω)ξ2(ω) .

Proof. Let us all across the proof here consider a representative x ∈ Lp(Ω) with p > 2. For
the first time in this section, continuous differentiability of the superposition operator Φ at x
is not apparent which is why we use the opportunity to showcase the proof of such a result:
Intuitively, we define our candidate for the Fréchet-derivative Φ′ : Lp(Ω) → L

(
Lp(Ω), L1(Ω)

)
by Φ′(x)(ω) := φ′

(
x(ω)

)
for any ω ∈ Ω. In order to now show that∥∥Φ(x+ ξ)− Φ(x)− Φ′(x)ξ

∥∥
L1(Ω)

= o
(∥∥ξ∥∥

Lp(Ω)

)
for ξ → 0 in Lp(Ω) (3.2.30)
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holds at x from above, we define the remainder term function r̃x : R× Ω→ R by

r̃x(t, ω) :=
φ
(
x(ω) + t

)
− φ

(
x(ω)

)
− φ′

(
x(ω)

)
t

t

for t 6= 0 completed by r̃x(0, ω) := 0. By assumption, φ is continuously differentiable with
globally Lipschitz derivative φ′ with constant Lφ. This provides us with |r̃x(t, ω)| ≤ Lφ

2 t which
directly implies continuity of r̃x in the first component at t = 0 for almost all ω ∈ Ω. In
particular, the bound on |r̃x| from above and the finiteness of Ω in measure allows for the
definition of the corresponding superposition operator

R̃x : Lp(Ω)→ Ls(Ω) , R̃x(ξ)(ω) := r̃x
(
ξ(ω), ω

)
at least for any 1 ≤ s ≤ p. By Lemma 3.2.23, we infer the continuity of R̃x at ξ = 0 ∈ Lp(Ω)
at least for finite such s. We can use this desired property of the remainder term superposition
operator insofar that Hölder’s inequality with 1/p+ 1/s = 1 now18 yields∥∥Φ(x+ ξ)− Φ(x)− Φ′(x)ξ

∥∥
L1(Ω)

=
∥∥R̃x(ξ) · ξ

∥∥
L1(Ω)

≤
∥∥R̃x(ξ)

∥∥
Ls(Ω)

∥∥ξ∥∥
Lp(Ω)

= o
(∥∥ξ∥∥

Lp(Ω)

)
in the limit of ξ → 0 in Lp(Ω) and thus the desired identity (3.2.30). Continuity of the
derivative can be handled in the same way by considering

r̂x : R× Ω→ R , r̂x(t, ω) := φ′
(
x(ω) + t

)
− φ′

(
x(ω)

)
together with its superposition operator and again Lemma 3.2.23.

With continuous differentiability out of the way, we can take a similar route in order
to prove the approximation property characterizing second order semi-smoothness in Defini-
tion 3.2.19. This time around, we consider the remainder term function rx : R×Ω→ R defined
by

rx(t, ω) :=
φ(x(ω) + t)− φ(x(ω))− φ′(x(ω))t− P(x(ω) + t)t2

t2

for t 6= 0 and rx(t, ω) := 0 for t = 0. By Lipschitz-continuity of φ′ with constant Lφ and
boundedness P < C for some C > 0 we observe that rx is bounded uniformly on R× Ω:

|rx(t, ω)| ≤ 1

t2
(Lφ

2
t2 + Ct2

)
=
Lφ
2

+ C <∞ .

Together with the finiteness of Ω in measure, this lets us conclude that the superposition
operator Rx : Lp(Ω) → Ls(Ω), Rx(ξ)(ω) = rx(ξ(ω), ω) is well-defined for any 1 ≤ s ≤ ∞.
Second order semi-smoothness of φ with respect to P then yields∣∣φ(x(ω) + t)− φ(x(ω))− φ′(x(ω))t− P(x(ω) + t)t2

∣∣ = o(t2) in the limit of t→ 0

from which we infer continuity of rx(·, ω) at t = 0 for almost all ω ∈ Ω. Hence, by Lemma 3.2.23,
Rx is continuous as an operator at ξ = 0 ∈ Lp(Ω) for any s <∞. By Hölder’s inequality with
1/s+ 2/p = 1, we deduce that∥∥Φ(x+ ξ)− Φ(x)− Φ′(x)ξ −P(x+ ξ)(ξ, ξ)

∥∥
L1(Ω)

=
∥∥Rx(ξ) · ξ · ξ

∥∥
L1(Ω)

≤
∥∥Rx(ξ)

∥∥
Ls(Ω)

∥∥ξ∥∥2

Lp(Ω)
= o
(∥∥ξ∥∥2

Lp(Ω)

)
holds in the limit of ξ → 0 in Lp(Ω). Establishing the above estimate concludes the proof of
second order semi-smoothness of Φ at x.

18In particular, together with p > 2 this implies s < p which is crucial for the well-definedness of the
superposition operator.
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As we have seen over the course of the proof of the above assertions, the continuity result
from Lemma 3.2.23 provides a flexible framework for the consideration of all kinds of smooth-
ness properties of superposition operators. In particular, the continuity of remainder terms
can directly be tied to said differentiability statements. As a consequence, the assumptions
on the Lebesgue exponent p in Proposition 3.2.24 immediately follow the ones imposed on
p and s in Lemma 3.2.23. Since we have continuity of the remainder term only for s < ∞,
Hölder’s inequality restricts p to be strictly larger than two. Unsurprisingly and in analogy to
the theory of semi-smooth superposition operators, this results in a norm gap in the sense that
Proposition 3.2.24 is false for p = 2. This is closely related to the so called two-norm discrep-
ancy which illustrates the sometimes peculiar relationship of remainder terms and accordingly
chosen norms in order to show crucial properties of functionals in concrete applications (, cf.
e.g. [106, Section 4.10.2]).

In the above example of the squared max-function, P from (3.2.29) has a discontinuity at
x = 0, so also in general we can not expect that the corresponding superposition operator P
is a continuous mapping on a given open set. However, we can show the following result:

Proposition 3.2.25: Continuity of Second Order Approximations of Super-
position Operators

Let p > 2 and a representative x ∈ Lp(Ω) be fixed. Consider some P : R → R and
assume that the function Px : R×Ω→ R given by Px(t, ω) := P

(
x(ω)+t

)
is continuous

in t = 0 for almost all ω ∈ Ω.

Then, the mapping P : Lp(Ω)→ L(2)(Lp(Ω), L1(Ω)), for ω ∈ Ω accordingly defined via
P(x)(ξ1, ξ2)(ω) = P(x(ω))ξ1(ω)ξ2(ω), is continuous at x.

Proof. By the continuity assumptions on P , we can directly apply Lemma 3.2.23 to the su-
perposition operator P̃ : Lp(Ω) → Ls(Ω), P̃(x)(ω) := P(x(ω)), for s < ∞. Again, Hölder’s
inequality with 1/s+ 2/p = 1 helps us out in order to obtain

∥∥P(x̃)−P(x)
∥∥
L(2)(Lp(Ω),L1(Ω))

= sup
ξ1,ξ2 6=0

∥∥(P(x̃)−P(x)
)
(ξ1, ξ2)

∥∥
L1(Ω)∥∥ξ1

∥∥
Lp(Ω)

∥∥ξ2

∥∥
Lp(Ω)

≤
∥∥P̃(x̃)− P̃(x)

∥∥
Ls(Ω)

for any x, x̃ ∈ Lp(Ω) which allows us to conclude the continuity of P from the one of P̃.

In our example φ(x) = max{0, x}2, the corresponding second order Newton derivative P
from (3.2.29) fulfills the hypothesis of this theorem at x ∈ Lp(Ω), if x = 0 only on a set of
measure zero in Ω. This kind of regularity assumption can also be found frequently in the
literature on semi-smooth Newton methods. For an example, consider [40], where the authors
reformulate a Mixed Complementarity Problem (MCP) for the application of semi-smooth
Newton methods and proof corresponding mesh-independence results. In the context of non-
smooth equations obtained from reformulations of MCPs, the non-differentiability points are
those where strict complementarity is violated. For the corresponding analysis, it is sufficient
that the set where strict complementarity is violated is a set of measure zero.
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3.2.5 Transition to Fast Local Convergence

Let us now turn our attention back to our Proximal Newton method. In order to benefit from
the local acceleration result from Theorem 3.2.8, we have to consider the admissibility of un-
damped update steps with respect to the sufficient decrease criterion as formulated in (3.2.15)
near optimal solutions of problem (3.2.1). This concept first appeared in our introductory
description of Newton methods in Lemma 3.1.9. In our non-smooth setting here, both the
semi-smoothness of f ′ from (3.2.11) and the second order semi-smoothness of f from (3.2.24)
will contribute a crucial part to the proof of this result.

However, an algorithm that tests in every iterate whether the undamped Proximal Newton
step is acceptable will most likely compute many unnecessary trial iterates, in particular during
the early phase of globalization. Thus, it additionally is of interest whether damped Proximal
Newton steps are acceptable as well close to the solution.

In order to establish the corresponding proposition of admissibility, we will first have to
more closely investigate the influence of the regularization parameter ω on the norm of steps
computed according to (3.2.13). The following monotonicity results gives valuable insight into
this dependence:

Lemma 3.2.26: Monotonicity of Update Step Norms Regarding Regulariza-
tion Parameters

Let ∆x(ω) and ∆x(ω̃) be exactly computed update steps at an iterate x ∈ X according
to (3.2.13) with regularization parameters satisfying ω > −(κ1(x) + κ2) and ω̃ ≥ ω.

Then, the following norm estimates hold:∥∥∆x(ω)−∆x(ω̃)
∥∥
X
≤ ω̃ − ω
ω + κ1(x) + κ2

∥∥∆x(ω̃)
∥∥
X
, (3.2.31)

∥∥∆x(ω̃)
∥∥
X
≤
∥∥∆x(ω)

∥∥
X
≤ ω̃ + κ1(x) + κ2

ω + κ1(x) + κ2

∥∥∆x(ω̃)
∥∥
X
. (3.2.32)

Proof. We consider the proximal representation of exactly computed update steps

x+ ∆x(ω̂) = x+(ω̂) = PHx+ω̂R
g

(
(Hx + ω̂R)x− f ′(x)

)
for ω̂ ∈ {ω, ω̃}. Via Proposition 3.2.3, from these we can deduce the respective proximal
inequalities[(

ω̂R +Hx

)
x− f ′(x)−

(
ω̂R +Hx

)
x+(ω̂)

](
ξ̂ − x+(ω̂)

)
≤ g(ξ̂)− g

(
x+(ω̂)

)
− κ2

2

∥∥ξ̂ − x+(ω̂)
∥∥2

X

(3.2.33)

for any ξ̂ ∈ X which we choose as ξ̂ = x+(ω̂) for the respectively other ω̂ ∈ {ω, ω̃} and add
the ensuing estimates in order to obtain[(

ωR +Hx

)
∆x(ω)−

(
ω̃R +Hx

)
∆x(ω̃)

](
∆x(ω)−∆x(ω̃)

)
≤ −κ2

∥∥∆x(ω)−∆x(ω̃)
∥∥2

X
.

We now insert a (ωR + Hx)∆x(ω̃)-term to the left-hand squared bracket and simplify which
yields (

ωR +Hx

)(
∆x(ω)−∆x(ω̃)

)2
+κ2

∥∥∆x(ω)−∆x(ω̃)
∥∥2

X

≤ (ω̃ − ω)R
(
∆x(ω̃),∆x(ω)−∆x(ω̃)

)
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where we can now additionally utilize (A3) for the simpler form

(ω + κ1(x) + κ2)
∥∥∆x(ω)−∆x(ω̃)

∥∥2

X
≤ (ω̃ − ω)R

(
∆x(ω̃),∆x(ω)−∆x(ω̃)

)
. (3.2.34)

From here, we can take two paths both of which contribute to the completion of the proof.
Firstly, we divide by (ω + κ1(x) + κ2) > 0 and use the Cauchy-Schwarz-Inequality on the
right-hand side which then implies∥∥∆x(ω)−∆x(ω̃)

∥∥2

X
≤ ω̃ − ω
ω + κ1(x) + κ2

∥∥∆x(ω̃)
∥∥
X

∥∥∆x(ω)−∆x(ω̃)
∥∥
X
,

i.e., exactly (3.2.31) since the difference norm term can be assumed to be non-zero without
loss of generality. Moving on, we take advantage of∥∥∆x(ω)

∥∥
X
≤
∥∥∆x(ω)−∆x(ω̃)

∥∥
X

+
∥∥∆x(ω̃)

∥∥
X
≤
(
1 +

ω̃ − ω
ω + κ1(x) + κ2

)∥∥∆x(ω̃)
∥∥
X

and thereby directly obtain the second inequality from (3.2.32).
The other way to manipulate (3.2.34) is to simply drop the left-hand side due to (ω+κ1 +

κ2) > 0. This immediately yields

(ω̃ − ω)
∥∥∆x(ω̃)

∥∥2

X
≤ (ω̃ − ω)R

(
∆x(ω̃),∆x(ω)

)
where we use the Cauchy-Schwarz-Inequality and divide by (ω̃ − ω)

∥∥∆x(ω̃)
∥∥
X

which again
can be assumed to be non-zero (and positive) without loss of generality. The ensuing estimate
then constitutes the first part of (3.2.32), completing the proof.

In particular, this monotonicity result of the update step norms with respect to the reg-
ularization parameter also incorporates the case of ω = 0 in the strongly convex scenario of
κ1(x) + κ2 > 0 which we assumed for local acceleration close to optimal solutions of (3.2.1).
This also enables us to prove the following corollary concerning the limit behavior of damped
update steps:

Corollary 3.2.27: Limit Behavior of Damped Exact Update Steps

For x ∈ X close to an optimal solution x∗ of (3.2.1) with κ1(x) + κ2 > 0, we can find
constants c1, c2 > 0 such that for ω ≥ 0 and x+(ω) = x+∆x(ω), the following estimates
hold: ∥∥x+(ω)− x∗

∥∥
X
≤ c1

∥∥x− x∗∥∥X and
∥∥x− x∗∥∥X≤ c2

∥∥∆x(ω)
∥∥
X
.

Remark. In particular, these eventual norm estimates have implications on the limit behavior
of the respective terms. If we now have ξ = o

(
‖x+(ω) − x∗‖X

)
for some ξ ∈ X, ξ = o

(
‖x −

x∗‖X
)
immediately holds and from there we obtain ξ = o

(
‖∆x(ω)‖X

)
analogously in the limit

of the current iterate approaching the solution.

Proof. For the deduction of both asserted inequalities, we will take advantage of the local
superlinear convergence stated in Theorem 3.2.8, i.e.,

∥∥x+−x∗
∥∥
X

= o
(∥∥x−x∗∥∥X) in the limit

of x→ x∗. Consequently, we can write∥∥x+ − x∗
∥∥
X

= ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X (3.2.35)
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for some modulus of continuity ψ : [0,∞[→ [0,∞[ with ψ(t)→ 0 for t→ 0. With this helpful
representation at hand, we estimate∥∥x+(ω)− x∗

∥∥
X
≤
∥∥x− x∗∥∥X+

∥∥∆x(ω)
∥∥
X
≤
∥∥x− x∗∥∥X+

∥∥∆x
∥∥
X

≤ 2
∥∥x− x∗∥∥X+

∥∥x+ − x∗
∥∥
X

=
[
2 + ψ

(∥∥x− x∗∥∥X)]∥∥x− x∗∥∥X .
By the definition of ψ above, this directly implies the first asserted inequality. We can deduce
the second one similarly quickly via∥∥x− x∗∥∥X≤ ∥∥x+ − x∗

∥∥
X

+
∥∥∆x

∥∥
X

= ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X+

∥∥∆x
∥∥
X
.

We can assume ψ
(∥∥x− x∗∥∥X) < 1 close to the optimal solution x∗ and thereby deduce∥∥x− x∗∥∥X ≤ [1− ψ(∥∥x− x∗∥∥X)]−1∥∥∆x

∥∥
X

≤
[
1− ψ

(∥∥x− x∗∥∥X)]−1( ω

κ1 + κ2
+ 1
)∥∥∆x(ω)

∥∥
X

with the additional help of (3.2.32). Taking into account that ω remains bounded completes
the proof of the second asserted inequality.

Now, we are in the position to prove the admissibility of both undamped and damped steps
close to optimal solutions of the composite minimization problem (3.2.1). We will see that
undamped steps will generally be admissible whereas for the admissibility of damped steps
we will have to assume the following additional property of the second order model bilinear
forms:

(Hx+(ω) −Hx)(x+(ω)− x∗)2 = o
(∥∥x− x∗∥∥2

X

)
in the limit of x→ x∗ . (3.2.36)

In the following proposition, we will both recognize the necessity of this estimate and give
sufficient conditions under which it is satisfied:

Proposition 3.2.28: Admissibility of Exact Update Steps Close to Optimal
Solutions

Let x∗ ∈ X be an optimal solution of (3.2.1) and let Hx suffice (A3) as well as g
suffice (A4) with κ1(x) + κ2 > 0 in a neighborhood of x∗. Additionally, suppose that
(3.2.24) holds for f as well as (3.2.11) holds for f ′ at x∗ with respect to the mapping
H : X → L(2)(X,R), x 7→ Hx, which satisfies (3.2.36).

Then, for any γ ∈ ]0, 1] and ω ≥ 0, we can find some neighborhood Uγ,ω ⊂ X of x∗ such
that at all x ∈ Uγ,ω the corresponding update step ∆x(ω) from (3.2.13) is admissible
for sufficient decrease according to (3.2.15) for that γ.

In particular:

(i) Full steps ∆x as defined in (3.2.2) are eventually admissible.

(ii) If the (second order) Newton-derivative H : X → L(2)(X,R), x 7→ Hx, is contin-
uous at x = x∗, then eventually all steps are admissible.
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Remark. More precisely, we have to demand that f ′ : X → X∗ is semi-smooth with respect
to H : X → L(X,X∗) and not with respect to H : X → L(2)(X,R). For the sake of notational
simplicity, however, we will identify these mappings when stating assumptions here and in
what follows.

Proof. Let us take a look at the descent in the composite objective function F when performing
an update step and see which estimates we can deduce with the help of the assumptions and
results preceding this proposition.

We will denote the update by ∆x(ω) or x+(ω) = x+∆x(ω) respectively for some arbitrary
ω ≥ 0 such that the notation comprises both the damped and undamped case for the update
step. Now, we simply expand the difference in F via

F
(
x+ ∆x(ω)

)
− F (x) = f

(
x+ ∆x(ω)

)
− f(x) + g

(
x+ ∆x(ω)

)
− g(x)

and estimate the descent in the smooth part of the objective function f
(
x + ∆x(ω)

)
− f(x).

By telescoping we obtain the identity

f
(
x+(ω)

)
− f(x)− f ′(x)∆x(ω)− 1

2
Hx

(
∆x(ω)

)2
= f

(
x+(ω)

)
− f(x∗)− f ′(x∗)

(
x+(ω)− x∗

)
− 1

2
Hx+(ω)

(
x+(ω)− x∗

)2
+ f(x∗) + f ′(x∗)(x− x∗) +

1

2
(Hx+(ω) −Hx)

(
x+(ω)− x∗

)2
− f(x)−Hx

(
∆x(ω)

)2
+

1

2

[
Hx

(
x∗ − x+(ω)

)2
+Hx

(
∆x(ω)

)2]
− f ′(x)∆x(ω) + f ′(x∗)∆x(ω) +Hx

(
x− x∗,∆x(ω)

)
+Hx

(
x∗ − x+(ω) + ∆x(ω),∆x(ω)

)
which we can then reformulate in a more revealing way via

f
(
x+(ω)

)
− f(x)− f ′(x)∆x(ω)− 1

2
Hx

(
∆x(ω)

)2
=

[
f
(
x+(ω)

)
− f(x∗)− f ′(x∗)

(
x+(ω)− x∗

)
− 1

2
Hx+(ω)

(
x+(ω)− x∗

)2]
−
[
f(x)− f(x∗)− f ′(x∗)(x− x∗)−

1

2
Hx(x− x∗)2

]
−
[(
f ′(x)− f ′(x∗)

)
−Hx(x− x∗)

]
∆x(ω) +

1

2
(Hx+(ω) −Hx)

(
x+(ω)− x∗

)2
= o
(∥∥x+(ω)− x∗

∥∥2

X

)
+ o(

∥∥x− x∗∥∥2

X
) + o

(∥∥x− x∗∥∥X)
∥∥∆x(ω)

∥∥
X

+
1

2
(Hx+(ω) −Hx)

(
x+(ω)− x∗

)2
.

(3.2.37)

In the last step, we have used second order semi-smoothness of f from (3.2.24) and semi-
smoothness of f ′ at x∗ from (3.2.11) – both with respect to H : X → L(2)(X,R).

We observe that the only critical term is ρ(x, ω) := 1
2(Hx+(ω) − Hx)(x+(ω) − x∗)2. We

conclude

f
(
x+ ∆x(ω)

)
− f(x) = f ′(x)∆x(ω) +

1

2
Hx

(
∆x(ω)

)2
+ ρ(x, ω) + o

(∥∥∆x(ω)
∥∥2

X

)
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by Corollary 3.2.27 and from there directly deduce

F
(
x+(ω)

)
− F (x) = λx,ω

(
∆x(ω)

)
− ω

2

∥∥∆x(ω)
∥∥2

X
+ρ(x, ω) + o

(∥∥∆x(ω)
∥∥2

X

)
.

This estimate allows us to now study the relation between the actual descent in F and the
second order model λx,ω.

We choose γ ∈ ]0, 1] and ω ≥ 0 and look for the neighborhood Uγ,ω such that ∆x(ω)
computed at any x ∈ Uγ,ω yields sufficient decrease according to (3.2.15) for that γ. To this
end, we define the decrease ratio function γ : X × [0,∞[→]−∞,∞] by the fraction

γ(x, ω) :=
F
(
x+(ω)

)
− F (x)

λx,ω
(
∆x(ω)

) = 1 +
−ω

2

∥∥∆x(ω)
∥∥2

X
+ρ(x, ω) + o

(∥∥∆x(ω)
∥∥2

X

)
λx,ω

(
∆x(ω)

)
= 1 +

ω
2

∥∥∆x(ω)
∥∥2

X
−o
(∥∥∆x(ω)

∥∥2

X

)
− ρ(x, ω)∣∣λx,ω(∆x(ω)

)∣∣
which (eventually) should be larger than the previously chosen and fixed γ.

We may assume that the numerator of the latter expression is non-positive, otherwise this
inequality is trivially fulfilled. Thus, by decreasing the positive denominator via (3.2.16), we
obtain

γ(x, ω) ≥ 1 +
ω

ω + κ1(x) + κ2
−

ρ(x, ω) + o
(∥∥∆x(ω)

∥∥2

X

)
1
2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X

. (3.2.38)

Since the limit x→ x∗ also yields ∆x(ω)→ 0 which can again be retraced via∥∥∆x(ω)
∥∥
X
≤
∥∥∆x

∥∥
X
≤
∥∥x+ − x∗

∥∥
X

+
∥∥x− x∗∥∥X

and due to the limit assumption (3.2.36) for the ρ(x, ω)-term, we conclude that we can choose
the neighborhood Uγ,ω as the one where the latter fraction term in (3.2.38) suffices

o
(∥∥∆x(ω)

∥∥2

X

)
+ ρ(x, ω)∥∥∆x(ω)
∥∥2

X

<
1

2

[(
ω + κ1(x) + κ2

)
(1− γ) + ω

]
.

Inserting this bound into the estimate (3.2.38), we immediately obtain that ∆x(ω) computed at
any x ∈ Uγ,ω is admissible for sufficient decrease according to (3.2.15) for γ chosen beforehand.

The ρ(x, ω)-term vanishing by assumption (3.2.36) is in particular implied by either (i) or
(ii) in the following way:

(i) ⇒
∣∣(Hx+(ω)−Hx)

(
x+(ω)− x∗

)2∣∣ =
∣∣(Hx+ −Hx)(x+ − x∗)2

∣∣
≤
(∥∥Hx+

∥∥
L(2)(X,R)

+
∥∥Hx

∥∥
L(2)(X,R)

)∥∥x+ − x∗
∥∥2

X
= o
(∥∥x− x∗∥∥2

X

)
,

(ii) ⇒
∣∣(Hx+(ω)−Hx)

(
x+(ω)− x∗

)2∣∣
≤
(∥∥Hx+(ω) −Hx∗

∥∥
L(2)(X,R)

+
∥∥Hx∗ −Hx

∥∥
L(2)(X,R)

)∥∥x+(ω)− x∗
∥∥2

X

= o
(∥∥x− x∗∥∥2

X

)
.

All in all, we can conclude that what made the proof of the above admissibility result
possible is the convergence of the decrease ratio function
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γ(x, ω) :=
F
(
x+(ω)

)
− F (x)

λx,ω
(
∆x(ω)

) = 1 +
ω
2

∥∥∆x(ω)
∥∥2

X
−ρ(x, ω)− o

(∥∥∆x(ω)
∥∥2

X

)∣∣λx,ω(∆x(ω)
)∣∣ (3.2.39)

to something greater equal than one for any ω ≥ 0 in the limit of x → x∗. This realization
will come to help us out later on when we will discuss the choice of regularization parameters
in Section 4.2.

The seemingly paradoxical behavior that full Newton steps yield a better model approx-
imation than Newton steps computed from a modified second order model comes from the
fact that f ′ is not Fréchet differentiable in general. The only prerequisites that we can take
advantage of are (3.2.11) and (3.2.24) at fixed x∗.

3.2.6 Alternative Sufficient Decrease Criterion for Numerical Robustness

The result from Proposition 3.2.28 states that our Proximal Newton method as described in
Algorithm 9 is well-behaved in the transition from global to local convergence – at least in the-
ory. In addition to the questionable theoretical admissibility of update steps close to optimal
solutions, there is yet another peculiarity which might cause trouble in concrete implemen-
tations of the method: numerical cancellation. Particularly close to optimal solutions where
update steps naturally become very small, the corresponding difference in objective values
of subsequent Proximal Newton iterates also deteriorates. As a consequence, computational
misbehavior might interfere with the adequate evaluation of algorithmic quantities like the
decrease ratio function. Reconsidering the sufficient decrease criterion (3.2.15) given by

F
(
x+ ∆x(ω)

)
− F (x) ≤ γλx,ω

(
∆x(ω)

)
and taking into account that the second order model λx,ω is naturally less susceptible to
numerical cancellation than the direct difference of objective values on the left-hand side, this
explains why close to optimal solutions theoretically admissible update steps ∆x(ω) are often
unjustifiably rejected in practice. As algorithmically intended, this leads to an increase in ω,
thus to a shorter update step by Lemma 3.2.26, and thereby again to numerical cancellation.
Worst case, this results in the algorithm getting stuck just close before reaching an actual
optimal solution of the underlying minimization problem.

Development of Sufficient Decrease Criteria

To evade this inconvenient eventuality, we will consider a different sufficient decrease criterion
towards the later stages of the algorithm. With our deliberations made about the original
condition from (3.2.15), let us shortly reflect on the role of such criteria and how they can be
defined in order to achieve global convergence of the ensuing minimization algorithm:

Generally, sufficient decrease criteria are always intimately related to the globalization
mechanism which is used within the respective method: The globalization mechanism has
to be able to ensure that the decrease criterion can be fulfilled for sufficiently strong damp-
ing/regularization of the step. In the case of line search methods, the step size then has to be
sufficiently small while trust region methods restrict the search space to a sufficiently small
subset of the original domain. In our scenario, the quadratic norm regularization in (3.2.13)
is scaled by a sufficiently large parameter which then ensures satisfiability of the decrease cri-
terion. Having these results in place, the criterion apparently also has to be sufficient for the
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proof of global convergence results, mostly the convergence of update step or search direction
norms to zero which then again allows to conclude optimality criteria of limit points in some
form. Also, for locally accelerated methods, transition results are of importance. In summary,
three questions have to be answered for the design of globally convergent algorithms:

(a) Which sufficient decrease criterion is adequate to prove global convergence for the present
assumptions on the objective functional and underlying domain space?

(b) Which globalization strategy is able to guarantee satisfiability of this criterion under
sufficiently strong damping/regularization?

(c) Does the chosen combination of decrease criterion and globalization strategy allow for
unregularized computation of updates close to optimal solutions and thereby unlock local
acceleration?

Generally, these questions do not have to be asked anymore for the development of ideas for
minimization algorithms since a plethora of intuitive decrease criteria and globalization strate-
gies has already been investigated in the literature. It is, however, reasonable to be aware of
the general concepts when developing minimization algorithms. As we have mentioned before-
hand, additionally computational robustness and availability of the corresponding algorithmic
quantities in concrete implementations play an important role. Let us now define our alter-
native sufficient decrease criterion and consider to what extent each of the above demands is
satisfied by it.

The Alternative Sufficient Decrease Criterion

Computational robustness is ensured by using a first order model in both f and g instead of
direct differences within the respective quantities, cf. e.g. [115, Equation (18)] for the case of
cubic regularization in a semi-smooth Newton method. For a generalization of this idea, it is
intuitive to assess the admissibility of update steps close to stationary points of our problem
by an inequality of the form

[
f ′
(
x+ ∆x(ω)

)
+ µ+

]
∆x(ω) ≤ −1 + γ

2
ω
∥∥∆x(ω)

∥∥2

X
. (3.2.40)

Here, γ ∈ ]0, 1] denotes the sufficient decrease parameter from before and µ+ ∈ ∂F g
(
x+∆x(ω)

)
is a Fréchet-subderivative of g at the updated iterate. Let us now shortly elaborate on the
evaluation of (3.2.40) which also clarifies the particular choice of the latter subderivative. We
reconsider optimality conditions of exactly computed update steps in (3.2.13), i.e., the dual
space inclusion

f ′(x) + (Hx + ωR)∆x(ω) ∈ ∂F g
(
x+ ∆x(ω)

)
which can be rephrased into the existence of some µ+ ∈ ∂F g

(
x+ ∆x(ω)

)
such that

µ+ = −
[
f ′(x) + (Hx + ωR)∆x(ω)

]
(3.2.41)

holds. This lets us reformulate the alternative sufficient decrease criterion (3.2.40) in a directly
computable variant which we use for the corresponding definition of the concept:
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Definition 3.2.29: Admissible Regularization Parameters and Update Steps
Close to Stationary Points

We say that the regularization parameter ω > −
(
κ1(x) + κ2

)
and the corresponding

update step ∆x(ω) computed according to (3.2.13) are admissible close to station-
ary points of (3.2.1) if the (alternative/numerically robust) sufficient decrease
criterion[

f ′
(
x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)]
∆x(ω) ≤ 1− γ

2
ω
∥∥∆x(ω)

∥∥2

X
(3.2.42)

holds for the sufficient decrease parameter γ ∈ ]0, 1].

As we will see over the course of the further investigation of this newly defined sufficient
decrease criterion, (3.2.42) is not only superior to (3.2.40) from a computational but also
from an analytical standpoint. The formulation via (3.2.40) with the subdifferential element
µ+ ∈ ∂F g

(
x + ∆x(ω)

)
is rather of motivational character for using a first order model of

F instead of its direct difference on the left-hand side of the sufficient decrease criterion in
order to avoid numerical cancellation. For convergence analysis, however, the optimality of
our exactly computed update steps ∆x(ω) within the subproblem (3.2.13) plays a by far more
important role than the subdifferential characterization of µ+.

From this standpoint, let us now consider satisfiability of (3.2.42) for sufficiently large
values of the regularization parameter ω. Again here, as in the proof of Lemma 3.2.12, the
Lipschitz-constant Lf of f ′ plays an important role:

Lemma 3.2.30: Satisfiability of the Alternative Sufficient Decrease Criterion

The alternative sufficient decrease criterion (3.2.40) is satisfied for γ ∈ ]0, 1] if the reg-
ularization parameter ω suffices the estimate

ω ≥
2(Lf +M)

1− γ
.

Proof. We consider the equivalent reformulation from (3.2.42) and simply estimate the left-
hand side via ∥∥f ′(x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)∥∥
X∗
≤ (Lf +M)

∥∥∆x(ω)
∥∥
X

by the Lipschitz continuity of f ′ from (A1) and the uniform boundedness of the Hx from (A2).
This directly provides us with

[
f ′
(
x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)]
∆x(ω) ≤

Lf +M

ω
ω
∥∥∆x(ω)

∥∥2

X

where we can easily deduce a sufficient lower bound on ω using the prefactor fraction on the
right-hand side via

Lf +M

ω
≤ 1− γ

2
⇔ ω ≥

2(Lf +M)

1− γ

which concludes the proof of the assertion above.
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With the above guarantee of satisfiability of the alternative sufficient decrease criterion at
hand, we can now turn our attention to the demand that global convergence results can be
deduced from it in case it is fulfilled. Note here that we employ (3.2.40) only if update steps
are already small in some sense, thus we merely need “residual convergence” of the ensuing
computation strategy. We will see over the course of the proof what the assumption of update
steps being “already small” means in detail.

Proposition 3.2.31: Global Residual Convergence Using the Alternative De-
crease Criterion

Let f ′ be semi-smooth at a stationary point x∗ ∈ X with respect to the mapping
H : X → L(2)(X,R) which is continuous at x∗.

Then, if update steps are already sufficiently small when the alternative sufficient de-
crease criterion (3.2.40) is used, global convergence from the original algorithm is con-
tinued. In particular, we have

∥∥∆xk(ω)
∥∥
X
→ 0 for k → ∞ (in case F is bounded from

below) together with all ensuing global convergence results from Section 3.2.3.

Proof. The choice of ω > −
(
κ1(x) +κ2

)
provides us with (strong) convexity of the regularized

second order model λx,ω : X →]−∞,∞] which we use insofar that

λx,ω
(
∆x(ω)

)
≤ −1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X

holds by the optimality of ∆x(ω) as first recognized in (3.2.16). In particular, this implies an
estimate for the difference in the non-smooth part given by

g
(
x+ ∆x(ω)

)
− g(x) ≤ −f ′(x)∆x(ω)− 1

2

(
Hx +ωR

)(
∆x(ω)

)2− 1

2

(
ω+κ1(x) +κ2

)∥∥∆x(ω)
∥∥2

X

from where we can deduce the following bound for the composite objective functional:

F
(
x+ ∆x(ω)

)
− F (x)

≤ f
(
x+ ∆x(ω)

)
− f(x)− f ′(x)∆x(ω)− 1

2

(
Hx + ωR

)(
∆x(ω)

)2
− 1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X

=
[
f
(
x+ ∆x(ω)

)
− f(x) +

1

2
Hx

(
∆x(ω)

)2]− [f ′(x) +Hx

(
∆x(ω)

)]
∆x(ω)

− ω

2

∥∥∆x(ω)
∥∥2

X
−1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
.

Let us now turn our attention to the first bracket term. We again use a telescoping strategy
similar to the one within the proof of Proposition 3.2.28 and use the corresponding smoothness
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assumptions:

f
(
x+∆x(ω)

)
− f(x) +

1

2
Hx

(
∆x(ω)

)2 − f ′(x+ ∆x(ω)
)
∆x(ω)

= f
(
x+ ∆x(ω)

)
− f(x∗)− f ′(x∗)

(
x+(ω)− x∗

)
− 1

2
Hx+(ω)

(
x+(ω)− x∗

)2
−
[
f(x)− f(x∗)− f ′(x∗)(x− x∗)−

1

2
Hx(x− x∗)2

]
+
[
f ′(x∗)− f ′

(
x+ ∆x(ω)

)
−Hx+

(
x∗ − x+(ω)

)]
∆x(ω)

+ (Hx −Hx+(ω))
(
x− x∗,∆x(ω)

)
+

1

2
(Hx+(ω) −Hx)

(
x+(ω)− x∗

)2
.

Firstly, we notice that by Proposition 3.2.22, f is additionally second order semi-smooth at x∗
with respect to H. As a consequence, we can estimate the first two terms by the second-order
semi-smoothness of f at x∗ and the third term with the aid of the semi-smoothness of f ′ at x∗,
both with respect to H : X → L(2)(X,R). For the last two terms, we take advantage of the
continuity assumption on the latter mapping. All in all, the estimates from Corollary 3.2.27
then provide us with

f
(
x+ ∆x(ω)

)
− f(x) +

1

2
Hx

(
∆x(ω)

)2
= f ′

(
x+ ∆x(ω)

)
∆x(ω) + o

(∥∥∆x(ω)
∥∥2

X

)
in the limit of x→ x∗ which we can use in order to find

F
(
x+ ∆x(ω)

)
− F (x)

≤
[
f ′
(
x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)]
∆x(ω)− ω

2

∥∥∆x(ω)
∥∥2

X

− 1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
+o
(∥∥∆x(ω)

∥∥2

X

)
≤ 1− γ

2
ω
∥∥∆x(ω)

∥∥2

X
−ω

2

∥∥∆x(ω)
∥∥2

X
−1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
+o
(∥∥∆x(ω)

∥∥2

X

)
= −γ

2
ω
∥∥∆x(ω)

∥∥2

X
−1

2

(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
+o
(∥∥∆x(ω)

∥∥2

X

)
≤ −c

∥∥∆x(ω)
∥∥2

X

again in the limit of x → x∗ by ∆x(ω) satisfying the alternative sufficient decrease criterion
(3.2.42). The last estimate in the above sequence then stems from the assumption that our
update steps ∆x(ω) are already sufficiently small close to the stationary point x∗ of (3.2.1)
where we started to alternatively use (3.2.40) instead of (3.2.15).

The above arguments provide us with a bound of the form (3.2.21) which in particular
implies convergence of ∆xk(ω) to zero for k → ∞ in case F is bounded from below just as
in Lemma 3.2.13. The ensuing global convergence results can be deduced from first order
optimality conditions of (3.2.13) as has been done in Section 3.2.3.

Remark. Taking a closer look at the proof from above reveals that we dispense with the con-
tinuity assumption on H : X → L(2)(X,R) in case both the semi-smoothness of f ′ and second
order semi-smoothness of f are demanded at the current iterate x ∈ X close to x∗ instead
of the mere semi-smoothness at x∗ itself. Under these stronger assumptions, the telescop-
ing argument simplifies and the latter terms involving H evaluated at different points do not
appear.
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The above proofs for satisfiability and residual global convergence also reveal the thoughts
behind the at first rather irritating choice of the prefactor constant 1+γ

2 ∈ ]1
2 , 1] within (3.2.40):

For satisfiability, we need the constant to be lower than one while residual global convergence
requires it to be any larger than one half. Additionally, tying the criterion to the original
one by involving the decrease parameter γ ∈ ]0, 1] from before is an intuitive strategy in the
choice. Thus, γ also close to optimal controls how restrictive the corresponding sufficient
decrease criterion is in rejecting update steps.

Note here that the proof above again has not specifically made use of the subgradient
property of µ+ from (3.2.40) but has rather taken advantage of the optimality of update steps
∆x(ω) within their computation subproblem in the form of the norm estimate (3.2.16). This
recognition will be crucial when developing a similar strategy in the inexact case later on.

Let us now turn our attention to the investigation to which extent also the alternative
sufficient decrease criterion allows for an admissibility result of arbitrarily small regularization
parameters like Proposition 3.2.28. At least for any ω > 0 we can achieve a similar result:

Proposition 3.2.32: Admissibility Close to Optimal Solutions Under the Al-
ternative Sufficient Decrease Criterion

Let f ′ : X → X∗ be semi-smooth at an optimal solution x∗ ∈ X of (3.2.1) with respect
to the mapping H : X → L(X,X∗) which is continuous at x∗.

Then, for any γ ∈ ]0, 1] and ω > 0 we can find a neighborhood Uγ,ω of x∗ such that
the alternative sufficient decrease criterion (3.2.40) is satisfied by update steps ∆x(ω)
computed via (3.2.13) at any x ∈ Uγ,ω for that ω.

Proof. Let us consider the left-hand side of the equivalent reformulation (3.2.42) in norm.
Similar as in the proof of the original transition result from Proposition 3.2.28, we now telescope
the respective operator expression in norm in order to obtain∥∥f ′(x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)∥∥
X∗

≤
∥∥f ′(x+ ∆x(ω)

)
− f ′(x∗)−Hx∗

(
x+ ∆x(ω)− x∗

)∥∥
X∗

+
∥∥f ′(x∗)− f ′(x) +Hx∗(x− x∗)

∥∥
X∗

+
∥∥Hx∗

(
x+ ∆x(ω)− x∗

)
−Hx∗(x− x∗)−Hx

(
∆x(ω)

)∥∥
X∗

= o
(∥∥∆x(ω)

∥∥
X

)
+
∥∥(Hx∗ −Hx)

(
∆x(ω)

)∥∥
X∗

= o
(∥∥∆x(ω)

∥∥
X

)
in the limit of x→ x∗. Here, we used the semi-smoothness of f ′ with respect to H twice in the
second step and for the last identity took advantage of the continuity of the Newton-derivative
H. In particular, the equivalences in limit behavior of the occurring quantities for x → x∗
from Corollary 3.2.27 were implicitly important.

This lets us conclude the existence of a modulus of continuity ψ : [0,∞[→ [0,∞[ with
ψ(t)→ 0 for t→ 0 such that we can estimate the left-hand side of (3.2.42) via

[
f ′
(
x+ ∆x(ω)

)
− f ′(x)−Hx

(
∆x(ω)

)]
∆x(ω) ≤

ψ
(∥∥∆x(ω)

∥∥
X

)
ω

ω
∥∥∆x(ω)

∥∥2

X
.

From the global convergence result in this scenario, cf. Proposition 3.2.31, we also here know
that update step norms

∥∥∆x(ω)
∥∥
X

tend to zero as we approach the optimal solution of the
underlying minimization problem. For any fixed ω > 0, we can thus choose a neighborhood
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Uγ,ω of x∗ such that the modulus of continuity ψ is sufficiently small such that the prefactor
fraction also here is smaller than 1−γ

2 ∈ [0, 1
2 [. This in turn implies admissibility of the

corresponding update step.

Remark. Also here, we recognize that we can get rid of the continuity assumption on the
Newton derivative H : X → L(X,X∗) if we demand semi-smoothness of f ′ directly at x instead
of only at x∗. This shift of continuity assumptions completely replaces the telescoping argument
this time around instead of only simplifying it.

Remark. We have to note here that the eventual admissibility of undamped update steps
(ω = 0) can not be rigorously verified within the scenario which we have laid out here. Let
us shortly discuss a possible modification of (3.2.40) in order to guarantee also this desired
property of the globalization mechanism: Reconsidering the proofs above, admissibility for ω = 0
would require the choice of some γ0 > 0 and the consideration of

[
f ′
(
x+ ∆x(ω)

)
+ µ+

]
∆x(ω) ≤ −

(1 + γ

2
ω − γ0

)∥∥∆x(ω)
∥∥2

X

instead of (3.2.40). Due to the o
(∥∥∆x

∥∥2

X

)
-terms on the right-hand side of

[
f ′(x+ ∆x) + µ+

]
∆x =

[
f ′(x+ ∆x)− f ′(x)−Hx(∆x)

]
∆x = o

(∥∥∆x
∥∥2

X

)
update step norms can then be assumed to be sufficiently small for x ∈ X close to x∗ such that
the modified criterion is satisfied also for ω = 0. The above modification by the introduction of
γ0 then on the other hand would hinder the global convergence proof from Proposition 3.2.31
insofar that residual convergence can only be ensured for sufficiently large ω which then again
rules out undamped update steps from this perspective. Thus, we decided to stick to our original
formulation from (3.2.40).

Before considering the numerically stable reformulation above, we have deduced a similar
admissibility result for update steps in Proposition 3.2.28. After its proof, we have concluded
that it has been made possible by the convergence of some decrease ratio function γ : X ×
[0, ω[→ R to some value greater equal than one in the limit of the current iterate approaching
the optimal solution. In a similar fashion, we can also here define a numerically robust decrease
ratio function via

γ̃ : X × [0, ω[→ R , γ̃(x, ω) :=

[
f ′
(
x+ ∆x(ω)

)
− f ′(x)− (Hx + ωR)∆x(ω)

]
∆x(ω)

−ω
∥∥∆x(ω)

∥∥2

X
(3.2.43)

which has to be larger than the corresponding threshold value γ̃ := 1+γ
2 ∈ ]1

2 , 1] for the update
step to be admissible for sufficient decrease according to (3.2.42). From this perspective, our
transition result from Proposition 3.2.32 now shows that also this alternative decrease ratio
function converges to some value larger equal than one as the sequence of iterates approaches
an optimal solution of (3.2.1).
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Discussion of Results

Let us shortly address the continuity assumption on the second order Newton derivative
H : X → L(2)(X,R) which we have demanded for the above convergence theory. It removes
the concept of second order semi-smoothness from convergence theory in the sense that we
can simply deduce the latter from the semi-smoothness of f ′ together with the continuity of
the Newton-derivative H via Proposition 3.2.22.

On that note, even though the results which we have deduced above for the alternative
sufficient decrease criterion might at least in parts come over as unsatisfactory in the context,
we have to put them in perspective in order to adequately evaluate their quality: Firstly, we
have to take into account that we have already formulated a perfectly fine global convergence
theory the sufficient decrease criterion of which is tailored to the corresponding globalization
method. In theory, this variant also works out arbitrarily close to solutions of the underlying
minimization problem but exhibits computational peculiarities in its implementation for con-
crete examples. From this perspective, it is illustrative to think of algorithmic functionality as
an interplay of rigorous theory which is formulated in sufficient generality and its implemen-
tation which is different from case to case and might be affected by computational limitations.
While it is always better to stay close to assumptions and ensuing guaranteed results from
theory, sometimes one has to consider the trade-off in favor of rather heuristic and more robust
approaches.

Secondly, the generality in which our theoretical framework has been formulated also affects
the quantifiability of errors and limit expressions: Replacing semi-smoothness of f ′ and second
order semi-smoothness of f only at stationary points with more generous differentiability
properties of at least the smooth part f everywhere in X would provide us with an easier
way of evaluating such quantities. For example, assuming second order differentiability with a
Lipschitz hessian gives rise to direct estimates using cubic norm terms with the corresponding
Lipschitz constant as a prefactor. This then again allows for a direct treatment of the respective
remainder terms. While the ensuing transparency in formulation seems desirable, pursuing
generality with respect to differentiability assumptions is superior both from an analytical and
an application-focused standpoint.

Algorithmic Strategy

Let us now use the convergence theory developed above in order to create a modification of
the scheme from Algorithm 9 which is able to adequately cope with numerical instability of
computation close to optimal solutions of (3.2.1). Due to the drawbacks of the alternative
sufficient decrease criterion in view of convergence theory which we have discussed above, we
will try to avoid the use of (3.2.42) as long as we can in favor of the original formulation
(3.2.15). Once we are close to solutions of (3.2.1), however, we will use (3.2.42) in order to
avoid numerical cancellation as follows:

We characterize “being close to a solution” by an additional proximity criterion in the form
of a norm bound

(1 + ω)
∥∥∆x(ω)

∥∥
X
≤ ε̃ (3.2.44)

which mimics the stopping criterion from Algorithm 9 but uses a larger threshold value ε̃ >
ε > 0. Once (3.2.44) holds, we first test the conventional form (3.2.15). In case it fails, we will
then make sure that this did not happen due to numerical instability. For this reason, we will
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not as before increase the regularization parameter and recompute the update step right away
but first additionally test the alternative criterion (3.2.42). If the considered update suffices
the latter, we can take advantage of the global convergence theory deduced above and use the
step. Otherwise, we increase ω and recompute ∆x(ω) as usual.

Furthermore, due to numerical instability, we also let go of the bound (3.2.21) once the
proximity criterion (3.2.44) holds. Global convergence is from there on taken care of adequately
by the alternative sufficient decrease criterion.

We summarize the algorithmic strategy of this modified form of Algorithm 9 in the scheme
of Algorithm 10. For a more illustrative overview, we refer to the algorithmic conclusion in
Section 4.3 where the final form of the algorithm is presented in Figure 4.11.

Algorithm 10: Second Order Semi-smooth Proximal Newton Method Mod-
ified for Numerical Stability

Data: Starting point x0 ∈ X, sufficient decrease parameter γ ∈ ]0, 1], initial
value ω0 ≥ 0, thresholds 0 < ε̃ < ε for the stopping and proximity
criterion

Initialization: k = 0;
while (1 + ωk)

∥∥∆xk(ωk)
∥∥
X
≥ ε do

Compute a trial step ∆xk(ωk) according to (3.2.13);
if (1 + ωk)

∥∥∆xk(ωk)
∥∥
X
≥ ε̃ then

while bound (3.2.21) or sufficient descent criterion (3.2.15) is not
satisfied do

Increase regularization parameter ωk adequately;
Recompute trial ∆xk(ωk) step as above;

end
else

while sufficient descent criterion (3.2.15) and alternative version
(3.2.42) are not satisfied do

Increase regularization parameter ωk adequately;
Recompute trial ∆xk(ωk) step as above;

end
end
Update the current iterate to xk+1 ← xk + ∆xk(ωk);
Decrease ωk appropriately to some ωk+1 < ωk for next iteration;
Update the sequence index k ← k + 1 ;

end

3.2.7 Numerical Results

The Proximal Newton method which we have developed above constitutes a working mini-
mization procedure which is applicable to function space problems. Even though there are
still modifications to be made with regard to algorithmic efficiency, it is illustrative to showcase
the functionality of the method at this early stage and compare it to existing strategies.
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The Objective Functional

To this end, we consider the following problem on Ω = [0, 1]2 ⊂ R2: Find u ∈ H1
0 (Ω) that

minimizes the composite objective functional F : H1
0 (Ω)→ R defined via

F (u) :=

∫
Ω

1

2

∥∥∇u∥∥2

R2+αmax{
∥∥∇u∥∥R2−1, 0}2 + βu3 + c |u|+ ρudx . (3.2.45)

with parameters c > 0 and α, β ∈ R as well as a force field ρ : Ω → R. The norm ‖ · ‖R2

denotes the Euclidean 2-norm on R2. In the sense of the theory of the preceding sections we
can identify the smooth part of F as f : H1

0 (Ω)→ R given by

f(u) :=

∫
Ω

1

2

∥∥∇u∥∥2

R2+αmax{
∥∥∇u∥∥R2−1, 0}2 + βu3 + ρudx .

We have to note here that f technically does not satisfy the assumptions made on the smooth
part of the composite objective functional specified above in the case α 6= 0 due to the lack
of semi-smoothness of the corresponding squared max-term. The use of the derivative ∇u
instead of function values u creates a norm-gap which can not be, as usual, compensated by
Sobolev-embeddings and hinders the proof of semi-smoothness of the respective superposition
operator. However, we think that slightly going beyond the framework of theoretical results
for numerical investigations can be instructive.

For our implementation of the solution algorithm we chose the force field ρ to be constant on
its domain and equal to some so called load-factor ρ̃ > 0 which we will from now on refer to as
simply ρ. Consequently, the non-smooth part of the objective functional g only consists of the
scaled integral over the absolute value term which apparently also satisfies the specifications
made on g before. Note that the underlying Hilbert space is given by X = H1

0 (Ω,R) which
also determines the norm choice for regularization of the subproblem.

Specifics of the Implementation

In the following, we will dive deeper into the specifics of our implementation of the algorithm:
In order to differentiate the smooth part of the composite objective functional and create a
second order model of it around some current iterate, we take advantage of the automatic
differentiation software package adol-C, cf. [114]. With the second order model at hand, we
can then consider subproblem (3.2.13) which has to be solved in order to obtain a candidate for
the update of the current iterate. As mentioned beforehand, for the latter endeavor we employ
the Truncated Non-smooth Newton MultiGrid (TNNMG) method, cf. Appendix Section A.1.
Roughly speaking, we can summarize this method as a mixture of exact, non-smooth Gauß-
Seidel steps for each component and global, truncated Newton steps enhanced with a line-
search procedure. The stopping criterion for the minimization process within TNNMG is
given by a relative norm threshold for increments and the scheme is analytically proven to
converge for convex and coercitive problems, cf. [33]. For detailed information on the test
machine which we have used in order to conduct our tests, we refer to Appendix Section A.3.

However, the most delicate issue concerning the implementation of our algorithm and its
application to the problem described above is the choice of the regularization parameter ω ≥ 0
along the sequence of iterates (xk) ⊂ X. For now, we will confine ourselves to displaying
the convergence properties of the class of Proximal Newton methods in the scenario presented
above and not attach too much value to algorithmic technicalities. After setting it to the
initial value ω0 = 64, we take the rather heuristic approach of simply doubling ω in case the
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respective sufficient decrease criterion (3.2.15) or (3.2.40) (for γ = 1
2) is not satisfied by the

current update step candidate. If the update is accepted, we multiply ω by 1
2n where n ∈ N

denotes the number of consecutive accepted update steps. The latter feature ensures that the
region of local acceleration is recognized by the algorithm and the regularization parameter
then quickly decreases once the iterates come close to the minimizer. For the superlinear
convergence from Theorem 3.2.8 to arise, undamped update steps have to be conducted, i.e.,
the regularization parameter has to be zero and not merely sufficiently small. We will see later
that ω converging to zero actually suffices in that regard which is why we will stick to the
aforementioned approach for now.

Even though the choice of ω considered here is rather heuristic and not problem-specific
at all, it stands in conformity with the theory established over the course of the previous
sections. In addition, it successfully displays the global convergence and local acceleration of
our Proximal Newton method for the model problem of minimizing (3.2.45) over H1

0 (Ω).
As far as stopping criteria of the Proximal Newton method are concerned, we chose ε =

10−10 in Algorithm 9 which yields

(1 + ω)
∥∥∆x(ω)

∥∥
X
≤ 10−10 (3.2.46)

as the crucial requirement of ending the computation of update steps. The proximity criterion
(3.2.44), which determines the additional use of the alternative sufficient decrease criterion
from Section 3.2.6, is closely related to this stopping criterion. For our numerical test here,
we choose the respective threshold value as ε̃ = 10−4. Furthermore, the constant determining
the bound (3.2.21) is set to M = 1010.

Test Scenarios and Results

For our numerical investigations, we fix the parameters β = c = 10 and ρ = −20 in the same
order of magnitude and vary the influence of the squared max norm term by increasing the
corresponding prefactor α ∈ {0, 40, ..., 240}. We conduct five uniform grid refinements of the
domain Ω which results in 46 = 4096 grid elements.

The norm of update steps ∆x(ω) is depicted in Figure 3.1a. This illustration not only
highlights the local superlinear convergence of our method but also shows that, as α increases,
the corresponding minimization problem becomes significantly harder to solve. In particular,
the globalization phase and thereby number of Proximal Newton iterations required for finding
the solution grows significantly across this series of tests.

Note that for some computational scenarios the graph of update step norms does not
actually reach the threshold value ε = 10−10. This fact can be attributed to the last step not
satisfying the respective sufficient decrease criterion. Our measure for optimality of the current
iterate, however, does not depend on the update step being accepted by the globalization
procedure but only assesses the norm of an update step as an estimate for the distance of the
Fréchet subdifferential ∂FF to zero in X∗, cf. (3.2.22). For this reason, we stop update step
computation also in this case. For the convenience of the reader, we also added these last
declined update steps as a dashed extension of the respective plot of correction norms.

Another meaningful quantity the behavior of which signifies the local superlinear con-
vergence of our method is the objective function value. From a physical point of view, the
objective value is sometimes also referred to as the energy which has to be minimized for
the solution of the respective application problem. A plot for the energy difference to the
respective optimal value Fopt across the minimization process of our test scenarios is depicted
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Figure 3.1: Graphs of correction norms and energy differences to the optimal value for c = 10,
β = 10, ρ = −20 and α ∈ {0, 40, ..., 240} for the Proximal Newton method. Dashed extensions
show the last declined update.

in Figure 3.1b. Note here that the plot only incorporates iteration indices up to the second to
last ones since we assume the last objective value to be optimal. The difference to this value
would hence be equal to zero which can not be depicted in a logarithmic fashion.

Furthermore, also the transition result from Section 3.2.5 can be visualized within the
numerical investigation of our exact Proximal Newton method. In that regard, consider Fig-
ure 3.2 the plot of regularization parameters employed within the second order model λx,ω
from (3.2.12) in order to compute damped update steps according to (3.2.13). Note here that
the plot not only shows the successful Proximal Newton iterations but also incorporates de-
clined update steps which gives a better insight into the globalization phase of our algorithm.
Additionally, it is apparent that – close to the solution of our problem – arbitrarily small
regularization parameters lead to admissible update steps for our sufficient decrease criteria.
This enables the local accelerated convergence which we have recognized across the previously
described figures.

Lastly, we investigate the mesh-independence of our Proximal Newton method the conver-
gence theory for which has been formulated in general function space. For that reason, the
convergence behavior of our method should not depend on the number of grid refinements
which we conduct prior to solving the discretized problem. The number of Proximal Newton
steps required for finding a solution across all of our testing scenarios for different mesh sizes
h can be retraced in Table 3.1.

Taking a closer look reveals that the number of iterations stays constant in the case of
α = 0, i.e., we have the desired mesh independence result in the scenario which actually fits
into our theoretical framework from above. As α grows across the rest of the test series, we
recognize a slight increase in the number of required update steps in order to find the solution.
This fact can be ascribed to the lacking semi-smoothness of the squared max norm term with
gradient norms the influence of which becomes larger as α is increased.
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Figure 3.2: Regularization Parameters ωk within update step computation for c = 10, β = 10,
ρ = −20 and α ∈ {0, 40, ..., 240}.

Comparison to Proximal Gradient and FISTA

Let us now consider other standard methods which can be used in order to solve composite
minimization problems and compare their performance in minimizing the objective functional
from above to our findings for the Proximal Newton method. To this end, we consider both the
standard Proximal Gradient method and its accelerated variant FISTA as we have presented
them over the course of our introductory elaborations in Section 3.1.3.

The test with specifications as made above for the Proximal Newton test series immediately
exposed a general weakness of both the Proximal Gradient and FISTA method as presented
here: Even for the rather simple scenarios of α ∈ {0, 40}, both methods could not reach the
prescribed accuracy in the form of the update step norm stopping criterion from (3.2.46) but
always got stuck close to that mark due to numerical instability of the respective sufficient
decrease criterion. As a consequence both methods tried to increase the regularization param-
eter further and further until a prescribed emergency stop threshold value has been reached.
In parts, this has also been the case for the Proximal Newton method prior to the introduc-
tion of our numerically robust alternative sufficient decrease criterion. This shows that our
adaptations for numerical robustness from Section 3.2.6 pay off and we do not have to bother
with such peculiarities thanks to our algorithmic deliberations.

However, our Proximal Newton method is superior to the corresponding first order alterna-
tives not only regarding general convergence behavior. Also the speed of achieving a sufficiently
accurate solution speaks for itself. Figure 3.3 shows the correction norms of Proximal Gra-
dient (“ProxGrad”), FISTA, and Proximal Newton (“ProxNewton”) for the rather simple test
scenarios of α ∈ {0, 40}. For better comparability, we have measured the average computation
wall-time for one accepted iteration of each method. As a consequence, we count multiple first
order iterations as one meta-iteration of Proximal Newton and display the corresponding ratio
of points in plots accordingly.

In the test with α = 0, this average computational time was t ≈ 0.106s for FISTA and
Proximal Gradient, and t ≈ 0.669s for Proximal Newton which – rounding up – yields a number
of seven first order iterations as one meta-iteration for our second order method. For α = 40,
we have t ≈ 0.107 for the first order variants and t ≈ 0.917s for Proximal Newton. Thus, we
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h
α 0 40 80 120 160 200 240

2−4 9 12 12 17 18 18 20

2−5 9 14 15 19 20 18 23

2−6 8 13 15 23 25 25 25

2−7 9 14 19 25 28 29 29

2−8 9 16 21 30 31 33 32

Table 3.1: Number of accepted iterations N for different grid sizes h and prefactor values α
for fixed parameters β = 10, c = 10 and ρ = −20.

count nine first order iterations as one meta-iteration for Proximal Newton. The dashed lines
within the plots for Proximal Gradient and FISTA mark the update steps resulting from strong
increases of the regularization parameter towards the end of the algorithm shortly before it
has been stopped due to the emergency stopping criterion for too strong regularization. For
the Proximal Newton graph, the dashed line as before represents the last update step, which
has not been accepted, but is sufficiently small in norm for the computation to be stopped.
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Figure 3.3: Comparison of Proximal Newton to its first order alternatives. For Proximal
Newton, dashed lines again represent the last declined update leading to stopping the algo-
rithm. For Proximal Gradient and FISTA, they show updates which result from ramping
regularization due to numerical instability.

Even under these circumstances, it is apparent that our Proximal Newton method outper-
forms the first order alternatives also in view of convergence speed. Adding more non-linearity
by increasing the α–prefactor in (3.2.45) makes these differences in efficiency even more sig-
nificant and aggravates the solvability of the presented minimization problem for first order
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approaches even more. Furthermore, we recognize that while the accelerated convergence of
FISTA in comparison with Proximal Gradient is visible for the rather smooth scenario of α = 0
in Figure 3.3a, this effect deteriorates in the more involved case depicted in Figure 3.3b.

As a consequence of the poor performance of first order alternatives even for the simple
function space problem which we have investigated here, we decided to avoid comparisons of
our Proximal Newton method with both Proximal Gradient and FISTA for the significantly
more demanding problems which are yet to come in the remainder of the present treatise.

All in all, we can see that the “raw” Proximal Newton method as we have presented it
over the course of the current chapter constitutes a working and efficient solution method
for composite minimization problems of the form (3.2.1). In what follows, we will turn our
attention to algorithmic modifications which enhance our minimization strategy with even
more computational efficiency on top of the functionality ensured up until now.



Chapter 4

Modifications for Algorithmic
Efficiency

As we have explained in the introductory part of the previous chapter, the emphasis there was
put on algorithmic functionality, i.e., on the introduction of a reliable minimization algorithm
for function space problems of the form (3.2.1) which can handle weakened convexity and
differentiability assumptions also in a function space setting and exhibits satisfying convergence
properties. With such a method at hand, we can now shift this focus towards algorithmic
efficiency of our computational procedure. One intuitive idea which appears promising in
that regard has already been addressed when considering Newton methods towards the end of
Section 3.1.1: inexact solution of update step subproblems. It is known that there – with the
aid of adequately defined inexactness criteria – a considerable amount of computational effort
can be saved while still preserving the advantageous convergence properties of the second order
method both globally and locally.

On a different note, another possibility to gain algorithmic efficiency has also already
struck our eye when we described the concrete implementation of our method for the numerical
investigations of Section 3.2.7: the choice of the regularization parameter ω in (3.2.13). In that
regard, it is particularly interesting to study adaptive approaches to the choice of algorithmic
parameters. This field of research has been thoroughly considered in the literature which puts
us in the favorable position of being able to get inspiration from previous works and try to
generalize some existing ideas to our Proximal Newton setting.

Chapter Outline

In order to address both of the topics mentioned above, we pursue the following structure
within the current chapter: We start with Section 4.1 where we introduce the notion of in-
exactness to the determination of update steps by providing inexactness criteria which are
tailored to the function space scenario we find ourselves in, reduce computational effort signif-
icantly and still preserve the convergence properties of the exact method. In Section 4.2, we
then introduce adaptive strategies for the choice of algorithmic parameters, yet again enhanc-
ing both the convergence behavior and the robustness of our algorithm with respect to the
application at hand. At last, we present an algorithmic conclusion of the final form of our then
inexact Proximal Newton method in Section 4.3 where the main features of our algorithm can
be retraced without having to dig through pages of convergence analysis.

112



CHAPTER 4. MODIFICATIONS FOR ALGORITHMIC EFFICIENCY 113

4.1 Inexact Computation of Update Steps

As pointed out beforehand, the goal is to carry over the results considering inexact computation
of update steps, which we have gathered for both smooth and Proximal Newton Methods in
Euclidean space in Section 3.1, to our generalized variant of Proximal Newton methods here.
Before departing on this endeavor, let us give a short overview of proceedings in this direction
in the (recent) literature.

Proceedings in Recent Literature

The use of gradient-like inexactness criteria, which can be seen as the direct generalization
of the one for classical smooth Newton methods in [19] (or (3.1.10) here), is quite common,
cf. [11, 44, 55]. A possible form of this generalization – similar to the one considered in
[55] – has been introduced in Section 3.1.3 via (3.1.22). There, we have mentioned that the
additional knowledge of bounds on the second-order bilinear forms is necessary and that the
infinite dimensionality of our minimization framework hinders the evaluation of such criteria.
We will go into detail on this peculiarity later. Additionally, the Lipschitz constant of f ′ must
be accessible for the corresponding choice of forcing terms and only local convergence has been
investigated in the inexact case.

Globalization of the ensuing method has been achieved in [44] by using a Proximal Gradient
substitute step in case the inexactly computed second order step does not suffice a sufficient
decrease criterion or the step computation subproblem is ill-formed due to non-convexity which
thus can be overcome as well. As we will explain more elaborately later on, this strategy of
resorting to first order updates as well is not an as viable option in a function space setting
as it is in the Euclidean Rn-scenario. Our solution to the need of globalization via inexact
update steps will be the introduction of a second criterion which these increments will have
to satisfy.

In [11], the particular case of L1-regularization for machine learning applications is consid-
ered. For this reason, the inexactness criterion from (3.1.22) is further specified and enhanced
with a decrease criterion in the quadratic approximation of the composite objective func-
tion. The latter is then tightened over the course of the algorithm in order to achieve local
acceleration.

Another approach to inexactness criteria is measuring the residual within the step com-
putation subproblem. In [56], where objective functions consisting of the sum of a thrice
continuously differentiable and self-concordant smooth part and a convex non-smooth part
are considered, the residual vector within optimality conditions for update computation is
supposed to be bounded in norm with respect to the already computed inexact step. However,
the residual can also be measured via functional descent in the quadratic approximation of
the composite objective F , cf. [53, 96]. While in [53] the second order model decrease bound
against its optimal value is not directly tested but simply assumed to hold after a finite (and
fixed) number of subproblem solver iterations, the authors in [96] take the structure of their
randomized coordinate descent subproblem solver into account and also give quadratic bounds
for the prefactor constant within their model descent estimate in order to obtain sufficient con-
vergence results.

As has already been the case in the development of general Proximal Newton methods in
Section 3.1.3, all of the above works have in common that they depend on the finite dimen-
sional structure of the underlying Euclidean space. In particular, the efficient computation
of proximal gradients, required for the evaluation of most inexactness criteria, relies on the
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diagonal structure of the underlying scalar product 〈·, ·〉X , which is usually not present in (dis-
cretized) function spaces. Moreover, all current approaches consider fixed search directions
which are then scaled by some step length parameter.

Contributions and Assumptions

Our contributions described within this section beyond their work can be summarized as
follows: Most importantly, we again replace the Euclidean space setting with a Hilbert space
one in order to rigorously allow for function space applications of our method. In particular, we
are interested in the important case whereX is a Sobolev space. Then, as previously mentioned
a diagonal approximation of 〈·, ·〉X after discretization would lead to proximal operators that
suffer from mesh-dependent condition numbers. Consequently, our inexactness criteria need to
be constructed in such a way that their evaluation is efficient in this context. Existing criteria
can only be employed efficiently, if 〈·, ·〉X enjoys a diagonal structure.

In order to develop a mere augmentation of our already developed Proximal Newton
method, the assumptions which we make on the underlying domain space and the respec-
tive parts of the composite objective functional from (3.2.1) remain unchanged from the ones
described in the introductory part of Section 3.2. In particular, the standing assumptions
(A1)-(A4) pertain to hold across the whole of the sections. Our elaborations here are closely
related to the ones of the submitted preprint [83].

Section Outline

Let us now briefly outline the structure of the current section: At first, we will introduce
the notion of composite gradient mappings and consider some of their basic properties in
Section 4.1.1. Afterwards, in Section 4.1.2, we take advantage of the acquired knowledge and
introduce the first inexactness criterion in order to investigate local convergence of our method.
In addition, we will be able to quantify the influence of both damping and inexactness on the
local convergence rate. Section 4.1.3 then considers the globalization phase of our inexact
Proximal Newton method and for this reason introduces a second inexactness criterion which
compares the functional decrease of inexact updates with steps originating from a simpler
subproblem. Thus, we also here achieve sufficient global convergence results. In order to then
benefit from local acceleration, we once again investigate the transition to local convergence
in Section 4.1.4 in the inexact scenario. As before, to this end we need to ensure that close
to optimal solutions also arbitrarily weakly damped update steps yield sufficient decrease.
The criterion for the latter is then again slightly modified in favor of numerical robustness
in Section 4.1.5. Lastly, we put our method to the test in Section 4.1.6 and display the in-
creased computational efficiency with unchanged algorithmic functionality considering a more
demanding model problem in function space.

4.1.1 Composite Gradient Mappings and Their Properties

The main goal to keep in mind is not only to introduce the concept of inexactness to the
computation of update steps for the Proximal Newton method from Algorithm 9 but also to
quantify the influence of damping update steps to the local convergence rate of said algorithm.
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Definition and Representation via Proximal Mappings

For this cause, we take advantage of the notion of so-called regularized composite gradient
mappings which have already played a minor role within our introductory section 3.1.3 for
the generalization of classical inexactness criteria to the composite framework of Proximal
Newton methods. For us here, however, they are of crucial importance not for the definition
of inexactness criteria or quantifiable algorithmic quantities but only for convergence analysis
“behind the scenes”. Obviously, we also generalize their definition from (3.1.18) to our Hilbert
space setting opposing the finite dimensional one from before.

Adopting a similar notational structure, we introduce GΦ
τ : X → X for some composite

functional Φ : X →] −∞,∞] of the form Φ(x) := φ(x) + ψ(x) with smooth part φ : X → R
and non-smooth part ψ : X →]−∞,∞]. The aforementioned mapping is defined via

GΦ
τ (y) := −τ

[
arg min
δy∈X

φ′(y)δy +
τ

2

∥∥δy∥∥2

X
+ψ(y + δy)− ψ(y)

]
(4.1.1)

for y ∈ X and some regularization parameter τ > 0 the assumptions on which we will specify
over the course of the current section. For the derivation of useful estimates for composite
gradient mappings, we remember the definition of scaled dual proximal mappings PHψ : X∗ →
X from (3.2.5), given by

PHψ (ϕ) := arg min
z∈X

ψ(z) +
1

2
H(z)2 − ϕ(z)

for arbitrary ϕ ∈ X∗ and some symmetric bilinear form H sufficing (A3) as well as some real
valued function ψ satisfying (A4) for constants κ1, κ2 ∈ R with κ1 + κ2 > 0.

With the aid of scaled proximal mappings, we can express the composite gradient mapping
from (4.1.1) as

GΦ
τ (y) = τ

[
y − PτRψ

(
τRy − φ′(y)

)]
. (4.1.2)

This representation enables us to take advantage of our results concerning scaled proximal
mappings also when investigating gradient mappings, namely the general estimate from Propo-
sition 3.2.3 and the Lipschitz continuity result from Corollary 3.2.4.

Let us now justify the designation of GΦ
τ as a regularized composite gradient mapping.

If we consider the smooth case of ψ = 0 in (4.1.1), the proximal mapping takes the form
PHψ (ϕ) = H−1ϕ. This fact carries over to the definition of the gradient mapping via

Gφτ (y) = τ
[
y − (τR)−1

(
τRy − φ′(y)

)]
= R−1φ′(y)

which resembles the infinite dimensional counterpart of the gradient ∇φ in Euclidean space.
Note that this consistency result holds for all τ > 0.

Another consideration which expresses the consistency betweenGFτ and some actual smooth
gradient of F = f + g with respect to our minimization problem (3.2.1) is the following: Let
then GFτ (x∗) = 0 hold for some x∗ ∈ X and τ ≥ −κ2. This is equivalent to the fixed point
equation x∗ = PτRg

(
τRx∗−f ′(x∗)

)
which can then again be transformed to −f ′(x∗) ∈ ∂F g(x∗)

in X∗. Consequently, we recognize that the composite gradient mapping is zero if and only
if we evaluate it at stationary points of the underlying minimization problem (3.2.1). For
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this reason, the norm of the gradient mapping at some iterate is often taken as a measure for
optimality and its convergence to zero suffices to prove global convergence results of the en-
suing method by first order conditions of the corresponding subproblem. However, our global
convergence proof here will take another route.

Key Properties and Auxiliary Estimates

For now, let us derive some key properties of composite gradient mappings which will come
in handy as we quantify the influence of both inexactness and damping to local convergence
rates of our algorithm.

Before departing on this endeavor we introduce the modified quadratic model F̂x,ω : X →
]−∞,∞] of the composite objective functional F around x ∈ X with regularization parameter
ω ≥ 0 via

F̂x,ω(y) := F (x) + λx,ω(y − x)

= f(x) + f ′(x)(y − x) +
1

2
Hx(y − x)2 + g(y) +

ω

2

∥∥y − x∥∥2

X
.

(4.1.3)

The corresponding composite gradient mapping GF̂x,ωτ will play an important role. In that
regard, we note that in the framework of the definition of the gradient mapping in (4.1.1) we
thus have F̂x,ω = Φ = φ+ ψ with

φ(y) = f(x) + f ′(x)(y − x) +
1

2

(
Hx + ωR

)
(y − x)2 and ψ(y) = g(y) (4.1.4)

and thereby φ′(y) = f ′(x) +
(
Hx + ωR

)
(y − x) for any y ∈ X. The following lemma provides

us with helpful estimates for the norm difference of the corresponding composite gradient
mapping images both from above and below:

Lemma 4.1.1: Regularity of the Composite Gradient Mapping

For every x, y, z ∈ X and the choice τ := ω + 1
2

(∥∥Hx

∥∥
L(X,X∗)

+κ1(x)
)
, the regularized

composite gradient mapping suffices the estimates

τ
(
1−H

)∥∥y − z∥∥
X
≤
∥∥GF̂x,ωτ (y)−GF̂x,ωτ (z)

∥∥
X
≤ τ

(
1 +H

)∥∥y − z∥∥
X

(4.1.5)

where we have abbreviated the constant expression H :=
‖Hx‖L(X,X∗)−κ1(x)

2(τ+κ2) .

Proof. As we insert the characterizations of the respective regularized composite gradient
mappings as in (4.1.2), we perceive that we can represent their norm difference via∥∥GF̂x,ωτ (y)−GF̂x,ωτ (z)

∥∥
X

= τ
∥∥(y − z)−

(
Py − Pz

)∥∥
X

with abbreviations Pξ := PτRg
(
τRξ−

[
f ′(x) +

(
Hx +ωR

)
(ξ−x)

])
for ξ ∈ {y, z}. Apparently,

this provides us with the bounds

τ
(∥∥y − z∥∥

X
−
∥∥Py − Pz∥∥X) ≤ ∥∥GF̂x,ωτ (y)−GF̂x,ωτ (z)

∥∥
X
≤ τ

(∥∥y − z∥∥
X

+
∥∥Py − Pz∥∥X)



CHAPTER 4. MODIFICATIONS FOR ALGORITHMIC EFFICIENCY 117

from above and below for the norm difference of gradient mappings. This shows that for the
proof of (4.1.5) it suffices to verify

∥∥Py − Pz∥∥X≤ H∥∥y − z∥∥X=

∥∥Hx

∥∥
L(X,X∗)

−κ1(x)

2(τ + κ2)

∥∥y − z∥∥
X
. (4.1.6)

The Lipschitz result from Proposition 3.2.3 allows us to establish the following estimate for
the norm difference of proximal mapping images in relation to their arguments:∥∥Py − Pz∥∥X ≤ 1

τ + κ2

∥∥τRy − (Hx + ωR
)
(y − x)−

(
τRz −

(
Hx + ωR

)
(z − x)

)∥∥
X∗

=
1

τ + κ2

∥∥((τ − ω)R−Hx

)
(y − z)

∥∥
X∗

≤

∥∥(τ − ω)R−Hx

∥∥
L(X,X∗)

τ + κ2

∥∥y − z∥∥
X
. (4.1.7)

Let us now pay particular attention to the L(X,X∗)-norm difference in the prefactor above.
On the one hand, for any τ > −κ2 ensuring well-definedness of the gradient mapping, we can
estimate it by ∥∥(τ − ω)R−Hx

∥∥
L(X,X∗)

≤ |τ − ω|+
∥∥Hx

∥∥
L(X,X∗)

.

Nevertheless, with further assumptions on the gradient mapping regularization parameter τ
we can deduce a better bound. To this end, we define ζ := τ − ω and choose ζopt such that∥∥ζoptR − Hx

∥∥
L(X,X∗)

is minimal. It is easy to see that the eigenvalues of the self-adjoint
operator Hτ

x := R−1(ζR−Hx) lie in the interval
[
ζ −

∥∥Hx

∥∥
L(X,X∗)

, ζ − κ1(x)
]
.

In order to now minimize the norm of Hτ
x , we recognize that it equals the spectral radius

of Hτ
x and thus want to establish a symmetrical interval where eigenvalues can be located.

This yields the choice ζopt := 1
2

(∥∥Hx

∥∥
L(X,X∗)

+κ1(x)
)
. In particular, we thus have

τ := ω + ζopt = ω +
1

2

(∥∥Hx

∥∥
L(X,X∗)

+κ1(x)
)
≥ ω +

|κ1(x)|+ κ1(x)

2
≥ ω + κ1(x) > −κ2

by our choice of ω > −
(
κ1(x) + κ2

)
and consequently obtain

∥∥(τ − ω)R−Hx

∥∥
L(X,X∗)

=
∥∥Hτ

x

∥∥
L(X,X)

=
∥∥Hx

∥∥
L(X,X∗)

−ζopt =
1

2

(∥∥Hx

∥∥
L(X,X∗)

−κ1(x)
)
.

Inserting this into the above estimate (4.1.7), we obtain (4.1.6) which completes the proof.

Remark. Note here that the abbreviated constant H :=

∥∥Hx∥∥L(X,X∗)
−κ1(x)

2(τ+κ2) in (4.1.5) is strictly
smaller than one by our choice of the “outer” regularization parameter ω. This can be directly
retraced by the following simple computation:

2(τ + κ2) = 2(ω + κ2) +
∥∥Hx

∥∥
L(X,X∗)

+κ1(x)

> −2κ1(x) +
∥∥Hx

∥∥
L(X,X∗)

+κ1(x) =
∥∥Hx

∥∥
L(X,X∗)

−κ1(x) .

For the next result, we take advantage of the solution property of exactly computed update
steps from (3.2.13).
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Proposition 4.1.2: Gradient Mapping of the Regularized Model with Exactly
Computed Update Steps

Let ∆x(ω) be an exactly computed update step as in (3.2.13) at some x ∈ X. Then,
for any τ > −κ2, the following identity holds:

G
F̂x,ω
τ

(
x+ ∆x(ω)

)
= 0 . (4.1.8)

Proof. We consider the minimization problem within brackets in the definition of the regular-
ized composite gradient mapping in (4.1.1). Here, we have to insert the derivative φ′ of the
smooth part of the regularized model F̂x,ω as in (4.1.4) evaluated at y = x + ∆x(ω) which
yields

arg min
δx∈X

[
f ′(x) +

(
Hx + ωR

)
∆x(ω)

]
δx+

τ

2

∥∥δx∥∥2

X
+g
(
x+ ∆x(ω) + δx

)
− g
(
x+ ∆x(ω)

)
.

(4.1.9)

In the smooth case of g = 0, we recognize that the exactly updated iterate is characterized by
the regularized Newton-system

(
Hx +ωR

)
∆x(ω) = −f ′(x) and consequently all terms except

for the squared norm term disappear. This directly shows (4.1.8) for any τ ≥ 0.
The general case of g 6= 0, however, demands a bit more consideration. By strong convexity

of the objective function for τ > −κ2, the above minimization problem has a unique solution
δx ∈ X. First order optimality conditions imply that this solution then satisfies the dual space
inclusion

0 ∈ f ′(x) +
(
Hx + ωR

)
∆x(ω) + ∂F g

(
x+ ∆x(ω) + δx

)
+ τRδx (4.1.10)

for the Fréchet-subdifferential ∂F g. Note here that the exactly computed update step ∆x(ω)
as a solution of (3.2.13) suffices

0 ∈ f ′(x) +
(
Hx + ωR

)
∆x(ω) + ∂F g

(
x+ ∆x(ω)

)
which directly yields that δx̄ = 0 satisfies (4.1.10) and is thereby the unique solution of (4.1.9).
This completes the proof of (4.1.8).

Let us now consider the difference of gradient mappings of the objective function F and
its modified second order model F̂x,ω at optimal solutions x∗ of problem (3.2.1).

For the following we require f ′ to be semi-smooth near an optimal solution x∗ ∈ X of
our problem (3.2.1) with respect to H : X → L(X,X∗) as formulated in the previous section
via the approximation property (3.2.11). This is where semi-smoothness enters our modified
convergence theory using composite gradient mappings:

Lemma 4.1.3: Estimate for the Regularized Model in the Gradient Mapping

Let the semi-smoothness assumption (3.2.11) for f ′ hold at some point x∗ ∈ X.

Then, the regularized composite gradient mapping satisfies the following estimate for
each τ > −κ2 in the limit of x→ x∗:∥∥GFτ (x∗)−G

F̂x,ω
τ (x∗)

∥∥
X
≤ o
(∥∥x∗ − x∥∥X)+

τ ω

τ + κ2

∥∥x∗ − x∥∥X .
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Proof. The proof here follows immediately by the characterization of the regularized composite
gradient mapping as in (4.1.2) and the semi-smoothness of f ′ according to (3.2.11). To go
into detail, we start with the estimate from Proposition 3.2.3 and from there can perform the
following computation:∥∥GFτ (x∗)−G

F̂x,ω
τ (x∗)

∥∥
X

= τ
∥∥PτRg (

τRx∗ − f ′(x∗)
)
− PτRg

(
τRx∗ −

[
f ′(x) +

(
Hx + ωR

)
(x∗ − x)

])∥∥
X

≤ τ

τ + κ2

∥∥(τRx∗ − f ′(x∗))− (τRx∗ − [f ′(x) +
(
Hx + ωR

)
(x∗ − x)

])∥∥
X∗

≤ τ

τ + κ2

∥∥f ′(x∗)− (f ′(x) + (Hx + ωR)(x∗ − x)
)∥∥
X∗

= o
(∥∥x∗ − x∥∥X)+

τ ω

τ + κ2

∥∥x∗ − x∥∥X .
The last identity here uses the approximation property provided by semi-smoothness of f ′

from (3.2.11).

Lemma 4.1.3 already allows us to get a glimpse of the way how incorporating composite
gradient mappings into our convergence theory will help us to quantify the influence of regular-
ization on local convergence rates of our algorithm: If we manage to establish the above norm
difference of gradient mappings within the local convergence proof of our (inexact) Proximal
Newton method, we can see that – in addition to the common o-term arising from superlin-
ear convergence of undamped updates – also the latter distance term, which is linear in the
regularization parameter, appears.

An Existing Inexactness Criterion

While we only take advantage of composite gradient mappings in order to find useful esti-
mates for our convergence analysis, in the literature they are predominately used in order to
define inexactness criteria. We have already pointed out this circumstance when introducing
inexact Proximal Newton methods from [55] in (3.1.22). Let us shortly theorize what the
corresponding gradient-like inexactness criterion would look like in our scenario and discuss
possible advantages and drawbacks of this formulation:

Firstly, the unregularized model which is used for step computation in the line-search
approach has to be replaced with the regularized model F̂ from (4.1.3) which we use for
globalization and compensation of non-convexity. Secondly, it is sufficient to replace the upper
bound on second order bilinear forms M by some constant value τ >

∥∥Hx

∥∥
L(X,X∗)

+ω for all
x ∈ X and ω along the sequence of iterates generated by our method. As a consequence, at
any iterate x ∈ X, the inexactness criterion from (3.1.22) in our notation generalizes to∥∥GF̂x,ωτ

(
x+ ∆s(ω)

)∥∥
X
≤ η

∥∥GFτ (x)
∥∥
X

(4.1.11)

for some yet to be specified forcing term η > 0 and an inexactly computed update step
candidate ∆s(ω) ∈ X. An obvious advantage of this formulation is its intimate relation to
the finite dimensional counterpart which thus also gives an intuition concerning the proof
of corresponding convergence results. Additionally, the quality of the candidate is directly
measured within the gradient mapping which is – as we have seen right after its definition
– a viable measure for the optimality of the current iterate. Thus, the decrease in norm
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of the gradient mapping, which is also indicated by (4.1.11), already gives a hint towards
globalization of the inexact method. Even though this is not considered in [55], one can easily
see that additionally demanding a trivial decrease condition like

F̂x,ω
(
x+ ∆s(ω)

)
< F̂x,ω(x) = F (x) ⇔ λx,ω

(
∆s(ω)

)
< 0 (4.1.12)

already enables the proof of similar global convergence results as we have verified them in the
exact case in Section 3.2.3. In particular, assuming that (4.1.11) holds along the sequence of
iterates, one can easily prove∥∥GFτ (x)

∥∥
X
≤ τ

1− η
(
1 +

τ − ω − κ1(x)

τ + κ2

)∥∥∆s(ω)
∥∥
X

and thereby the convergence of the gradient mapping to zero which then again implies global
convergence via first order optimality conditions of the corresponding computational problem.
Also the transition to local convergence as formulated in Section 3.2.5 turns out to be achievable
under these requirements.

So what are the drawbacks of this approach to inexactness if the convergence results
derivable from it look so convincing? Again, as has been the motivation for the alternative
sufficient decrease criterion addressed in Section 3.2.6, the occurring problems are rather of
computational than of theoretical nature. The crucial peculiarity again hides in the adequate
structural representation of function spaces via a multi-level approximation rather than a
diagonal one as would be fitting for the finite dimensional case.

The latter structural assumption enables an easy and efficient evaluation of the gradient
mapping (and thus also Proximal Gradient steps) due to the diagonal structure of the norm
term while in an infinite dimensional setting the computation of the gradient mapping is for
this reason quite demanding, even similarly expensive as computing the actual exact update
step ∆x(ω) from (3.2.13). Consequently, evaluating (4.1.11) for every iteration within the
subproblem solver quickly becomes very costly and thereby immediately eclipses the savings
which we could potentially gain from inexactly computing the update steps. For this reason,
we will resort to a different inexactness criterion.

4.1.2 First Inexactness Criterion and Local Convergence

As pointed out beforehand, we do not use an inexactness criterion of the form (4.1.11) due
to its immense computational effort in function space. Instead, we exploit the advantageous
properties of the TNNMG subproblem solver by resorting to an actual relative error estimate
of the form ∥∥∆x(ω)−∆s(ω)

∥∥
X
≤ η

∥∥∆x(ω)
∥∥
X

(4.1.13)

where ∆x(ω) denotes the exact solution of the update step computation subproblem (3.2.13)
and ∆s(ω) is the corresponding inexact candidate. The influence of the forcing terms η ≥ 0
on local convergence rates will be investigated in Theorem 4.1.4.

Before actually stating the local convergence results, let us remark that the inexactness
criterion (4.1.13) is trivially satisfied by exactly computed update steps and the forcing term
η can be understood as a measure for the margin for error which we allow in the computation.
Additionally, the fact that the inexactly computed update steps ∆s(ω) are in our case iterates
from the linearly convergent TNNMG subproblem solver implies that – sooner or later within
the solution process of (3.2.13) – the requirement (4.1.13) will be satisfied.
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Furthermore, let us comment on the efficient evaluation of this relative error estimate. At
first sight, this is not completely obvious since apparently we do not have the exact solution
∆x(ω) of the update computation subproblem (3.2.13) at hand. In order to deal with this
issue, we take advantage of the multigrid structure of the iterative subproblem solver which
we employ, i.e., the TNNMG method from [33]. By δj we denote TNNMG corrections, let
therefore ∆si(ω) =

∑i
j=1 δ

j be an iterate within the inner solver towards the exact solution
∆x(ω) and θ the “constant” multigrid convergence rate from

∥∥δj∥∥
X
≤ θ

∥∥δj−1
∥∥
X
. A simple

computation provides us with

∥∥∆x(ω)−∆si(ω)
∥∥
X

=
∞∑

j=i+1

∥∥δj∥∥
X
≤
∥∥δi∥∥

X

∞∑
j=i+1

θj−i =
θ

1− θ
∥∥δi∥∥

X
.

Similarly, for the norm of the exact solution we obtain

∥∥∆x(ω)
∥∥
X

=
∥∥ ∞∑
j=1

δj
∥∥
X

=
∥∥∆si(ω) +

∞∑
j=i+1

δj
∥∥
X
≥
∥∥∆si(ω)

∥∥
X
−
∥∥ ∞∑
j=i+1

δj
∥∥
X

≥
∥∥∆si(ω)

∥∥
X
− θ

1− θ
∥∥δi∥∥

X

by a simple triangle inequality. Combining both of these estimates allows us to establish∥∥∆x(ω)−∆si(ω)
∥∥
X∥∥∆x(ω)

∥∥
X

≤
θ

1−θ
∥∥δi∥∥

X∥∥∆si(ω)
∥∥
X
− θ

1−θ
∥∥δi∥∥

X

!
≤ η (4.1.14)

as a sufficient and easy to evaluate alternative inexactness criterion for the relative error
estimate (4.1.13). Numerical experiments, which we also incorporated to Section 4.1.6, clearly
demonstrate that the performed triangle inequalities are sharper than one might have expected.
Thus, the evaluation of the alternative criterion from (4.1.14) comes very close to using the
actual relative error for our computations later on.

Similarly using the advantageous convergence properties of the subproblem solver, it is also
possible to consider a so-called model-based approach for the design of an inexactness criterion.
There, not the relative error in norm but in the objective functional of the subproblem, i.e.,
the regularized second order decrease model λx,ω is used as an indicator for sufficient accuracy
in computation. This approach features some favorable properties in particular concerning
its conceptual design but problems with the corresponding convergence analysis under the
assumptions stated in our framework arise. In particular, a quadratic upper bound on g similar
to the lower one from (A4) is necessary in order to achieve the corresponding local convergence
results which would implicitely impose a continuity assumption on our non-smooth part. This
framework appears to be too restrictive for our purposes.

With the relative error inexactness criterion (4.1.13) as well as the auxiliary results con-
cerning regularized composite gradient mappings from Section 4.1.1 and norm estimates from
Lemma 3.2.26 at hand, we can now tackle the proof of the following local acceleration result:

Theorem 4.1.4: Local Convergence of the Inexact Proximal Newton Method
Using the Relative Error Criterion (4.1.13)

Suppose that the semi-smoothness assumption (3.2.11) holds at an optimal solution
x∗ ∈ X of (3.2.1) together with (A3) and (A4) for κ1(x) + κ2 > 0 in a neighborhood of
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that x∗.

Then, the inexact Proximal Newton method with update steps ∆sk(ωk) computed ac-
cording to (3.2.13) at xk ∈ X close to x∗ with the inexactness criterion (4.1.13) for
ηk ≥ 0 exhibits the following local convergence behavior:

(i) The sequence of iterates locally converges linearly if ωk and ηk are sufficiently
small, more precisely if there exists some constant 0 < Θ < 1 and k0 ∈ N such
that for all k ≥ k0 the following estimate holds:(

ωk +
∥∥Hxk

∥∥
L(X,X∗)

+κ2

)
ηk + ωk

ωk + κ1(xk) + κ2
< Θ . (4.1.15)

(ii) The sequence of iterates locally converges superlinearly in case both sequences
(ωk)k∈N and (ηk)k∈N converge to zero for k →∞.

Proof. For the sake of simplicity, we will omit the sequence indices of all quantities here and
denote by x = xk, ω = ωk and η = ηk the current iterate, regularization parameter and forcing
term. For the next iterate, we write x+(ω) = x+∆s(ω) = xk+∆sk(ωk) and Hx = Hxk stands
for the current second order bilinear form.

Additionally, we fix τ := ω + 1
2

(∥∥Hx

∥∥
L(X,X∗)

+κ1(x)
)
for the gradient mapping regular-

ization parameter which allows us to take advantage of the auxiliary estimates deduced in
Lemma 4.1.1. Under these circumstances, the first part of (4.1.5) from Lemma 4.1.1 provides
us with ∥∥x+(ω)− x∗

∥∥
X
≤ 1

τ
(
1−H

)∥∥GF̂x,ωτ (x+ ∆s(ω))−GF̂x,ωτ (x∗)
∥∥
X

≤ 1

τ
(
1−H

)[∥∥GF̂x,ωτ (x+ ∆s(ω))
∥∥
X

+
∥∥GF̂x,ωτ (x∗)

∥∥
X

] (4.1.16)

where we have accordingly abbreviated the constant H :=

∥∥Hx∥∥L(X,X∗)
−κ1(x)

2(τ+κ2) < 1. As a
next step, we take a look at the first norm term in brackets in (4.1.16). We use (4.1.8) from
Proposition 4.1.2 together with the second part of (4.1.5) from Lemma 4.1.1 for y := x+∆s(ω)
and z := x+ ∆x(ω) in order to obtain the following estimate:∥∥GF̂x,ωτ

(
x+ ∆s(ω)

)∥∥
X

=
∥∥GF̂x,ωτ

(
x+ ∆s(ω)

)
−GF̂x,ωτ

(
x+ ∆x(ω)

)∥∥
X

≤ τ
(
1 +H

)∥∥∆x(ω)−∆s(ω)
∥∥
X
.

For the ensuing norm difference, we take advantage of the relative error inexactness criterion
(4.1.13) together with the monotonicity of update step norms concerning the damping pa-
rameter ω as in Lemma 3.2.26. Additionally, the superlinear convergence for full and exactly
computed update steps close to optimal solutions proven in Theorem 3.2.8 is important here:∥∥∆x(ω)−∆s(ω)

∥∥
X
≤ η

∥∥∆x(ω)
∥∥
X
≤ η

∥∥∆x
∥∥
X
≤ o
(∥∥x− x∗∥∥X)+ η

∥∥x− x∗∥∥X . (4.1.17)

By the stationarity of x∗ together with Lemma 4.1.3, for the second term in brackets in (4.1.16)
we have∥∥GF̂x,ωτ (x∗)

∥∥
X

=
∥∥GF̂x,ωτ (x∗)−GFτ (x∗)

∥∥
X
≤ o
(∥∥x− x∗∥∥X)+

ωτ

τ + κ2

∥∥x− x∗∥∥X . (4.1.18)
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The estimates (4.1.17) and (4.1.18) suffice to quantify the influence of either inexactness or
damping on local convergence rates of our algorithm. Inserting both of them into (4.1.16)
above yields∥∥x+(ω)− x∗

∥∥
X
≤

(1 +H)η + ω
τ+κ2

1−H
∥∥x− x∗∥∥X+o

(∥∥x− x∗∥∥X) . (4.1.19)

All that remains to do now is simplify the rather complicated prefactor term within the
estimate above. We expand the fraction by 2(τ + κ2) and use that by the definition of τ we
have

2(τ + κ2) = 2(ω + κ2) +
∥∥Hx

∥∥
L(X,X∗)

+κ1(x) .

This provides us with

(1 +H)η + ω
τ+κ2

1−H =

(
2(τ + κ2) +

∥∥Hx

∥∥
L(X,X∗)

−κ1(x)
)
η + 2ω

2(τ + κ2)−
∥∥Hx

∥∥
L(X,X∗)

+κ1(x)
=

(
ω +

∥∥Hx

∥∥
L(X,X∗)

+κ2

)
η + ω

ω + κ1(x) + κ2

Inserting this identity into (4.1.19) now directly yields

∥∥x+(ω)− x∗
∥∥
X
≤

(
ω +

∥∥Hx

∥∥
L(X,X∗)

+κ2

)
η + ω

ω + κ1(x) + κ2

∥∥x− x∗∥∥X + o
(∥∥x− x∗∥∥X) . (4.1.20)

From here, both of the asserted cases for local convergence behavior are an immediate conse-
quence of (4.1.20).

Remark. The estimate (4.1.15) yields a couple of algorithmically relevant insights. Firstly,
the linear convergence factor Θ can only be small if both ωk and ηk are small. Hence, computing
steps very accurately does only pay off if ωk is very small. We will see in Section 4.1.4 that
close to optimal solutions arbitrarily small regularization parameters ωk ≈ 0 can indeed be used
also in the currently considered inexact scenario.

Secondly, if we neglect ωk ≈ 0 in these later stages of the minimization process, (4.1.15)
simplifies to ∥∥Hxk

∥∥
L(X,X∗)

+κ2

κ1(x) + κ2
ηk ≤ Θ,

where the prefactor on the left hand side can be interpreted as a local condition number of the
composite problem. Indeed, for κ2 = 0 (, i.e., the smooth or convex case,) it coincides with the
condition number of Hx relative to ‖ · ‖X . Thus, to achieve a given rate of local convergence,
ηk has to be chosen tighter the higher the condition number. This additionally underlines the
necessity of an adequate choice of function space X and norm ‖ · ‖X .

As we can see, the local superlinear convergence as deduced in Theorem 3.2.8 remains true
also in the inexact case if we reduce the value of the forcing terms to zero as we approach
optimal solutions of our composite minimization problem. Apparently, this also means that
close to optimal solutions the margin for error which we accept for an inexact update step has
to tend to zero which is apparent since we want to identify optimal solutions also with high
accuracy.

Additionally, we have been able to extend the local convergence result from Theorem 3.2.8
insofar that we quantified the influence of damping update steps on (local) convergence rates.
We are now also aware of more insightful criteria both for linear and superlinear convergence
of our method. This helps us understand the process of local convergence of the (inexact)
Proximal Newton method to an even greater extent.
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4.1.3 Second Inexactness Criterion and Global Convergence

Now that we have clarified the local convergence properties of our inexact Proximal Newton
method depending on the forcing terms in criterion (4.1.13), we will take into consideration
whether the globalization scheme via the additional norm term in (3.2.13) still fulfills its
purpose and yields some global convergence results.

Cauchy Decrease Steps and the Subgradient Model

As we have already pointed out when describing the predominant gradient-like inexactness
criterion (4.1.11), for this formulation it suffices to demand the trivial decrease condition
(4.1.12) in order to achieve global convergence results of the ensuing methods. Since we have
chosen not to use this approach to inexactness due to structural peculiarities of the function
space framework, we have to put some more deliberations into the globalization of our inexact
method.

To this end, we will now introduce a second crucial criterion which the inexactly computed
update steps ∆sk(ωk) have to satisfy in order to be admissible for our method. It can be
viewed as an adopted strategy from smooth trust region methods where rather cheap so-called
Cauchy decrease steps are used to measure functional value descent for the actual update
steps, cf. e.g. [17, Chapter 6.3].

There are several conceivable ways to define and compute such comparative Cauchy de-
crease steps. A canonical choice would be a simple Proximal Gradient step, i.e., the minimizer
of the regularized linear model λCx,ω̂ : X →]−∞,∞] defined by

λCx,ω̂(δx) := f ′(x)δx+
ω̂

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x)

for some regularization parameter ω̂ ≥ 0. As was the problem with evaluating the gradient
mapping for our first inexactness criterion, also the minimization of λCx,ω̂ is similarly expensive
as computing the exact Proximal Newton step right away in our general Hilbert space setting.
Thus, the idea arises to find some comparative update step which we can compute with
marginal effort once per “outer iterations” in order to measure its functional value descent and
then compare it to our inexact update step candidates.

To this end, we define the regularized subgradient decrease model of F around x ∈ X with
respect to µ ∈ ∂F g(x) and a regularization parameter ω̂ > 0 by

λµx,ω̂ : X → R , λµx,ω̂(δx) := f ′(x)δx+ µ δx+
ω̂

2

∥∥δx∥∥2

X
(4.1.21)

and we refer to the respective minimizer

∆xµ(ω̂) := arg min
δx∈X

λµx,ω̂(δx) (4.1.22)

as the corresponding subgradient step. Before introducing the second inexactness criterion
which makes use of the above model and step, we will establish an analytical connection
between (4.1.21) and our initially defined regularized second order decrease model λx,ω from
(4.1.3). To this end, we remember that the regularization parameter ω ≥ 0 is generally chosen
such that the modified non-smooth part

gHxω : X →]−∞,∞] , gHxω (x) := g(x) +
1

2

(
Hx + ωR

)
(x)2
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is convex and thus the subproblem (3.2.13) allows for a unique solution. Consequently, the
characterization of the convex subdifferential ∂g̃(x) yields that for any µ̃ = µ+ (Hx +ωR)x ∈
∂gHxω (x) with µ ∈ ∂F g(x) we have that

gHxω (x+ δx) ≥ gHxω (x) + µ̃ δx and thus g(x+ δx)− g(x) +
1

2
Hx(δx)2 +

ω

2

∥∥δx∥∥2

X
≥ µ δx

holds for any δx ∈ X and µ ∈ ∂F g(x). We immediately obtain that

λµx,ω̂(δx) = f ′(x)δx+
ω̂

2

∥∥δx∥∥2

X
+µδx

≤ f ′(x)δx+
1

2
Hx(δx)2 +

ω̂ + ω

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x) = λx,ω̂+ω(δx)

(4.1.23)

is true for any δx ∈ X. In particular, this estimate apparently also holds for the respective
minima of the decrease models of the composite objective function. For that reason, from
(4.1.23) we obtain

λµx,ω̂
(
∆xµ(ω̂)

)
≤ λx,ω̂+ω

(
∆x(ω̂ + ω)

)
≤ −1

2

(
ω̂ + ω + κ1(x) + κ2

)∥∥∆x(ω̂ + ω)
∥∥2

X
(4.1.24)

for any ω̂ > 0 where the last estimate constitutes a result from the exact case in (3.2.16) and
will give us norm-like descent in the objective functional later on. Obviously, we now want
to link this norm-like decrease within the subgradient model to the regularized second order
decrease model λx,ω

(
∆s(ω)

)
for our inexactly computed update step ∆s(ω) and lastly to the

direct descent within the objective functional F .

Second Inexactness Criterion and Efficient Evaluation

We will establish the first one of these connections via the actual second inexactness criterion
which will thus also be checked within our algorithm and implementation. For this purpose,
it is sufficient if an inexactly computed update step ∆s(ω) satisfies the estimate

λx,ω
(
∆s(ω)

)
≤ λµx,ω̃

(
∆xµ(ω̃)

)
for some ω̃ < ω̃max (4.1.25)

where the upper bound ω̃max > 0 is the subgradient regularization bound the value of which
is yet to be specified. This inequality now constitutes our formal second inexactness criterion
which we will also refer to as the subgradient inexactness criterion.

Let us shortly elaborate on the efficient evaluation of this estimate and from there derive
the actual implementation of the criterion: The solution property of ∆xµ(ω̃) provides us with
first order conditions for the corresponding minimization problem in the form of

0 = f ′(x) + µ+ ω̂R∆xµ(ω̃)

and thus ∆xµ(ω̃) = −(ω̃R)−1
(
f ′(x) + µ

)
. For a given value of λx,ω

(
∆s(ω)

)
, i.e., decrease

along an inexactly computed update step within the regularized second order model, we can
thus theoretically determine ω̃ such that (4.1.25) is satisfied with equality. This can be seen
as follows:

λx,ω
(
∆s(ω)

) !
= λµx,ω̃

(
∆xµ(ω̃)

)
=
(
f ′(x) + µ

)
∆xµ(ω̃) +

ω̃

2

∥∥∆xµ(ω̃)
∥∥2

X

=
(
f ′(x) + µ

)[
− (ω̃R)−1

(
f ′(x) + µ

)]
+
ω̃

2

∥∥−(ω̃R)−1
(
f ′(x) + µ

)∥∥2

X

= − 1

2ω̃

∥∥f ′(x) + µ
∥∥2

X∗
.

(4.1.26)
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The above computation provides us with the theoretical value

ω̃ = −
∥∥f ′(x) + µ

∥∥2

X∗

2λx,ω
(
∆s(ω)

) !
< ω̃max (4.1.27)

for the regularization parameter within the subgradient minimization problem (4.1.22). This
quantity should remain bounded in order to enable the proof of global convergence results
later on. Thus, as also pointed out in (4.1.27), we have established a sufficient estimate for
our subgradient inexactness criterion (4.1.25) by demanding boundedness of ω̃ from above by
ω̃max. Note here that – as can be seen in (4.1.26) – the value for λµx,ω̃

(
∆xµ(ω̃)

)
increases as ω̃

does.
Since globalization mechanisms in general should only provide worst case estimates and

not slow down the convergence of our algorithm, we want the subgradient inexactness criterion
to only interfere with update step computation on rare occasions and thus choose ω̃max very
large.

The dual norm occurring in the numerator of (4.1.27) can be evaluated as follows: We
compute the minimizer of the subgradient model ∆xµ(1) ∈ X from (4.1.22) and afterwards
evaluate the linear functional f ′(x) + µ ∈ X∗ there. Here, the Fréchet-subdifferential element
µ ∈ ∂F g(x) is chosen such that the norm

∥∥f ′(x) + µ
∥∥
X∗

is minimal. Obviously, this depends
on the specific minimization problem at hand but due to the non-smooth nature of g, it is
often possible to exploit the set-valued subdifferential for this purpose.

Satisfiability and Algorithmic Strategy of the Subgradient Criterion

Let us add some remarks concerning satisfiability of the subgradient inexactness criterion: As
mentioned above, the freedom of choice of µ within ∂F g(x) opens up possibilities to decrease
the value of

∥∥f ′(x) + µ
∥∥
X∗

right away. Additionally, considering the exact case for update
step computation is very insightful in order to see that the criterion will be fulfilled by late
iterations of the inner solver. For establishing plausibility of that circumstance, it is useful to
interpret

∥∥f ′(x) + µ
∥∥
X∗
≈ dist

(
∂FF (x), 0

)
, i.e., to assume that µ ∈ ∂F g(x) is chosen (nearly)

optimally for our purpose of finding solutions of (3.2.1).
Then, we can take a look back at the global convergence arguments from the exact case

in Theorem 3.2.14 and recognize that the abovementioned dual space norm scales with the
squared update step norm over the course of our algorithm. Together with the fact that the
denominator term, i.e., the modified second order decrease model λx,ω

(
∆x(ω)

)
, exhibits the

same behavior as we have shown in (3.2.16), this suggests that the subgradient inexactness
criterion (4.1.25) is eventually fulfilled by iterates of convergent subproblem solvers if the
corresponding constant ω̃max is chosen sufficiently large.

For this reason, we use a very large ω̃max within specific implementations of our algo-
rithm. Then, we can also be sure that our globalization techniques notably interfere with
the minimization process only on rare exceptional occasions. Also note that our notion of
“convergent subproblem solvers” in this context particularly incorporates the convergence of
objective values. Generally, by convergence of the solver only convergence of the corresponding
iterates is ensured. Convergence of objective values in addition might require some continuity
assumptions on the non-smooth part g which we generally do not have here.

The algorithmic strategy behind the subgradient inexactness criterion can now be sum-
marized as follows: For the present iterate of the outer loop x ∈ X, we solve the linearized
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problem (4.1.22) for the computation of the dual norm
∥∥f ′(x) + µ

∥∥
X∗

and initiate the inner
loop in order to determine the next inexact update step. At every iterate ∆s(ω) of the inner
solver for subproblem (3.2.13), we compute the corresponding subgradient regularization pa-
rameter ω̃ from (4.1.27) and check ω̃ < ω̃max. As a consequence of our satisfiability discussion,
either ω̃max is chosen large enough and we will eventually achieve ω̃ < ω̃max for some inexact
step or we will compute an exact update step ∆x(ω) which on its own provides us with global
convergence of the sequence of iterates as presented for the exact scenario in Section 3.2.3.

Summary of Inexactness Criteria

With both of our inexactness criteria at hand, let us shortly reflect on their computational effort
and compare them to possible alternatives: For the relative error criterion (4.1.13) in its form
(4.1.14) only the evaluation of the fraction and its comparison to the forcing term is necessary
since all occurring norms are already present within the subproblem solver. The subgradient
inexactness criterion as described before requires the solution of the quadratic minimization
problem (4.1.22) once per outer iteration of our method together with the evaluation of the
quadratic model λx,ω

(
∆s(ω)

)
at each inner iteration which is a cheap operation.

For comparative algorithms from literature, cf. [11, 44, 55], the gradient-like inexactness
criterion (4.1.11) has to be assessed at every inner iteration together with one comparison of
the second order decrease model value with its base value for δx = 0. As mentioned before,
the former operation is very costly for non-diagonal function space norm representations,
particularly in comparison to solving a linearized problem once per outer iteration. This
emphasizes both the necessity and the benefit of our adjustments to existing inexactness
criteria. The summarized procedure can be retraced in the scheme of Algorithm 11.

Sufficient Decrease Criterion and Global Convergence

For global convergence in the case of inexactly computed update steps with the criteria intro-
duced above, we still have to carry out some more deliberations. The last missing ingredient
in our recipe for norm-like descent within the composite objective functional is an adequate
sufficient decrease criterion. For that reason, we will reuse the corresponding formulation from
the exact case in (3.2.15). We continue to use the concept from Definition 3.2.11 and thus say
that an inexactly computed update step ∆s(ω) is admissible for sufficient decrease if for some
prescribed γ ∈ ]0, 1] the estimate

F
(
x+ ∆s(ω)

)
− F (x) ≤ γλx,ω

(
∆s(ω)

)
(4.1.28)

holds. Also here, we have to ensure that adequately defined strategies for finding regularization
parameters are finite, i.e., we have to justify that (4.1.28) holds for sufficiently large values of
the regularization parameter ω.

Before we do so, let us get a prospect of the results we can achieve once (4.1.28) is satisfied.
To this end, we combine estimates (4.1.28), (4.1.25), the monotonicity of λµx,ω̃

(
∆xµ(ω̃)

)
with
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respect to ω̃ as well as (4.1.24) from above and thus recognize that we obtain

F
(
x+ ∆s(ω)

)
− F (x) ≤ γλx,ω

(
∆s(ω)

)
= γλµx,ω̃

(
∆xµ(ω̃)

)
≤ γλµx,ω̃+1

(
∆xµ(ω̃ + 1)

)
≤ −(ω̃ + ω + 1 + κ1(x) + κ2)γ

2

∥∥∆x(ω̃ + ω + 1)
∥∥2

X

≤ −γ
2

∥∥∆x(ω̃max + ω + 1)
∥∥2

X
.

(4.1.29)

Note that we additionally used ω̃ ≥ 0 and ω+κ1(x)+κ2 ≥ 0 as well as ω̃ < ω̃max together with
the monotonicity result from Lemma 3.2.26. We can see that once an inexact update step yields
sufficient decrease according to (4.1.28), we again have norm-like decrease in the composite
objective functional for some (stronger regularized) exactly computed update step which will
then again provide us with first order optimality conditions leading to global convergence
results. This achievement can be contributed to the subgradient inexactness criterion (4.1.25)
since this estimate allowed us to establish an inequality between our inexact candidate for the
update and an exactly computed counterpart which we can take advantage of in convergence
analysis.

Before the formulation of the ensuing global convergence results, we have to consider the
following lemma which ensures finiteness of adequately defined backtracking procedures, i.e.,
that (4.1.28) is satisfied as soon as ω is large enough.

Lemma 4.1.5: Satisfiability of the Sufficient Decrease Criterion (4.1.28) in the
Inexact Case

The sufficient decrease criterion (4.1.28) is fulfilled by inexactly computed update steps
∆s(ω) which additionally satisfy the inexactness criteria (4.1.13) and (4.1.25) if the
regularization parameter ω satisfies the inequality

1− γ
(1 + η)2

(ω + κ)2 + ω(ω + ω̃max + κ− L) ≥ L(ω̃max + κ)

where we have abbreviated κ := κ1(x) + κ2 and L := Lf − κ1(x).

Proof. The first inexactness criterion (4.1.13) provides us with the norm estimate∥∥∆s(ω)
∥∥
X
≤
∥∥∆s(ω)−∆x(ω)

∥∥
X

+
∥∥∆x(ω)

∥∥
X
≤ (1 + η)

∥∥∆x(ω)
∥∥
X
. (4.1.30)

Additionally, with the aid of the second inexactness criterion (4.1.25), the estimate of the
subgradient model against the exact update step norm (4.1.24), and the equivalence result in
update step norms from Lemma 3.2.26 we obtain

λx,ω
(
∆s(ω)

)
= λµx,ω̃

(
∆xµ(ω̃)

)
≤ λµx,ω̃max

(
∆xµ(ω̃max)

)
≤ −1

2

(
ω̃max + ω + κ1(x) + κ2

)∥∥∆x(ω̃max + ω)
∥∥2

X

≤ −
(
ω + κ1(x) + κ2

)2
2
(
ω̃max + ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
.

Combining this estimate with the one from (4.1.30) now provides us with
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λx,ω
(
∆s(ω)

)
≤ −

(
ω + κ1(x) + κ2

)2
2(1 + η)2

(
ω̃max + ω + κ1(x) + κ2

)∥∥∆s(ω)
∥∥2

X
. (4.1.31)

Here, we recognize that the inequality from the assertion is equivalent to

Lf − κ1 − ω
2

·
2
(
ω̃max + ω + κ1(x) + κ2

)
(1 + η)2(

ω + κ1(x) + κ2

)2 ≤ 1− γ

which together with (4.1.31) and x+(ω) = x+ ∆s(ω) lets us infer by the Lipschitz continuity
of f ′ with constant Lf that

F
(
x+(ω)

)
− F (x) ≤ f ′(x)∆s(ω) +

Lf
2

∥∥∆s(ω)
∥∥2

X
+g
(
x+(ω)

)
− g(x)

≤ λx,ω
(
∆s(ω)

)
+

1

2
(Lf − κ1(x)− ω)

∥∥∆s(ω)
∥∥2

X

≤ λx,ω
(
∆s(ω)

)
− (1− γ)λx,ω

(
∆s(ω)

)
= γλx,ω

(
∆s(ω)

)
holds and we conclude that ∆s(ω) yields sufficient decrease according to (4.1.28).

Remark. As we have done after formulating the corresponding result for the exact case in
Lemma 3.2.12, we can also here add some deliberations which simplify the rather complicated
requirement on the regularization parameter from above in qualified situations. Firstly, we note
that the sum

ω + κ = ω + κ1(x) + κ2 > 0

is generally perceived to be very small in the sense that in this combination ω is chosen just
to achieve strong convexity of the update step computation subproblem (3.2.13). In particular,
the bound on ω from Lemma 4.1.5 is also satisfied if we neglect these terms and thus obtain

ω(ω̃max − Lf ) ≥ Lf
(
ω̃max + κ1(x) + κ2

)
⇔ ω ≥

Lf
(
ω̃max + κ1(x) + κ2

)
ω̃max − Lf

. (4.1.32)

This bound in particular only makes sense for ω̃max > Lf which is what we assume to hold
anyways since ω̃max is an algorithmic parameter which we choose very large in applications.

From another perspective, we can take a closer look at the proof and as in the exact case
of Lemma 3.2.12 and perceive that due to the non-positivity of λx,ω

(
∆s(ω)

)
from (4.1.31)

and γ < 1 the bound ω > Lf − κ1(x) is sufficient for establishing the admissibility of the
regularization parameter and corresponding inexactly computed update step. As a consequence,
also here the question arises in which cases this simple alternative bound on ω prevails in
significance at least in contrast to (4.1.32). In that regard, a short computation results in

Lf − κ1(x) <
Lf
(
ω̃max + κ1(x) + κ2

)
ω̃max − Lf

⇔ Lfκ2 + L2
f + κ1(x)ω̃max > 0 .

Interpreting this sufficient condition, the large choice of ω̃max > 0 suggests that the alternative
bound ω > Lf − κ1(x) is more meaningful in case κ1(x) is positive at the current iterate. In
the non-elliptic case for Hx where thus κ1(x) < 0 holds, it seems like we have to stick to the
more involved formulation deduced beforehand.



130 4.1. INEXACT COMPUTATION OF UPDATE STEPS

On this note, we can here conclude that the above result together with the assumption (A3)
and (A4) on our objective functional also imply that the regularization parameter ω remains
bounded over the course of the minimization process. Let us now deduce the ensuing global
convergence results for the inexact Proximal Newton method as presented in the scheme of
Algorithm 11.

Algorithm 11: Inexact Proximal Newton Method

Data: Starting point x0 ∈ dom g, sufficient decrease parameter γ ∈ ]0, 1], initial
values ω0 ≥ 0 and 0 ≤ η0 < 1, threshold ε > 0 for stopping criterion

Initialization: k = 0;
while 1+ωk

1−ηk

∥∥∆sk(ωk)
∥∥
X
≥ ε do

Choose µ ∈ ∂F g(xk) and compute norm term for ω̃ as in (4.1.27) via the
linearized minimization problem (4.1.22);
Compute a trial step ∆sk(ωk) according to (3.2.13) which suffices the
inexactness criteria (4.1.14) and (4.1.27);
while Sufficient decrease criterion (4.1.28) is not satisfied do

Increase ωk appropriately;
Recompute trial step ∆sk(ωk) as above;

end
Update the current iterate to xk+1 ← xk + ∆sk(ωk);
Decrease ωk appropriately to some ωk+1 < ωk for next iteration;
Adapt ηk appropriately to some ηk+1 for next iteration;
Update the sequence index k ← k + 1;

end

For this reason, we will first prove that the right-hand side of (4.1.29), i.e., the norm of
the exactly computed so-called comparative steps ∆x(ω̃max + ω + 1), converges to zero along
the sequence of iterates generated by inexact updates. Here, it will come in handy to define
ωc := ω̃max + ω + 1 for the regularization parameter of the comparative exact update steps.
Note that this quantity is in particular also bounded both from above and below.

Lemma 4.1.6: Convergence of Update Step Norms in the Inexact Case

Let (xk) ⊂ X be the sequence generated by the inexact Proximal Newton method
globalized via (3.2.13) starting at any x0 ∈ dom g. Additionally, suppose that the
subgradient inexactness criterion (4.1.25) and the sufficient decrease criterion (4.1.28)
are satisfied for all k ∈ N. Then, either F (xk)→ −∞ or

∥∥∆xk(ω
c
k)
∥∥
X
→ 0 for k →∞.

Proof. By (4.1.29) the sequence F (xk) is monotonically decreasing. Thus, we have either
F (xk)→ −∞ or F (xk)→ F for some F ∈ R and thereby in particular F (xk+1)−F (xk)→ 0.
As a consequence of (4.1.29), then also

∥∥∆xk(ω
c
k)
∥∥
X
→ 0 holds.

Remark. In particular, the above result is enabled by the uniformity of the prefactor on the
right-hand side of (4.1.29). This estimate, on the other hand, directly follows from the suffi-
cient decrease criterion (4.1.28) and the subgradient inexactness criterion (4.1.25). Reminisc-
ing the corresponding argument in the exact case, we remember that there the explicit bound
(3.2.21) was necessary in order to ensure uniformity in that regard.
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As we will see, the above formulation will also turn out to be sufficient for the proof of
satisfying global convergence results. Furthermore, exactly computed update steps apparently
satisfy the subgradient inexactness criterion which implies that they are in particular admissible
for the inexact global convergence theory. As a consequence, the corresponding results can also
be achieved for exact update steps not explicitely sufficing (3.2.21) which played a central role
in the previously considered scenario.

As before, the above result does not comprise the convergence of the sequence of iterates
itself which is desirable in the context. In the exact case of update step computation it was
possible to take advantage of first order optimality conditions of the exactly solved subproblem
for the actual update steps and from there achieve a proper global convergence result at least
in the strongly convex case, cf. Section 3.2.3. Due to the presence of inexactness in the update
step computation, this strategy has to be slightly adjusted in the current scenario, i.e., applied
to the comparative update steps ∆x(ωc) instead. To this end, for some k ∈ N and iterate
xk ∈ X we introduce the so-called corresponding comparative iterate

yk := xk + ∆xk(ω
c
k) = PHxk+ωckR

g

(
(Hxk + ωckR)xk − f ′(xk)

)
. (4.1.33)

Note here that the comparative iterate uses a theoretical exact update but origins at
the iterate xk which belongs to our inexact method. Also, for every k ∈ N the identity
yk − xk = ∆xk(ω

c
k) holds by the definition of yk.

With this definition at hand, we are in the position to discuss at least subsequential conver-
gence of our algorithm to a stationary point. In the following, we will assume throughout that
the sequence of objective values

(
F (xk)

)
k∈N is bounded from below. Again, we start with the

case of convergence in norm and the arguments here can be compared to the ones conducted
for the proof of Theorem 3.2.15 but have to be applied to the comparative sequence:

Theorem 4.1.7: Stationarity of Limit Points in the Inexact Case

Assume that the subgradient inexactness criterion (4.1.25) and the sufficient decrease
criterion (4.1.28) are fulfilled. Then, all accumulation points x̄ (in norm) of the sequence
of iterates (xk) generated by Algorithm 11 are stationary points of problem (3.2.1).

Let now (xkl) ⊂ (xk) be the subsequence converging to x̄. In particular, the correspond-
ing comparative subsequence (ykl) defined via (4.1.33) satisfies

dist
(
∂FF (ykl), 0

)
→ 0 and

∥∥xkl − ykl∥∥X→ 0 ,

i.e., also ykl → x̄ for l→∞ .

Proof. We simplify notation by referring to subsequence indices kl as k. As mentioned be-
forehand, for the corresponding comparative sequence (yk) we have yk − xk = ∆xk(ω

c).
Consequently, also yk → x̄ holds by

∥∥∆xk(ω
c)
∥∥
X
→ 0 due to Lemma 4.1.6. The proximal

representation of yk in (4.1.33) is equivalent to the minimization problem

yk = arg min
y∈X

g(y) +
1

2

(
Hxk + ωckR

)
(y)2 −

(
(Hxk + ωckR)xk − f ′(xk)

)
y

which yields the first order optimality conditions given by the dual space inclusion

0 ∈ ∂F g(yk) + f ′(xk) +
(
Hxk + ωckR

)
(yk − xk) .
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This, on the other hand, is equivalent to(
Hxk + ωckR

)
(xk − yk) + f ′(yk)− f ′(xk) ∈ ∂F g(yk) + f ′(yk) = ∂FF (yk) (4.1.34)

the remainder term on the left-hand side of which we can estimate in norm via∥∥(Hxk + ωckR
)
(xk − yk) + f ′(yk)− f ′(xk)

∥∥
X∗
≤
(
M + ωck + Lf

)∥∥xk − yk∥∥X
=
(
M + ωck + Lf

)∥∥∆xk(ω
c
k)
∥∥
X
→ 0

for k →∞ where M denotes the uniform bound on the second order bilinear form norms from
assumption (A2).

In order to now achieve the optimality assertion of the accumulation point x̄, we have to
slightly adjust (4.1.34) for the use of the convex subdifferential and its direct characterization.
To this end, we consider a bilinear form Q : X ×X → R such that the function g̃ : X → R
defined via g̃(x) := g(x) + 1

2Q(x)2, x ∈ X, is convex. As usual, Q := Hxk + ωkR accounts for
a reasonable choice. Inserting such a Q(yk)-term into (4.1.34) thus yields(

Hxk + ωckR
)
(xk − yk) + f ′(yk)− f ′(xk) ∈ ∂g̃(yk) + {f ′(yk)−Q(yk)}

for the convex subdifferential of g̃. The left-hand side now as before converges to zero in X∗

and, consequently, we know that for every k ∈ N there exists some ρ̃k ∈ ∂g̃(yk) such that
we can define ρ̃ := limk→∞ ρ̃k = −f ′(x̄) + Qx̄ by the convergence of also yk to x̄. The lower
semi-continuity of g̃ together with the definition of the convex subdifferential ∂g̃ directly yields

g̃(u)− g̃(x̄) = g̃(u)− g(x̄)− 1

2
Q(x̄)2 ≥ g̃(u)− lim inf

k→∞
g(yk)− lim

k→∞

1

2
Q(yk)

2

= lim inf
k→∞

g̃(u)− g̃(yk) ≥ lim inf
k→∞

ρ̃k(u− yk) = lim
k→∞

ρ̃k(u− yk) = ρ̃(u− x̄)

for any u ∈ X which proves the inclusion ρ̃ ∈ ∂g̃(x̄). The evaluation of the latter limit
expression can easily be retraced by splitting

ρ̃k(u− yk) = ρ̃k(u− x̄) + (ρ̃k − ρ̃)(x̄− yk) + ρ̃(x̄− yk) . (4.1.35)

In particular, we recognize ρ̃ ∈ ∂g̃(x̄) as−f ′(x̄)+Qx̄ ∈ ∂g̃(x̄) and equivalently−f ′(x̄) ∈ ∂F g(x̄)
for the Frechét-subdifferential ∂F . This implies 0 ∈ ∂FF (x̄), i.e., the stationarity of our
accumulation point x̄ as in Definition 3.2.5.

In Section 3.2.3, the criterion (1 + ωk)
∥∥∆xk(ωk)

∥∥
X
≤ ε for some threshold value ε > 0

has been used as a condition for the optimality of the current iterate up to some prescribed
accuracy. Now, however, we also have to address the influence of inexactness in order to obtain
similar significance for the norm of currently considered update steps ∆sk(ωk). To this end,
we consider

(1− η)
∥∥∆x(ω)

∥∥
X
≤
∥∥∆x(ω)

∥∥
X
−
∥∥∆x(ω)−∆s(ω)

∥∥
X

≤
∥∥∆x(ω)−

(
∆x(ω)−∆s(ω)

)∥∥
X

=
∥∥∆s(ω)

∥∥
X

(4.1.36)

by (4.1.13) for η < 1. This estimate suggests that we can also here consider the adequately
scaled version



CHAPTER 4. MODIFICATIONS FOR ALGORITHMIC EFFICIENCY 133

1 + ωk
1− ηk

∥∥∆sk(ωk)
∥∥
X
< ε (4.1.37)

as the stopping criterion in the formulation and later implementations of Algorithm 11.
As has been the case in the exact scenario, the assertions from Theorem 4.1.7 can be im-

proved further under additional structural assumptions concerning compactness and convexity.
On this count, we also here note that in (4.1.35) even weak convergence of xk ⇀ x̄ would be
sufficient for the evaluation of the corresponding limit. Unfortunately, in the latter case we
cannot evaluate f ′(yk) → f ′(x̄). In order to extend our proof to this situation, we require
some more structure for both of the parts of our composite objective functional. The proof is
completely analogous to the one of Theorem 3.2.17.

Theorem 4.1.8: Global Convergence Under Additional Structural Assump-
tions in the Inexact Case

Let f be of the form f(x) = f̂(x) + f̌(Kx) where K is a compact operator. Addition-
ally, assume that g + f̂ is convex and weakly lower semi-continuous in a neighborhood
of stationary points of (3.2.1). Suppose that f̌ satisfies the assumptions made on f
beforehand. Then, weak convergence of the inexact sequence of iterates xk ⇀ x̄ suffices
for x̄ to be a stationary point of (3.2.1).

If F is strictly convex and radially unbounded, the whole sequence (xk) converges weakly
to the unique minimizer x∗ of F . If F is κ-strongly convex, with κ > 0, then xk → x∗
in norm.

Even though it might look irritating at first glance, after taking a second thought it is not
too surprising that the global convergence results we have achieved here all in all mirror the
ones from the exact case in Section 3.2.3: With the aid of the comparative sequence introduced
in (4.1.33), we have established the estimate that globally our inexact updates achieve the same
amount of progress in view of the overall minimization as an exact variant of the Proximal
Newton method investigated before, just using a (probably unreasonably) high regularization
parameter ωck.

The global convergence for this comparative sequence of iterates now behaves exactly as
we have observed before. Thus, since global convergence theory in general does not use quan-
tifiable measures which incorporate whether the regularization parameter is chosen ’tightly’ or
not but only states whether the corresponding sequence converges or not, exactly these global
convergence results carry over to the inexact case here. All we had to ensure is the existence
of the estimate with respect to such a highly regularized comparative sequence. This is what
has motivated the subgradient inexactness criterion and it has done the job just fine.

4.1.4 Transition to Fast Local Convergence

Another similarity to the convergence analysis in the exact case is that also here, we have to
manage the transition from the globalization phase to the local convergence phase in order to
then benefit from the local acceleration result in Theorem 4.1.4. To this end, we have to again
make sure that – at least close to stationary points of (3.2.1) – arbitrarily small regularization
parameters ω ≥ 0 yield update steps that give us sufficient decrease in F according to the
criterion formulated in (4.1.28).
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As a starting point, a rather technical auxiliary result is required. Similar to the formula-
tion of Corollary 3.2.27, it sets the limit behavior of inexact update steps in relation with the
distance of consecutive iterates to the minimizer of (3.2.1):

Corollary 4.1.9: Limit Behavior of Damped Inexact Update Steps

Let x and x+(ω) = x + ∆s(ω) be two consecutive iterates with update step ∆s(ω)
sufficing (4.1.13) for some 0 ≤ η < 1. Furthermore, consider an optimal solution x∗ of
(3.2.1) sufficiently close to which x and x+(ω) are located.

Then, the following estimates eventually hold for κ1(x) + κ2 > 0:∥∥x+(ω)− x∗
∥∥
X
≤ (3 + 2η)

∥∥x− x∗∥∥X and
∥∥x− x∗∥∥X≤ 2

1− η
(
1 +

ω

κ1 + κ2

)∥∥∆s(ω)
∥∥
X
.

Remark. In particular, these eventual norm estimates have implications on the limit behavior
of the respective terms. If we now have ξ = o

(∥∥x+(ω) − x∗
∥∥
X

)
for some ξ ∈ X, then ξ =

o
(∥∥x−x∗∥∥X) immediately holds and from there we obtain ξ = o

(∥∥∆s(ω)
∥∥
X

)
in the same way.

Proof. Our proof here mainly exploits the local superlinear convergence of exactly computed
and undamped update steps ∆x := ∆x(0) from Theorem 4.1.4 and then uses the respective
estimates in order to introduce the influences of both damping and inexactness. For the first
asserted estimate, we take a look at∥∥x+(ω)− x∗

∥∥
X
≤
∥∥x− x∗∥∥X+

∥∥∆s(ω)
∥∥
X
≤
∥∥x− x∗∥∥X+(1 + η)

∥∥∆x
∥∥
X

≤ (2 + η)
∥∥x− x∗∥∥X+(1 + η)

∥∥x+ ∆x− x∗
∥∥
X

where the second step involved (4.1.30) together with
∥∥∆x(ω)

∥∥
X
≤
∥∥∆x

∥∥
X

as proven in
Lemma 3.2.26. From here, we use the superlinear convergence of exact updates in the form of
the existence of some modulus of continuity ψ : [0,∞[→ [0,∞[ with ψ(t) → 0 for t → 0 such
that ∥∥x+ ∆x− x∗

∥∥
X

= ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X

holds in the limit of x→ x∗. Thus, we obtain∥∥x+(ω)− x∗
∥∥
X
≤
[
2 + η + (1 + η)ψ

(∥∥x− x∗∥∥X)]∥∥x− x∗∥∥X≤ (3 + 2η)
∥∥x− x∗∥∥X

since eventually we can assume the ψ-term to be smaller than one in that same limit. This
completes the proof of the first asserted estimate.

For the second one, we take advantage of∥∥∆x
∥∥
X
≤
(
1 +

ω

κ1(x) + κ2

)∥∥∆x(ω)
∥∥
X

from Lemma 3.2.26 together with again the superlinear convergence as above and find that∥∥x− x∗∥∥X ≤ ∥∥x+ ∆x− x∗
∥∥
X

+
∥∥∆x

∥∥
X

≤ ψ
(∥∥x− x∗∥∥X)∥∥x− x∗∥∥X+

(
1 +

ω

κ1(x) + κ2

)∥∥∆x(ω)
∥∥
X
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holds. Since the ψ-term eventually will be smaller than one half, from here we infer

∥∥x− x∗∥∥X≤ 1 + ω
κ1(x)+κ2

1− ψ
(∥∥x− x∗∥∥X)

∥∥∆x(ω)
∥∥
X
≤ 2
(
1 +

ω

κ1(x) + κ2

)∥∥∆x(ω)
∥∥
X
.

The inexactness of update step computation now enters the above estimate using the inequality∥∥∆x(ω)
∥∥
X
≤ 1

1−η
∥∥∆s(ω)

∥∥
X

from (4.1.36). This completes the proof of the corollary.

In what follows, it will again be important several times that the second order bilinear
forms Hx satisfy a bound of the form(

Hx+(ω) −Hx

)(
x+(ω)− x∗

)2
= o
(∥∥x− x∗∥∥2

X

)
for x→ x∗ . (4.1.38)

As we have pointed out in the formulation of Proposition 3.2.28, it is easy to see that the
bound holds if we either have uniform boundedness of the second order bilinear forms together
with superlinear convergence of the iterates or continuity of the mapping x 7→ Hx together
with mere convergence of the iterates to x∗. In our scenario, we conclude that according to
Theorem 4.1.4 it is sufficient that both the regularization parameters ωk ≥ 0 and the forcing
terms ηk ≥ 0 converge to zero as we approach a stationary point x∗ ∈ X of (3.2.1) together with
assumption (A2) from the introductory section. We will later on establish this convergence of
(ωk) and (ηk) in the specific implementation of our algorithm.

With the auxiliary estimates from Corollary 4.1.9 and Lemma 3.2.26 together with the
thoroughly discussed additional assumption from (4.1.38) at hand, we can now turn our atten-
tion to the actual admissibility of arbitrarily small regularization parameters close to optimal
solutions of (3.2.1).

For that matter, also here we furthermore suppose f to be second order semi-smooth at
stationary points x∗ of (3.2.1) with respect to the mapping H : X → L(2)(X,R), x 7→ Hx,
which we remember to be represented by the estimate

f(x∗ + ξ) = f(x∗) + f ′(x∗)ξ +
1

2
Hx∗+ξ(ξ, ξ) + o

(∥∥ξ∥∥2

X

)
for

∥∥ξ∥∥
X
→ 0 . (4.1.39)

With these two crucial assumptions back on our mind, we can now take a look at the
generalization of the admissibility of damped update steps to the inexact case. Again, the
result takes a similar look as before but the proof has to be adapted to the less generously
formulated scenario here.

Proposition 4.1.10: Admissibility of Inexact Update Steps Close to Station-
ary Points

Suppose that the additional assumptions (4.1.38) and (4.1.39) hold. Furthermore, as-
sume that the update steps ∆s(ω) computed as inexact solutions of (3.2.13) at iterates
x ∈ X for some ω ≥ 0 satisfy the inexactness criteria (4.1.13) for 0 ≤ η < 1 and (4.1.25)
for ω̃max > 0. Let x∗ ∈ X be an optimal solution of (3.2.1) near which κ1(x) + κ2 > 0
holds.

Then, for any γ ∈ ]0, 1], we can find a neighborhood Uω,γ ⊂ X of x∗ such that at all
x ∈ Uω,γ the update ∆s(ω) is admissible for sufficient decrease according to (4.1.28) for
that γ.
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Proof. We take a look back at the proof of Proposition 3.2.28 and employ the same telescoping
strategy in order to obtain

f
(
x+(ω)

)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2
=

[
f
(
x+(ω)

)
− f(x∗)− f ′(x∗)

(
x+(ω)− x∗

)
− 1

2
Hx+(ω)

(
x+(ω)− x∗

)2]
−
[
f(x)− f(x∗)− f ′(x∗)(x− x∗)−

1

2
Hx(x− x∗)2

]
−
(
f ′(x)− f ′(x∗)−Hx(x− x∗)

)
∆s(ω) +

1

2
(Hx+(ω) −Hx)

(
x+(ω)− x∗

)2
where we can again use the second order semi-smoothness of f according to (4.1.39) for the
first two terms as well as the semi-smoothness of f ′ as in (3.2.11) for the third one. This
implies

f
(
x+(ω)

)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2
= o
(∥∥x+(ω)− x∗

∥∥2

X

)
+ o
(∥∥x− x∗∥∥2

X

)
+ o
(∥∥x− x∗∥∥X)∥∥∆s(ω)

∥∥
X

+ρ(x, ω)

where we denoted ρ(x, ω) := 1
2(Hx+(ω) − Hx)

(
x+(ω) − x∗

)2. Due to the limit behavior of
inexact update step norms investigated over the course of Corollary 4.1.9, this yields

f
(
x+ ∆s(ω)

)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2
= ρ(x, ω) + o

(∥∥∆s(ω)
∥∥2

X

)
. (4.1.40)

With these preliminary estimates deduced, we can now choose some γ ∈ ]0, 1] and ω ≥ 0 for
the combination of which the sufficient decrease criterion (4.1.28) has to be satisfied. To this
end, we also here define the decrease ratio function

γ : X × [0,∞[→]−∞,∞] , γ(x, ω) :=
F
(
x+ ∆s(ω)

)
− F (x)

λx,ω
(
∆s(ω)

)
which should be larger than the γ ∈ ]0, 1] chosen beforehand for ∆s(ω) to yield sufficient
decrease. In order to prove the existence of a neighborhood Uγ,ω in which inexact update
steps do so, we have to investigate the limit behavior of γ(x, ω) for the chosen regularization
parameter ω in the limit of x→ x∗. The identity (4.1.40) from above now provides us with

F
(
x+ ∆s(ω)

)
− F (x) = λx,ω

(
∆s(ω)

)
− ω

2

∥∥∆s(ω)
∥∥2

X
+ρ(x, ω) + o

(∥∥∆s(ω)
∥∥2

X

)
which we insert into the decrease ratio function from above and estimate

γ(x, ω) = 1 +
−ω

2

∥∥∆s(ω)
∥∥2

X
+ρ(x, ω) + o

(∥∥∆s(ω)
∥∥2

X

)
λx,ω

(
∆s(ω)

)
= 1 +

ω
2 ‖∆s(ω)‖2X − ρ(x, ω)− o

(∥∥∆s(ω)
∥∥2

X

)∣∣λx,ω(∆s(ω)
)∣∣

(4.1.41)

since from the computation strategy for ∆s(ω) we in particular have λx,ω
(
∆s(ω)

)
≤ 0 by

(4.1.31). As we take a closer look at the latter estimate, we in particular recognize that the
absolute value satisfies∣∣λx,ω(∆s(ω)

)∣∣ ≥ (
ω + κ1(x) + κ2

)2
2(1 + η)2

(
ω̃max + ω + κ1(x) + κ2

)∥∥∆s(ω)
∥∥2

X
=:

C

2

∥∥∆s(ω)
∥∥2

X
(4.1.42)
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where C = C(ω̃max, ω + κ1(x) + κ2, η) > 0 remains bounded in the limit of ω → 0 and is also
well-defined in the limit case of ω = 0 close to stationary points x∗ with κ1(x) + κ2 > 0 for x
near x∗.

We may assume that the numerator of the latter expression in (4.1.41) is non-positive,
otherwise the desired inequality for γ(x, ω) is trivially fulfilled. Thus, we take advantage of
(4.1.42) in order to decrease the positive fraction term and thus achieve

γ(x, ω) ≥ 1 +
ω

C
−
o
(∥∥∆s(ω)

∥∥2

X

)
+ ρ(x, ω)

C
2

∥∥∆s(ω)
∥∥2

X

.

Now, the assumption (4.1.38) for the ρ-term together with the limit behavior estimates from
Corollary 4.1.9 immediately implies that we can find a sufficiently small neighborhood of x∗
such that

o
(∥∥∆s(ω)

∥∥2

X

)
+ ρ(x, ω)∥∥∆s(ω)
∥∥2

X

<
1

2
[C(1− γ) + ω]

holds in that neighborhood as which we in particular choose the desired Uγ,ω from the assertion.
By construction ∆s(ω) is thus admissible for sufficient decrease according to (4.1.28) for that
γ if it has been computed at x ∈ Uγ,ω.

On a last remark, we note that the convergence of the decrease ratio function to something
greater equal than one as formulated in (3.2.39) pertains to hold also in the inexact scenario.
As we have mentioned before, this will contribute to the motivation and investigation of
parameter choice strategies later on in Section 4.2.

4.1.5 The Alternative Sufficient Decrease Criterion in the Inexact Case

Another algorithmic development which has to be adapted to the inexact computation of
update steps is the alternative sufficient decrease criterion from Section 3.2.6. While it has
originally been formulated using a Fréchet subderivative µ+ ∈ ∂F g

(
x+∆x(ω)

)
at the updated

iterate, the optimality of update steps ∆x(ω) from (3.2.13) provided us with the computa-
tionally and analytically advantageous reformulation (3.2.42). In our present scenario, where
update steps are not computed exactly in order to spare computational effort, the same char-
acterization of such subderivatives is not accessible.

Fortunately, we have already clarified the roles of the respective formulations (3.2.40) and
(3.2.42) of the alternative sufficient decrease criterion within the proofs of the corresponding
results in Section 3.2.6. We remember that the direct formulation via the subderivative µ+ ∈
∂F g

(
x + ∆x(ω)

)
was rather of motivational character and, thus, for the decrease parameter

γ ∈ ]0, 1] from before, we continue to use

[
f ′
(
x+ ∆s(ω)

)
− f ′(x)−Hx

(
∆s(ω)

)]
∆s(ω) ≤ 1− γ

2
ω
∥∥∆s(ω)

∥∥2

X
(4.1.43)

from Definition 3.2.29 as the alternative sufficient decrease criterion for an inexactly computed
update step ∆s(ω) close to optimal solutions of (3.2.1). In particular, directly using the
“reformulated” version as a definition here frees us from the dilemma of having to choose
some subderivative at the inexactly updated iterate which is not given by a fixed expression
stemming from optimality of the update step. This strategy yields an algorithmically efficient
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and in sufficient generality implementable routine for which we do not have to manually pick
a subderivative and ensure crucial estimates for it.

Even though apparently the ultimate goal here is to ensure global “residual” convergence
from our alternative sufficient decrease criterion (4.1.43), we will proceed as we did in Sec-
tion 3.2.6 and first ensure satisfiability for sufficiently large ω:

Lemma 4.1.11: Satisfiability of the Alternative Sufficient Decrease Criterion
in the Inexact Case

The alternative sufficient decrease criterion (4.1.43) is satisfied for γ ∈ ]0, 1] if the reg-
ularization parameter ω suffices the estimate

ω ≥
2(Lf +M)

1− γ
.

Proof. The proof here follows along the same lines as the one of Lemma 3.2.30 in the exact
case. In particular, there we did not at all use the optimality of update steps ∆x(ω) but only
the Lipschitz continuity of f ′ together with the boundedness of the second order bilinear forms
Hx.

In order to now conclude convergence of update step norms to zero and thereby, as usually,
global convergence results of our inexact Proximal Newton method, we have to reconsider
the global convergence strategy in the inexact case in particular. Before, in Section 4.1.3,
we have introduced the subgradient inexactness criterion (4.1.25) in order to deduce global
convergence results from the original sufficient decrease criterion (4.1.28). For this reason, this
second inexactness criterion becomes somewhat insignificant for our intention of developing
an alternative global convergent theory close to optimal solutions. This conclusion leaves us
with the freedom to choose another condition which qualifies update steps to be computed
accurately enough for our minimization strategy.

It will turn out that it is sufficient to demand a sligthly different decrease estimate within
the modified second order model λx,ω : X →]−∞,∞] from (3.2.12) in the form of

λx,ω
(
∆s(ω)

)
≤ ηglob

∥∥∆s(ω)
∥∥2

X
(4.1.44)

for the global forcing term ηglob ∈ ]− 1
2

(
ω+ κ1(x) + κ2

)
, γ2ω[ and our inexact candidate ∆s(ω)

computed according to (3.2.13). We will explain the choice of the range of ηglob above after its
use within the proof of global residual convergence in the next proposition. Before verifying
this result, we remark that, due to the theoretical bound (3.2.16), satisfiability of (4.1.44) is
given as soon as we can assume convergence of objective values within the subproblem solver.
As noted beforehand for the satisfiability of the subgradient inexactness criterion, this might
depend on continuity assumptions of g but we will not elaborate on this demand here.

The following global convergence result again features the assumption of the current update
step already being sufficiently small close to the optimal solution of the underlying minimiza-
tion problem. This rather obscure formulation will at least be somewhat clarified over the
course of the proof of the statement.
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Proposition 4.1.12: Global Residual Convergence using the Alternative De-
crease Criterion in the Inexact Case

Let f ′ be semi-smooth at a stationary point x∗ ∈ X with respect to the mapping
H : X → L(2)(X,R) which is continuous at x∗. Suppose that inexact update steps
∆s(ω) are computed according to (3.2.13) such that they suffice (4.1.13) for some
0 ≤ η < 1 and (4.1.44) for ηglob <

γ
2ω.

Then, if update steps are already sufficiently small when the alternative sufficient de-
crease criterion (3.2.40) is used, global convergence from the original algorithm is con-
tinued insofar that we now have ∆xk(ω) → 0 for k → ∞ (in case F is bounded from
below) together with all ensuing global convergence results from Section 4.1.3.

Proof. We use the sufficient second inexactness criterion (4.1.44) insofar that

g
(
x+ ∆s(ω)

)
− g(x) ≤ −f ′(x)∆s(ω)− 1

2

(
Hx + ωR

)(
∆s(ω)

)2
+ ηglobω

∥∥∆s(ω)
∥∥2

X

holds which we – as in the proof of Proposition 3.2.31 – turn into

F
(
x+ ∆s(ω)

)
− F (x)

=
[
f
(
x+ ∆s(ω)

)
− f(x) +

1

2
Hx

(
∆s(ω)

)2]− [f ′(x) +Hx

(
∆s(ω)

)]
∆s(ω)

− ω

2

∥∥∆s(ω)
∥∥2

X
+ηglob

∥∥∆s(ω)
∥∥2

X
.

(4.1.45)

For the first bracket term, we apply the same telescoping strategy as before and by Corol-
lary 4.1.9 thus obtain

f
(
x+ ∆s(ω)

)
− f(x) +

1

2
Hx

(
∆s(ω)

)2
= f ′

(
x+ ∆s(ω)

)
∆x(ω) + o

(∥∥∆s(ω)
∥∥2

X

)
for x→ x∗. As we insert this finding into (4.1.45), our alternative sufficient decrease criterion
(4.1.43) in this scenario then – similarly as before – in the same limit provides us with

F
(
x+ ∆s(ω)

)
− F (x) ≤ −

(γ
2
ω − ηglob

)∥∥∆s(ω)
∥∥2

X
+o
(∥∥∆s(ω)

∥∥2

X

)
≤ −c

∥∥∆s(ω)
∥∥2

X

by our choice of ηglob <
γ
2ω and the fact that our current iterate x is already located sufficiently

close to an the optimal solution x∗. For F bounded from below, this lets us conclude the
convergence of inexact update step norms to zero which can be transferred to their exact
counterparts via (4.1.36) with η < 1.

Thus, we have the convergence to zero of exact update step norms along our inexactly
computed sequence of iterates. This circumstance provides us with a comparative sequence as
in Section 4.1.3 and thus allows us to deduce the same global convergence results also here.

Remark. The comparative sequence here employs the original regularization parameter ω in
contrast to the former case in Section 4.1.3 where the adapted version ωc has been used.

The proof of the above global convergence result now lets us more elaborately explain
the range of the global forcing term ηglob ∈ ] − 1

2

(
ω + κ1(x) + κ2

)
, γ2ω[: While theoretical

satisfiability of the corresponding inexactness criterion (4.1.44) determines the lower end of
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the interval, the upper bound on it is fixed by the arguments above. We still require a negative∥∥∆s(ω)
∥∥2

X
-term in addition to the o-terms arising from our semi-smoothness assumptions on

f and for this reason need ηglob <
γ
2ω.

The choice of the forcing term ηglob within this range can also be discussed quite intuitively:
While large values make the inexactness criterion (4.1.44) rather “complaisant”, they also
diminish the absolute value of said negative prefactor within the proof of global residual
convergence. This choice also diminishes the unspecified bound on the norm of update steps
which allows the theory for global convergence deduced above to start operating. In conclusion,
large values of ηglob relax the alternative second inexactness criterion with the trade-off that
we take some risk in global residual convergence. A small choice on the other hand reverts
this effect: While the inexactness criterion becomes harder to satisfy and we thus have to
invest additional computational effort to meet the demand, we gain safety in residual global
convergence. However, it is reasonable to choose ηglob ≥ 0 since the original lower bound
−1

2

(
ω+ κ1(x) + κ2

)
is generally not accessible and non-uniform within our algorithm. A non-

negative value of the global forcing term particularly unlocks the implication of the alternative
second inexactness criterion (4.1.44) from the original subgradient inexactness criterion (4.1.25)
due to the norm estimate (4.1.31). This means that once an inexact update step has been
computed accurately enough in order to suffice (4.1.25), also (4.1.44) holds for it. This will
enable the final algorithmic strategy explained at the end of this section and described in the
scheme of Algorithm 12.

Now that we have also in this case established a working global residual convergence theory
with the aid of the alternatively defined second inexactness criterion (4.1.44), it still remains
to generalize the transition result from Proposition 3.2.32 to the inexact scenario. Fortunately,
also this statement can be carried over in an analogous way:

Proposition 4.1.13: Admissibility Close to Optimal Solutions Using the Al-
ternative Sufficient Decrease Criterion in the Inexact
Case

Let f ′ : X → X∗ be semi-smooth at an optimal solution x∗ ∈ X of (3.2.1) with respect
to the mapping H : X → L(2)(X,R) which is continuous at x∗.

Then, for any value ω > 0, we can find a neighborhood Uω of x∗ such that the alternative
sufficient decrease criterion (3.2.40) is satisfied at any x ∈ Uω for that ω.

Proof. We use exactly the same telescoping strategy as in the proof of the corresponding
result in the exact case from Proposition 3.2.32. The argumentation there did not involve the
optimality of update steps which makes it applicable also in the inexact scenario here. We can
simply reproduce this proof by referring to Corollary 4.1.9 instead of Corollary 3.2.27 for the
limit behavior of inexact opposed to exact update steps.

As before, we can also here interpret the admissibility result from above as a corresponding
convergence result for an adequately defined alternative decrease ratio function. In particular,
we can thus conclude that the convergence of the alternative decrease ratio function γ̃ : X ×
[0,∞[→ R defined in (3.2.43) carries over to the inexact scenario here. Just like for the
respective result in previous sections, we also remark here that we will take advantage of this
perception later on when considering parameter choice strategies in Section 4.2.
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Algorithmic Strategy

Also in the inexact case, we will try to take advantage of the richer global convergence theory
deduced in the framework of the original sufficient decrease criterion as long as we can and
only use the alternative formulation in case we suspect lacking admissibility of an update step
to stem from numerical instability.

Algorithm 12: Inexact Proximal Newton Method Modified for Numerical
Stability

Data: Starting point x0 ∈ X, sufficient decrease parameter γ ∈ ]0, 1], initial
values ω0 ≥ 0 and η0 ≥ 0, thresholds 0 < ε < ε̃ for the stopping and
proximity criterion

Initialization: k = 0;
while 1+ωk

1−ηk

∥∥∆sk(ωk)
∥∥
X
≥ ε do

Choose µ ∈ ∂F g(xk) and compute norm term for ω̃ as in (4.1.27) via the
linearized minimization problem (4.1.22);
Compute a trial step ∆sk(ωk) according to (3.2.13) which suffices the
inexactness criteria (4.1.14) and (4.1.27);
if 1+ωk

1−ηk

∥∥∆xk(ωk)
∥∥
X
≥ ε̃ then

while Sufficient decrease criterion (4.1.28) is not satisfied do
Increase ωk appropriately;
Recompute trial step ∆sk(ωk) as above;

end
else

while Sufficient decrease criteria (4.1.28) and (4.1.43) are not satisfied
do

Increase ωk appropriately;
Recompute trial step ∆sk(ωk) as above;

end
end
Update the current iterate to xk+1 ← xk + ∆sk(ωk);
Decrease ωk appropriately to some ωk+1 < ωk for next iteration;
Adapt ηk appropriately to some ηk+1 for next iteration;
Update the sequence index k ← k + 1;

end

For this reason, we do not want to decide ahead of step computation which sufficient de-
crease criterion we will use in order to evaluate its descent properties. We will not prescribe a
fixed area where the alternative sufficient decrease criterion (4.1.43) together with the corre-
sponding alternative second inexactness criterion (4.1.44) is used but, as discussed above, take
advantage of the fact that our original subgradient inexactness criterion (4.1.25) in particular
implies the alternative formulation with ηglob = 0 which suffices for global residual conver-
gence. Even though this procedure might be more restrictive in update step computation as
minimally necessary, it is advantageous insofar that it maintains the possibility of using the
global convergence theory of the original formulation and gives additional safety when using
the alternative strategy.

With these deliberations made, the algorithmic strategy of the modified inexact Proximal
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Newton method combines the benefits of the exact stable version from Algorithm 10 and the
inexactness in update step computation from Algorithm 11. In particular, also the proximity
criterion generalizes to the inexact formulation via

1 + ωk
1− ηk

∥∥∆xk(ωk)
∥∥
X
< ε̃ (4.1.46)

with threshold value ε̃ > 0. For the convenience of the reader, we summarize it within the
scheme of Algorithm 12. For a more illustrative overview, we again refer to the algorithmic
conclusion in Section 4.3 where the final form of the algorithm is presented in Figure 4.11.

4.1.6 Numerical Results

Let us now showcase the functionality of our inexact Proximal Newton method and also
compare its performance to the case of exact computation of update steps which we have
investigated in Section 3.2.7. In order to make the influence of inexactness more clearly
visible, we have decided to enhance the function space problem from Section 3.2.7 such that
update step subproblems are harder to solve and thus it takes more TNNMG steps in order
to find an exact solution.

The Objective Functional

To this end, we now consider the following function space problem on Ω := [0, 1]3 ⊂ R3:
Instead of finding a scalar function, we expanded the problem to finding a vector field

u ∈ H1
ΓD

(Ω,R3) :=
{
v ∈ H1(Ω,R3)

∣∣ v = 0 on ΓD
}

where the Dirichlet boundary is given by ΓD := {0}× [0, 1]× [0, 1]. The solution which we are
looking for minimizes the composite objective functional F defined via

F (u) := f(u) +

∫
Ω
c
∥∥u∥∥

2
dx (4.1.47)

for again some parameter c > 0 as a weight of the Euclidean L2-norm term where the smooth
part f : H1

ΓD
(Ω,R3)→ R is now given by

f(u) :=

∫
Ω

1

2

∥∥∇u∥∥2

F
+αmax

(∥∥∇u∥∥
F
−1, 0

)2
+ β

u3
1u

2
2u3

1 + u2
1 + u2

2 + u2
3

+ ρ · udx

with parameters α, β ∈ R as well as a force field ρ : Ω → R3. The norm
∥∥·∥∥

F
denotes the

Frobenius norm of the respective Jacobian matrices ∇u. We can see that – in contrast to
(3.2.45) – we additionally replaced the simple u3-term with the more involved fraction-term
above in order to make subproblems harder to solve while preserving the differentiability
properties of the smooth part f .

This slight modification does not repair the minor flaw from (3.2.45) that f technically does
not satisfy the assumptions made on the smooth part of the composite objective functional
specified above in the case α 6= 0 due to the lack of semi-smoothness of the corresponding
squared max-term. As we have pointed out before, we think that also here slightly going
beyond the framework of theoretical results for numerical investigations can be instructive.
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Similar to the respective choice in Section 3.2.7, we will choose the force-field ρ to be
constant on Ω and to this end introduce the so-called load factor ρ̃ > 0 which then determines
ρ = ρ̃(1, 1, 1)T . Again, for the sake of simplicity, we will refer to this load factor as ρ. Now
that we have fully prescribed the composite objective functional F , we recognize that its non-
smooth part g is again merely given by the integrated Euclidean L2-norm term with constant
prefactor c > 0.

Specifics of the Implementation

As far as the specifics of our implementation are concerned, they are generally similar to the
ones from Section 3.2.7: We use automatic differentiation by adol-C in order to establish the
second order model and TNNMG to solve update step computation subproblems. Additionally,
the subproblem solver is provided with stopping criteria in the form of our inexactness criteria
(4.1.14) and (4.1.27) with corresponding parameters ηk ∈ [0, 1[ for each iteration and global
ω̃max > 0.

Another topic of interest concerning the implementation of our algorithm is the choice
of the aforementioned parameters ω, η and ω̃max governing the convergence behavior of our
method. While – as discussed in its introduction in (4.1.27) – ω̃max can be chosen constant
and is supposed to be very large, this is not the case for the regularization parameters ω and
the forcing terms η. Adaptive choices for these quantities will be investigated in Section 4.2
and in the current state of our development we want to focus on the aspect of and criteria for
inexactness itself. Thus, we decided to take the rather heuristic approach for ω presented in
Section 3.2.7.

Similarly, we multiply the forcing term η by 0.6 for accepted updates and leave it as it
is in case the increment has been rejected by the sufficient decrease criterion. This rather
simple strategy for the choice of parameters ensures the convergence of both η and ω to zero
along the sequence of iterates and thus also from a theoretical standpoint enables superlinear
convergence as formulated in Theorem 4.1.4. For the constant determining the subgradient
inexactness criterion, we decided to choose ω̃max = 1010.

The stopping and proximity criterion for our algorithm take into account both the regular-
ization parameter and the forcing term as formulated in (4.1.37) and (4.1.46). The respective
threshold values are identical to the ones previously used in Section 3.2.7, i.e., we choose
ε = 10−10 and ε̃ = 10−4.

Test Scenarios

Let us now consider the actual tests which we have performed in order to display the perfor-
mance of our algorithm: Firstly, we will demonstrate the consistency between results of the
inexact method and the exact version the functionality of which has been thoroughly investi-
gated in Section 3.2.7. More precisely, exactly computing update steps means neglecting the
additionally introduced inexactness criteria, and computing steps up to numerical accuracy in
TNNMG. We remember that there, a relative norm threshold for increments is considered as
a stopping criterion.

Afterwards, we exhibit the gains in effectivity by enhancing the exact algorithm with the
inexactness criteria introduced above. Lastly, we analyze the implementation of the latter
criteria and try to get a grasp on how they affect the process of solving the subproblem for
update step computation. All results within the current section have been computed after
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conducting three uniform grid refinements of the cubical domain Ω which results in 84 = 4096
grid elements.

All in all, we use (4.1.47) with fixed parameters c = 10, β = 10, ρ = −20 and let α ≥ 0
vary. As we have already learned in the exact case in Section 3.2.7, increasing α magnifies the
influence of the squared max-term in (4.1.47) and thus makes the corresponding minimization
problem harder to solve.

Equivalence of Computed Solutions

This effect already becomes apparent in Figure 4.1a where update step norms for accepted
iterates are depicted for both the exact and inexact version of our method. Here, the respective
quantities for the exact procedure are represented by full lines while dashed lines signify inexact
computation of update steps. Together with the plot of energy differences to the optimal value
from Figure 4.1b, this in particular suggests the equivalence of results achieved by both variants
of the Proximal Newton algorithm. This expectation is validated by the computation of the
relative error across all grid points yi of our discretization via the straight-forward formula

errrel(y
i) :=

∥∥uex(yi)− uinex(yi)
∥∥

2∥∥uex(yi)
∥∥

2

where we denoted by uex or uinex the respective results of the exact or inexact method. In our
simulations, this relative error expression reveals that the maximal discrepancy between the
solutions found by the respective methods is even below numerical accuracy and yields zero
in computational evaluation.
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Figure 4.1: Graphs of correction norms and energy differences to the optimal value for c = 10,
β = 10, ρ = −20 and α ∈ {0, 40, ..., 240} for the exact and inexact Proximal Newton method.
Correction norm plots are not extended as in Section 3.2.7 for the sake of perspicuity.

Improvements in Computational Efficiency

With the validation that the inexact variant of our Proximal Newton method achieves the
same solution and general convergence behavior as the exact method at hand, we can now
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turn our attention to the actual reason for which we have made the deliberations considering
inexact computation of update steps: computational efficiency.

The gain in efficiency already becomes apparent as we take a look at the plot from Fig-
ure 4.2, where the number of required TNNMG iterations for computing the respective Proxi-
mal Newton trial update step is depicted. In particular, the Proximal Newton steps incorporate
both accepted and declined iterates. Furthermore, we can recognize that the decrease of the
forcing term η from the relative error criterion forces also the inexact version of our method to
compute rather accurate solutions to the subproblems in the later stages of algorithm. This in
particular enables the local superlinear convergence as we have verified in Theorem 4.1.4. In
the globalization phase, however, it is easy to see that we spare many (apparently unnecessary)
subproblem solver iterations and thus also save valuable computational time.
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Figure 4.2: Number of TNNMG iterates required for update step computation in every trial
Proximal Newton step for c = 10, β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}.

This reduction of required TNNMG steps can be ascribed to the inexactness criteria which
we have introduced over the course of the current chapter. Even though it has been a central
concern of ours to also provide efficient ways for the evaluation these prerequisites for inexact
update steps, this still might negate our abovementioned gains in efficiency. In order to dispel
this worry, we have recorded the essential data concerning overall algorithmic efficiency for
both the exact and inexact variation of our method across all test scenarios in Table 4.1.

While the number of accepted (“Acc.”), declined (“Decl.”), and total Proximal Newton
iterations required for finding the solution of the minimization problem overall are the same for
both alternatives, both the number of total TNNMG iterations and wall-time needed for this
endeavor reveals the gains in efficiency of the inexact method. In particular, the evaluation of
inexactness criteria is included in the TNNMG wall-time share. The advantageous properties
of the modified algorithm become more and more apparent as α and thereby the complexity
of the underlying minimization problem increases. In order to give a clear illustration of
the corresponding ratios and a comparison between the exact and inexact method, the latter
information on wall-times is also depicted in Figure 4.3.

However, we have to note here that across all numerical tests here the determining factor
for the total wall-time of the respective run is the time required by the assembler, i.e., the time
it takes to compute gradients and hessians, and to from there establish the respective second
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α Variant
PN-Iterations

TNNMG-It.
Wall-Time in sec.

Acc. Decl. Total TNNMG Assembler Total

0
Exact 11 3 14 60 13.99 89.02 117.40
Inexact 11 3 14 37 9.37 88.81 112.67

40
Exact 15 9 24 147 30.74 109.68 166.94
Inexact 15 9 24 72 15.43 109.52 152.12

80
Exact 19 12 31 214 44.79 139.86 218.99
Inexact 19 12 31 96 20.67 139.45 195.11

120
Exact 17 11 28 211 43.97 124.78 201.52
Inexact 18 15 33 124 26.49 134.69 198.99

160
Exact 19 14 33 271 56.59 139.11 232.25
Inexact 19 14 33 109 23.41 140.70 201.61

200
Exact 17 13 30 254 52.99 131.44 217.46
Inexact 18 13 31 105 22.60 138.89 196.66

240
Exact 18 12 30 268 56.01 131.81 220.97
Inexact 18 16 34 141 30.27 142.25 211.08

Table 4.1: Comparative statistics for the exact and inexact variant of our Proximal Newton
method for c = 10, β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}.

order problems which are then solved for the computation of Proximal Newton update steps.
Furthermore, the wall-time shares of TNNMG and the assembler do not add up to the total
time elapsed over one run of the algorithm since the latter additionally incorporates e.g. the
evaluation of decrease criteria and update procedures of iterates and parameters.

Having in mind the goal of the introduction of inexactness, on the other hand, we can
still declare this endeavor as a success. As far as the time for solving the step computation
subproblems is concerned, we have spared 51.7% across the above numerical tests which is a
significant improvement. In particular for problems where first and second order models can
be computed explicitly without depending on automatic differentiation software, this gain in
effectiveness is crucial.

Investigation of Inexactness Criteria

As mentioned beforehand, we also want to take a look at how the inexactness criteria affect the
solution process of the step computation subproblems. To this end, we consider two aspects
each of which covers one of our criteria based on exemplary computations of Proximal Newton
steps: On the one hand, in order to investigate the relative error criterion (4.1.13), we compute
every Proximal Newton step twice. Within the first computation, we neglect inexactness
criteria which allows us to then compute the actual relative error Erel of the TNNMG iterates
in the second and actually inexact computation process. This makes it possible to compare
the actual relative error to the estimate Eest which we use for easier evaluation, cf. (4.1.14).

As can be seen in the left-hand part of Table 4.2 and the plots in Figure 4.4 for representa-
tive trial step computations, both of these quantities stay within the same order of magnitude.
This lets us infer that the employed triangle inequality for the deduction of (4.1.14) is sur-
prisingly sharp in practice. Note that the estimated error Eest is not assigned within the first
two TNNMG iterations since we have to take more of these into consideration in order to
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Figure 4.3: Assembler-, TNNMG-, and total wall-times required for algorithmic runs across
the test series with c = 10, β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}. The left bar represents
the exact method and the right bar corresponds to the inexact variant.

obtain a valid estimate for multigrid convergence rates θ in (4.1.14). The respective column
in Table 4.2 reveals that the estimated convergence rate then remains relatively constant over
the minimization of the quadratic model which suggests it to be measured adequately by our
procedure.

Furthermore, the graph for the computation of trial step k = 29 in Figure 4.4b shows that
the forcing term in this case was so small that the relative error criterion (4.1.13) could not
be met by iterates of the subproblem solver before the latter stopped computation due to the
default criterion from TNNMG. Thus, the relative error to the (numerically) exact solution of
the subproblem is zero for the last data point in the actual relative error which also explains
why it is missing in the corresponding logarithmic plot. In particular, the exact computation
of update steps close to optimal solutions is crucial for the local acceleration of our method
as shown in Theorem 4.1.4. All in all, we conclude that the estimate which implicitly uses
the convergence rate of our multigrid subproblem solver constitutes an adequate and easy-to-
evaluate alternative to the actual relative error.

On the other hand, we also consider the subgradient inexactness criterion (4.1.25). As
mentioned beforehand, we have introduced this criterion for globalization purposes with the
intention that it would not interfere with the minimization process, especially in the local
acceleration phase close to optimal solutions. In fact, we have noticed that throughout our tests
the determining quantity for further solving the subproblem was the relative error estimate
and not that ω̃ from (4.1.27) was too large. For example, over the TNNMG-iterations of the
Proximal Newton trial step considered in Figure 4.4a we had nearly constant ω̃ ≈ 8.5, clearly
remaining below our choice of ω̃max = 1010.

With these satisfying results concerning the improved efficiency of update step computation
for our Proximal Newton method at hand, we can now turn our attention to other aspects
which still show room for improvement in that regard.
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(a) Proximal Newton trial step k = 28.
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(b) Proximal Newton trial step k = 29.

Figure 4.4: Comparison of the relative error as required in (4.1.13) and its estimator from
(4.1.14) within the computation of Proximal Newton trial steps k = 28 and k = 29 while
minimizing (4.1.47) for c = 10, β = 10, ρ = −20 and α = 200.

ik Erel Eest η θ ω̃ ω̃max

1 0.0805495 not assigned 0.000282111 1.03008e-06 8.71446 1e+10

2 0.0381125 not assigned 0.000282111 0.0487216 8.81993 1e+10

3 0.0199241 0.0111777 0.000282111 0.372641 8.79332 1e+10

4 0.0102817 0.0114414 0.000282111 0.533085 8.53583 1e+10

5 0.00527283 0.0057486 0.000282111 0.524131 8.91433 1e+10

6 0.00271465 0.00289124 0.000282111 0.517709 8.41266 1e+10

7 0.00142414 0.00146153 0.000282111 0.513961 8.8467 1e+10

8 0.00077351 0.000754427 0.000282111 0.514819 8.57349 1e+10

9 0.000438303 0.000407447 0.000282111 0.522954 8.31665 1e+10

10 0.000257378 0.0002354 0.000282111 0.539877 8.20661 1e+10

Table 4.2: Overview for inexactness criteria along TNNMG iterations ik in Proximal Newton
trial step k = 28 while minimizing (4.1.47) for c = 10, β = 10, ρ = −20 and α = 200. Listed
are the actual relative error Erel, its estimate Eest, the forcing term η, the estimated TNNMG
convergence rate θ, the subgradient regularization parameter ω̃, and its upper bound ω̃max.



CHAPTER 4. MODIFICATIONS FOR ALGORITHMIC EFFICIENCY 149

4.2 Choice of Parameters

As we have mentioned throughout the previous numerical investigations of the functionality
of our Proximal Newton method both in its exact (cf. Section 3.2.7) and its inexact variant
(cf. Section 4.1.6), the heuristic choices for the regularization parameter ω in (3.2.13) and
the forcing terms η in (4.1.13) still show major room for improvement. While the previously
employed strategies for finding adequate values of these algorithmic quantities have always
been compatible with the corresponding results from convergence analysis of the underlying
minimization procedure, they were not problem-specific and thus did not properly take ad-
vantage of structural peculiarities of the problem to be solved. In contrast to that, so-called
adaptive approaches to the choice of algorithmic parameters make use of such properties of
the objective functional and thereby hold out the prospect of significant improvements with
regard to algorithmic efficiency of the considered method.

Section Outline

As has been the case for many algorithmic concepts which we have investigated beforehand,
also the choice or parameters lets us draw a considerable amount of inspiration from the smooth
case of Newton methods without an additional non-smooth part g in (3.2.1). The generaliza-
tion of the corresponding ideas to our Proximal Newton scenario here together with algorithmic
improvements will constitute the main part of the current section which is straightforwardly
structured as follows: In Sections 4.2.1 and 4.2.2, respectively, we will discuss the demands
on the regularization parameter ω and the forcing term η which arise from the convergence
analysis conducted beforehand and then present as well as discuss adequate adaptive strategies
for their choice within our algorithm. Section 4.2.3 then concerns the numerical comparison
of these strategies both among themselves and with the heuristic approaches pursued in the
previous numerical investigations.

4.2.1 Choice of the Regularization Parameter

Naturally, the demands on the choice of the regularization parameter ω ≥ 0 in (3.2.13) are
intimately related to the results from convergence analysis deduced in the context of its use.
Originally, ω has been introduced for two main reasons: Firstly, we have pursued the compen-
sation of lacking convexity of our composite objective functional F from (3.2.1) insofar that
the regularized second order decrease model λx,ω from (3.2.12) is strongly convex and thus
update step computation allows for a unique solution. As far as this demand is concerned,
ω always has to be chosen sufficiently large but adaptivity of the corresponding procedure
of choice is rather peculiar. Our TNNMG subproblem solver can only detect whether the
subproblem presented to it is convex or not. To which extent this non-convexity is present
is not specifiable any further. For this reason, independent of the strategy which we use in
order to choose ω, this problem is always solved by increasing ω multiplicating it with a fixed
increase factor.

Global Convergence for Sufficient Regularization

The second demand which we impose on the choice of the regularization parameter is connected
to its role within the globalization strategy of our algorithm. As we have pointed out during
our deliberations considering the development of sufficient decrease criteria in Section 3.2.6,
the globalization strategy, which is mostly governed by a corresponding parameter, has to make
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sure that the sufficient decrease criterion yielding global convergence results is satisfiable. For
the decrease parameter γ ∈ ]0, 1], in our framework, the sufficient decrease criterion has been
given in (3.2.15) by

F
(
x+ ∆s(ω)

)
− F (x) ≤ γλx,ω

(
∆s(ω)

)
(4.2.1)

in the general case with a modification for numerical stability considered in Section 4.1.5 via

[
f ′
(
x+ ∆s(ω)

)
− f ′(x)−

(
Hx + ωR

)(
∆s(ω)

)]
∆s(ω) ≤ −1 + γ

2
ω
∥∥∆s(ω)

∥∥2

X
. (4.2.2)

For both of these criteria, we have verified that they are satisfied once the regularization
parameter ω is chosen sufficiently large, cf. Lemmas 3.2.12 and 3.2.30 or Lemmas 4.1.5 and
4.1.11, respectively.

Even though this constitutes the second demand on ω itself, the corresponding demand on
its choice has to be formulated in a slightly different way. In view of globalization, the strategy
of finding an adequate value for the regularization parameter has to be able to adaptively
identify whether the respective sufficient decrease criterion is satisfied or not. If it comes to
the conclusion that (4.2.1) or (4.2.2) is violated, also the information to which extent this is
the case is of importance in order to then increase ω accordingly. Thus, we can see that the
update of the regularization parameter has to be somewhat tailored to the sufficient decrease
criterion for adaptive approaches.

Local Acceleration for Vanishing Regularization

While we have seen that the second demand on the choice of the regularization parameter has
rather emphasized the restrictive nature of sufficient decrease criteria far away from optimal
solutions of the underlying minimization problem for the sake of globalization, the third and
last demand concerns the topic of releasing the regularization of the model in order to achieve
fast local convergence. As has been verified for both the original sufficient decrease criterion
(4.2.1) and its numerically robust variant (4.2.2) in Propositions 3.2.28, 3.2.32, and 4.1.10,
4.1.13, respectively, the theory behind our Proximal Newton method allows for the arbitrarily
small choice of the regularization parameter close to optimal solutions of (3.2.1) at which the
objective functional exhibits sufficient convexity and semi-smoothness properties.

This “permission” to use a (nearly) unregularized model close to optimal solutions thus
also has to be taken advantage of by our adaptive choice in order to benefit from the local
superlinear convergence established both in the exact and inexact case in Theorems 3.2.8
and 4.1.4, respectively. In order to quickly identify whether the region of theoretical local
convergence has already been reached within the globalization phase of our algorithm, our
procedure thus also here has to be able to quantify to which extent the sufficient decrease
criterion is satisfied. Then, it has to reduce ω according to this information in order
to relax possible “overregularization” of the problem at the current iterate. In conclusion, we
can say that the above arguments again emphasize that the update of ω has to be somewhat
tailored to the sufficient decrease criterion and they imply that our regularization procedure
has to create a sequence (ωk)k∈N tending to zero if the underlying problem structure allows
so.

We can summarize the aspects from above as follows: Firstly, the well-definedness of
(3.2.13), i.e., ω > −

(
κ1(x) +κ2

)
; secondly, the sufficient decrease criterion for which ω also
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has to be sufficiently large and lastly the convergence to zero as the sequence of iterates
approaches an optimal solution. All in all, it is desirable to choose the regularization parameter
as large as necessary but at the same time as small as possible.

Reconsidering the Decrease Ratio Functions

While the requirement of well-definedness of update steps still has to be tackled rather manu-
ally once the subproblem solver discovers non-convexity of the step computation minimization
problem (3.2.13), we will recognize that the remaining two can be tied to the decrease ratio
function

γ : X × [0,∞[→ R , γ(x, ω) :=
F
(
x+(ω)

)
− F (x)

λx,ω
(
∆s(ω)

) . (4.2.3)

This mapping has made its first appearance in the proof of Proposition 3.2.28 where we
in particular have elaborated on its convergence to (something greater equal than) one, cf.
(3.2.39). For the numerically stable formulation with (4.2.2), we have accordingly defined the
alternative decrease ratio function

γ̃ : X × [0, ω[→ R , γ̃(x, ω) :=

[
f ′
(
x+ ∆s(ω)

)
− f ′(x)− (Hx + ωR)∆s(ω)

]
∆s(ω)

−ω
∥∥∆s(ω)

∥∥2

X
(4.2.4)

in (3.2.43) and also there explained its convergence to some value greater equal than one which
will be of use for us later on.

The Heuristic Strategy

In order to later on refer to it for the comparison to our newly defined adaptive strategies, let us
first give a formulation of the heuristic procedure pursued in Sections 3.2.7 and 4.1.6. There,
the regularization parameter has been adjusted solely based on the success of the current
(and preceding) update steps according to the corresponding sufficient decrease criterion. We
denote this choice (in dependence of the previously used regularization parameter ω) by

[ω]1(ω) :=

{(
1
2

)n
ω, if the n ≥ 1 preceding updates were successful

2ω, if the current update was not admissible
, (4.2.5)

where admissibility depends on either (4.2.1) or (4.2.2). As mentioned beforehand, this strat-
egy does not take into account the structure of the underlying problem. On a different note,
it is an easy and fitting choice for the convergence theory from Sections 3.2 and 4.1 since it
trivially increases the regularization parameter in the case of unaccepted update steps and
makes ω tend to zero as we approach optimal solutions since close to these arbitrarily small
values of ω are permissible due to the respective transition results. However, in the following
we will provide two suitable adaptive alternatives for the choice of ω: The first one is directly
tied to the underlying sufficient decrease criterion and also takes into account to what extent
it has been violated by the current update step.
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The Controller Strategy

Its derivation takes some inspiration from control theory. To be exact, it originates from the
adaptive control of single step methods in numerics for ordinary differential equations to obtain
a guess for the next time step size τj+1 based on the current step size τj , cf. [21, Chapter 5.2].

There, similar problems have to be faced: On the one hand, the adaptively determined step
sizes for initial value problems have to be as large as possible in order to minimize necessary
computational effort for finding the solution. On the other hand, step sizes also should remain
sufficiently small such that errors with respect to the exact solution do not become too large.
In our case, regularization parameters can be understood as “the inverse” of step sizes in the
above sense: As we have quantified in the estimate deduced in Lemmas 3.2.26 and 4.2.1, while
large regularization parameters cause update steps to be small, small values of ω lead to less
damping of the respective step also in norm.

Let us now first take a look at how the above demands are realized within control theory
for ODEs in [21]. To this end, we consider the so-called adaptive base algorithm which can
be summarized as follows: At first, some local error quantity |[εj+1]| is determined which
should be within the same order of magnitude as the prescribed tolerance TOL for such an
error. Obviously, |[εj+1]| should not be too large (reliability) but also not too small (efficiency)
since small values for this error quantity are assumed to be only a result of unreasonably high
computational effort opposed to random influences or some lucky choice. From there, rather
ODE-specific arguments lead to the formula

τj+1 := p+1

√
ρ · TOL

|[εj+1]|
τj (4.2.6)

for the next step size τj+1 where ρ < 1 denotes some safety factor and p ∈ N is the so-called
order of the employed method. We will later on further specify the latter quantity and deduce
the corresponding value for our (inexact) Proximal Newton method. Now, our goal is to
translate the structure of an estimator for step sizes from (4.2.6) to an adaptive strategy for
choosing the regularization parameter ω in our scenario.

The key features of the above formula can be conceived as the error estimator |[εj+1]|
and the TOL-term which means that we will first derive corresponding expressions for these
quantities. For this reason, let us simplify the notation within our sufficient decrease criteria
(4.2.1) and (4.2.2): In the general case, for some x ∈ X and ω ∈ [0,∞[, we thus define the
actual reduction ared(x, ω) and the predicted reduction pred(x, ω) via

ared(x, ω) := F
(
x+ ∆s(ω)

)
− F (x) and pred(x, ω) := λx,ω

(
∆s(ω)

)
where ∆s(ω) denotes some inexact update step within our Proximal Newton method from
Algorithm 12 computed at x with regularization parameter ω. As a consequence, the cor-
responding criterion (4.2.1) takes the form ared(x, ω) ≤ γpred(x, ω). We carry over these
notational principles also to the numerically stable case by defining

ãred(x, ω) :=
[
f ′
(
x+ ∆s(ω)

)
− f ′(x)− (Hx + ωR)∆s(ω)

]
∆s(ω) ,

p̃red(x, ω) := −ω
∥∥∆s(ω)

∥∥2

X
and γ̃ :=

1 + γ

2
∈
]1
2
, 1
]
.

(4.2.7)
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Obviously, the specific interpretations of actual and predicted decrease break down in
the numerically stable case but the respective sides of the corresponding sufficient decrease
criterion will play the same role both within global convergence theory and the choice of the
regularization parameter. With these definitions, the alternative sufficient decrease criterion
(4.2.2) takes the similar form ãred ≤ γ̃p̃red.

With these reformulations in mind, we can now tackle the transformation of the tolerance
and relative error term in (4.2.6). To that end, we consider the border case where the respective
sufficient decrease criterion is “tightly” satisfied. We do not use the tilde notation here, but
the same arguments can be made for the respective quantities in the numerically stable case.
We perceive that

ared(x, ω) ≈ γpred(x, ω) ⇔ ared(x, ω)− pred(x, ω) ≈ (γ − 1)pred(x, ω)

⇔ pred(x, ω)− ared(x, ω)

pred(x, ω)
≈ 1− γ

holds here. The left-hand side of the latter approximate equality can be understood as a
relative error estimate of the quadratic model in comparison to the actual non-linearity of F
which is why we will also interpret the right-hand side (1−γ) as the corresponding TOL-term.
Here, we apply the same logic as for step sizes regarding efficiency and reliability.

In view of regularization parameters as inverse step sizes we can now carry over the formula
from (4.2.6) to our scenario via

[ω̄]2(ω) :=

(
θ

√√√√ ρ · (1− γ)∣∣pred(x,ω)−ared(x,ω)
pred(x,ω)

∣∣
)−1

ω =
θ

√√√√∣∣1− ared(x,ω)
pred(x,ω)

∣∣
ρ · (1− γ)

ω (4.2.8)

where we are still free to choose the safety factor ρ < 1 and the root order θ ≥ 1 adequately.
Let us add some remarks considering the latter: In the adaptive base algorithm (4.2.6), we
noted that θ = p + 1 for p the order of the method constitutes an admissible choice for this
quantity. With the aid of more sophisticated control theory for PID-controllers, however, it is
possible to see that we should choose θ > p+1

2 close to that lower bound, cf. [21, Section 5.2.2].
In particular, the “order” p of our method is not to be confused with the order of the model

employed for update step computation. According to its definition, p measures the linearized
discrepancy between the regularized model and the actual non-linearity of F in dependence of
the regularization parameter ω. In order to determine this quantity, we first prove the following
lemma which states that the update step norm actually scales directly with the regularization
parameter:

Lemma 4.2.1: Influence of Regularization on Update Step Norms

Let ∆x(ω) be an update step exactly computed at x ∈ X according to (3.2.13) for some
ω > −

(
κ1(x) + κ2

)
. Then, for any µ ∈ ∂F g(x), the following estimate holds:

∥∥∆x(ω)
∥∥
X
≤
∥∥f ′(x) + µ

∥∥
X∗

ω + κ1(x) + κ2
.

Proof. First, we will derive an auxiliary estimate considering Fréchet-subdifferential elements
µ ∈ ∂F g(x). By the convexity assumption (A4), ḡ := g + κ2

2

∥∥·∥∥2

X
is convex and thus, at every

y ∈ X, subdifferential elements µ̄ ∈ ∂ḡ(y) satisfy ḡ(z) ≥ ḡ(y) + µ̄(z − y) for any z ∈ X.
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This in turn yields that for every y ∈ X and µ ∈ ∂F g(y) the inequality

g(z) ≥ g(y) + µ(z − y) +
κ2

2

∥∥z − y∥∥2

X
(4.2.9)

holds for any z ∈ X.
In the following computation, we take advantage of (4.2.9) with y = x+(ω), z = x and

µ+ ∈ ∂F g
(
x+(ω)

)
from (3.2.41) as well as y = x, z = x+(ω) and arbitrary µ ∈ ∂F g(x):(

ω + κ1(x) +
κ2

2

)∥∥∆x(ω)
∥∥2

X
≤ (ωR +Hx)

(
∆x(ω)

)2
+ µ+∆x(ω) + g(x)− g

(
x+(ω)

)
= −f ′(x)∆x(ω) + g(x)− g

(
x+(ω)

)
≤ −

(
f ′(x) + µ

)
∆x(ω)− κ2

2

∥∥∆x(ω)
∥∥2

X

Equivalently, we obtain(
ω + κ1(x) + κ2

)∥∥∆x(ω)
∥∥2

X
≤ −

(
f ′(x) + µ

)
∆x(ω)

which directly implies the asserted estimate for the norm of exactly computed update steps.

Remark. This inequality can be interpreted in two ways in order to conclude small update
step norms close to optimal solutions. On the one hand, we have verified in Proposition 3.2.14
that the numerator of the upper bound converges to zero over the course of our algorithm. On
the other hand, the above result also quantifies the indirect proportionality between length of
update steps and the regularization parameter.

Let us now continue with the determination of the order of our method. For the sake of
simplicity, we now consider a rather smooth scenario with∣∣f(x+ δx)−

(
f(x) + f ′(x)δx+

1

2
Hx(δx)2

)∣∣ = O
(∥∥δx∥∥3

X

)
in the limit of δx→ 0 which in the exact case provides us with

∣∣pred(x, ω)− ared(x, ω)

pred(x, ω)

∣∣ =
∣∣1− λx,ω

(
∆x(ω)

)
− ω

2

∥∥∆x(ω)
∥∥2

X
+O
(∥∥∆x(ω)

∥∥3

X

)
λx,ω

(
∆x(ω)

) ∣∣
≤

ω
2

∥∥∆x(ω)
∥∥2

X
+O
(∥∥∆x(ω)

∥∥3

X

)∣∣λx,ω(∆x(ω)
)∣∣

≤ ω

ω + κ1(x) + κ2
+

2

ω + κ1(x) + κ2
ξ
(
∆x(ω)

)
for the relative error estimate. For the latter term here, ξ

(
∆x(ω)

)
= O

(∥∥∆x(ω)
∥∥
X

)
, we can

then use Lemma 4.2.1 in order to identify the relative error estimate in dependence of the
regularization parameter as

|ε(ω)| :=
∣∣ ω

ω + κ(x)
+

2C

(ω + κ(x))2

∣∣
for some constant C > 0 and κ(x) := κ1(x) + κ2. The case of κ(x) = 0 can be viewed as the
“most instable” one here and the linearization around some ω0 ≥ 0 then takes the form

|ε′(ω0)| =
∣∣ 1

ω0 + κ(x)
− ω0(

ω0 + κ(x)
)2 − 4C(

ω0 + κ(x)
)3 ∣∣ =

4C

ω3
0

.
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Now, we can identify the order of our regularization method as p = 2 and thus obtain θ > 3
2

in (4.2.8) close to that lower bound as a suggestion from control theory.
Even though well motivated, the update strategy for ω defined via (4.2.8) still involves a

major flaw in the light of our Proximal Newton methods. Due to the symmetry inherent to
the absolute value term for the error estimator, ared < (1 + γ)pred leads to a prefactor larger
than one and thus to an increase within the regularization parameter. This fact is illustrated
in Figure 4.5a. Such behavior is counter-intuitive since large (negative) actual descent signifies
a desirable property of the corresponding update step and should lead to a decrease of ω. For
this reason, we adapt the update strategy from (4.2.8) as follows:

For comparatively bad updates, i.e., ared ≥ pred, the above choice works trouble-free which
is why we hold on to it there. For ared < pred however, we want the prefactor function to
stay below one while still mimicking the “absolute-value-like” behavior of the error estimator.
Consequently, we define the radicand function depending on parameters p < 0, ρ ∈ ]0, 1] and
γ ∈ ]0, 1] as follows

Radρ,γ,p : R→ [0,∞[ , Radρ,γ,p(a) :=


p− a

p−
(
1 + ρ(1− γ)

)
a

, for a < p ,

1− a
p

ρ(1− γ)
, for a ≥ p .

(4.2.10)

The desirable (and obvious) properties of the radicand function can be summarized as follows:

Lemma 4.2.2: Properties of the Radicand Function

The radicand function as defined in (4.2.10) is ...

(i) ... continuous on R with lim
a→−∞

Radρ,γ,p(a) = 1
1+ρ(1−γ) , Radρ,γ,p(p) = 0 as well as

Radρ,γ,p(a) >
1

ρ
for a > γp and Radρ,γ,p(a) < 1 for a ≤ p .

(ii) ... continuously differentiable on R \ {p} with one-sided derivatives

−Rad′ρ,γ,p(p;−1) =
1

ρ(1− γ)p
= Rad′ρ,γ,p(p; 1) .

With the radicand function and its properties at hand we can introduce the modified
version of the controller strategy (4.2.8) by

[ω]2(ω) := θ

√
Radρ,γ,pred(x,ω)

(
ared(x, ω)

)
ω (4.2.11)

with Radρ,γ,p : R → [0,∞[ from (4.2.10), θ > 3
2 close to that lower bound, ρ ∈ ]0, 1] a safety

factor, and γ ∈ ]0, 1] the sufficient decrease parameter from (4.2.1). The advantageous prop-
erties of the prefactor function from (4.2.11) defined via the radicand function from (4.2.10)
in contrast to the absolute value formulation are illustrated in Figure 4.5b.

Let us shortly remark on the safety factor ρ < 1 and its importance for the well-behavedness
of our procedure: It does not only bring the choice (4.2.11) in accordance with its motivational
formula from control theory (4.2.6) but also provides a minimal relative increase of the regu-
larization parameter in case of the update step failing the sufficient decrease criterion. This
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pred(x, ω)ared(x, ω)

γpred(x, ω)

0

1

(a) Absolute Value Base (dashed line) and Pref-
actor (full line) Function.

pred(x, ω)ared(x, ω)

γpred(x, ω)

0

1

(b) Radicand Base (dashed line) and Prefactor
(full line) Function.

Figure 4.5: Base and prefactor functions for different approaches of the controller strategy:
For some fixed predicted reduction pred(x, ω) the corresponding function values are illustrated
in dependence on the actual reduction ared(x, ω). While update steps are rejected in the
red area, the remaining two areas signify admissibility of the step. Here, we refer to the
expressions under the respective θ-roots as Base and to the ones modified by said root as
Prefactor Functions.

helps us find an update step yielding sufficient decrease within few iterations in contrast to
the case of ρ = 1 where one might get stuck with non-sufficient decrease in practice. Within
the span of ]0, 1], high values of ρ promote small choices of the regularization parameter and
thus a rather risk-taking procedure whereas small ones lead to relatively large ω and thereby
a more conservative strategy for computing trial update steps. This can also be retraced in
Figure 4.5 where in both illustrations a safety factor slightly below one has been used. For
this reason, the corresponding base functions have the value 1/ρ > 1 at the border case of
ared = γpred. In particular, this implies an increase in ω even if the corresponding update step
is only just admissible. In this light, ρ can also be viewed as an “inverse safety factor” but we
will stick to its original designation anyhow.

The controller strategy for the regularization parameter as formulated in (4.2.11) has been
developed for the sufficient decrease criterion from (4.2.1) and has to be slightly adapted in
case the current iterate is located close to an optimal solution and thus our method demands
for a numerically more stable computation scheme. As mentioned beforehand, our adapted
nomenclature from (4.2.7) turns out to be convenient for this endeavor and allows us to simply
define

[ω̃]2(ω) := θ

√
Radρ,γ̃,p̃red(x,ω)

(
ãred(x, ω)

)
ω (4.2.12)

with again Radρ,γ,p : R→ [0,∞[ from (4.2.10), θ > 3
2 close to that lower bound, ρ ∈ ]0, 1] the

safety factor, and γ̃ = 1+γ
2 with γ ∈ ]0, 1] the sufficient decrease parameter from (4.2.2).

Now, we are in a position to elaborate on how the above modified controller strategies
implement our requirements for the choice of regularization parameters:

Proposition 4.2.3: Regularization Increase for the Controller Strategy

Consider ω ≥ 0 such that the corresponding update step ∆s(ω) is not admissible for
sufficient decrease according to (4.2.1) or (4.2.2), respectively.
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Then, we have [ω]2(ω) > θ

√
1
ρ ω > ω for (4.2.11) and analogously for (4.2.12).

Proof. For unaccepted update steps we have ared > γpred, thereby Radρ,γ,pred
(ared) > 1/ρ

via Lemma 4.2.2 which implies the assertion. The same behavior can be observed in the
numerically stable case using (4.2.2) and (4.2.12).

The remaining important property of our controller strategy for ω considers its convergence
behavior close to optimal solutions of (3.2.1). While for the heuristic choice the admissibilty
of arbitrarily small values of the regularization parameter yielded its convergence to zero, we
have to incorporate more deliberations to this result here.

In particular, it will be important that the second order bilinear formsHx satisfy the bound
(3.2.36) which is given by(

Hx+(ω) −Hx

)(
x+(ω)− x∗

)2
= o
(∥∥x− x∗∥∥2

X

)
for x→ x∗ (4.2.13)

and has already been demanded for the transition results in Propositions 3.2.28 and 4.1.10.
As we have mentioned there, it is easy to see that the bound holds if either we have uniform
boundedness of the second order bilinear forms together with superlinear convergence of the
iterates or we have continuity of the mapping x 7→ Hx together with mere convergence of
the iterates to x∗. The latter continuity assumption has been required in the proofs of the
transition results for the numerically robust formulation in Propositions 3.2.32 and 4.1.13.

In our case here, however, we will use this estimate in order to show properties of the
adaptive choice for both the regularization parameters ωk above and forcing terms ηk (cf.
Section 4.2.2) which is why a priori we can not assume superlinear convergence to hold since
local convergence rates depend on the choice of these algorithmic quantities, cf. Theorem 4.1.4.

Ironically, generic and non-problem-specific null-sequence choices for ω and η in theory
would thus get along with mere uniform boundedness of the Hx but adaptive strategies have
the prospect of better performance for different application scenarios.

Proposition 4.2.4: Limit Behavior of the Controller Strategy

Suppose that all of the assumptions required for the respective transition result from
either Proposition 4.1.10 for the original case or Proposition 4.1.13 for the numerically
stable formulation hold.

Then, the values of the regularization parameter estimator defined via (4.2.11) or
(4.2.12), respectively, converge to zero along the sequence of iterates of the inexact
Proximal Newton method.

Proof. Since the procedure will always provide update steps satisfying the sufficient decrease
criterion (4.2.1), global convergence of the ensuing method to an optimal solution is ensured.
The decrease ratio functions from (4.2.3) and (4.2.4) in our new notation take the form

γ(x, ω) =
ared(x, ω)

pred(x, ω)
and γ̃(x, ω) =

ãred(x, ω)

p̃red(x, ω)
,

respectively. Under the assumptions from the corresponding transition result, both of these
converge to some value greater equal than one as we approach the solution.
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By the properties of the radicand function from (4.2.10), this yields a prefactor of the
regularization parameter which is (uniformly) smaller than the constant 1/

(
1 + ρ(1− γ)

)
< 1.

This in turn allows us to conclude the convergence of ω to zero.

While these results provide us at least with a theoretical justification for our construction,
we will extensively study the behavior of the controller strategy from (4.2.11) and (4.2.12)
within our numerical tests in Section 4.2.3. Additionally, we will compare the performance of
the resulting Proximal Newton method with the one stemming from the other strategies for
choosing the regularization parameter.

However, it still remains to be clarified exactly in which scenarios we will use the original
update formula from (4.2.11) and in which scenarios we will resort to the numerically sta-
ble formulation of (4.2.12). In short, this decision depends on the sufficient decrease criterion
which we have used in order to either admit or reject the preceding trial update step. Far away
from optimal solutions of (3.2.1) we exclusively use the original formulation from (4.2.1) and
thus also exclusively update the regularization parameter using (4.2.11). Once our sequence of
iterates comes sufficiently close to optimal solutions, the following algorithmic scheme deter-
mines the computation of ω: As described in Algorithm 12, we first check (4.2.1) and admit
the trial update step if it is fulfilled. In this case, we also use (4.2.11) for the update of ω. If
(4.2.1) fails, however, we use (4.2.2) in order to check the decrease properties of the step also
with respect to numerical cancellation. Regardless of the outcome, we then use the numeri-
cally stable formulation (4.2.12) in order to determine the new regularization parameter. The
above strategy can be also retraced in the algorithmic depiction of Figure 4.11.

The Remainder Term Strategy

For the third and last strategy for choosing ω, we will step away from direct adjustments of
the sufficient decrease criterion and augment an idea from [115] to our scenario of Proximal
Newton methods. Considering the modified second order decrease model

λx,ω(δx) = f ′(x)δx+
1

2
Hx(δx)2 +

ω

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x)

which we also use for step computation in (3.2.13), we recognize that the norm term from
our regularization strategy should optimally replicate an actual remainder term for the non-
linearity of the smooth part f , at least in direction of the current update step. With this
motivation in mind, we can simply demand the identity

λx,ω
(
∆s(ω)

) !
= F

(
x+ ∆s(ω)

)
− F (x)

and rewrite it as a requirement for the regularization parameter ω. This will only give us
correspondence of norm regularization with the actual remainder term at the previous iterate
in direction of the current one but hopefully give a good approximation also for the new
optimal value of ω from this perspective.

Consequently, let ∆s(ω) again denote an inexact update step satisfying (4.1.13) as well as
(4.1.25) and consider an estimator of the form

[ω]3(ω) :=
2

ρ
∥∥∆s(ω)

∥∥2

X

∣∣f(x+ ∆s(ω)
)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2∣∣ (4.2.14)
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where as before ρ ∈ ]0, 1] denotes a safety factor with the same interpretation. While for
the second strategy the sufficient decrease criterion (4.2.1) and control theory motivated the
choice, here the remainder term intuition provides plausibility even though we cannot really
speak of an actual Taylor remainder term due to lacking second order differentiability of f .

Also the strategy presented in (4.2.14) has to be adapted to the numerically robust for-
mulation. For that reason, we use the following alternative choice close to optimal solutions
where (4.2.2) determines admissibility of update steps:

[ω̃]3(ω) :=
2

(1− γ)ρ
∥∥∆s(ω)

∥∥2

X

∣∣[f ′(x+ ∆s(ω)
)
− f ′(x)−Hx

(
∆s(ω)

)]
∆s(ω)

∣∣ . (4.2.15)
Here, instead of augmenting the second order model of f with an adequate remainder term

as in (4.2.14), the first order model of f ′ has to be extended sufficiently. The prefactor fraction
term stems from rather technical arguments which become apparent over the course of the
latter proofs for properties of this choice.

As required before, recomputing the quantities from above after the corresponding suffi-
cient decrease criterion has failed for some trial update step should increase the value of the
estimator. This property of the above definitions can be retraced as follows:

Proposition 4.2.5: Regularization Increase for the Remainder Term Strategy

Consider ω ≥ 0 such that the respective update step ∆s(ω) is not admissible for suffi-
cient decrease according to (4.2.1) or (4.2.2), respectively.

Then, we have [ω]3(ω) > 1
ρω for the update from (4.2.14) and analogously for (4.2.15).

Proof. Let us start with the original sufficient decrease criterion: Since ∆s(ω) does not yield
sufficient decrease according to (4.2.1), we obtain the estimate

[ω]3(ω) =
2

ρ
∥∥∆s(ω)

∥∥2

X

∣∣f(x+ ∆s(ω)
)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2∣∣
=

2

ρ
∥∥∆s(ω)

∥∥2

X

∣∣F (x+ ∆s(ω)
)
− F (x)− λx,ω

(
∆s(ω)

)
+
ω

2

∥∥∆s(ω)
∥∥2

X

∣∣
>

2

ρ
∥∥∆s(ω)

∥∥2

X

∣∣ω
2

∥∥∆s(ω)
∥∥2

X
−(1− γ)λx,ω

(
∆s(ω)

)∣∣ .
For the λ-term within the above estimate, we remember from (4.1.29) that inexactly computed
update steps with (4.1.13) and (4.1.25) satisfy

λx,ω
(
∆s(ω)

)
≤ −γ

2

∥∥∆x(ω̃max + ω + 1)
∥∥2

X
≤ 0 .

Inserting this finding into the above estimate directly completes the proof in the generic case.
The corresponding result for the numerically stable formulation (4.2.15) can be verified

in a similarly easy fashion. To this end, we consider an inexact update step which does not
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satisfy (4.2.2) in the form (3.2.42) and directly obtain the desired result via

[ω̃]3(ω) =
2

(1− γ)ρ
∥∥∆s(ω)

∥∥2

X

∣∣[f ′(x+ ∆s(ω)
)
− f ′(x)−Hx

(
∆s(ω)

)]
∆s(ω)

∣∣
>

2

(1− γ)ρ
∥∥∆s(ω)

∥∥2

X

1− γ
2

ω
∥∥∆s(ω)

∥∥2

X
=

1

ρ
ω .

This completes the proof in the generality of the assertion.

As has been the case for the controller strategy from (4.2.11), we can also here show that
the values of the regularization estimators (4.2.14) and (4.2.15) converge to zero under the
same assumptions as we have stated for the respective transition results for admissibility of
the corresponding update steps close to optimal solutions. In particular, this makes fast local
convergence as formulated in Theorem 4.1.4 accessible when using this strategy.

Proposition 4.2.6: Limit Behavior of the Remainder Term Strategy

Suppose that all of the assumptions required for the respective transition result from
either Proposition 4.1.10 for the original case or Proposition 4.1.13 for the numerically
stable formulation hold.

Then, the values of the regularization parameter estimator defined via (4.2.14) or
(4.2.15), respectively, converge to zero along the sequence of iterates of the inexact
Proximal Newton method.

Proof. As before, we note that the procedure will always provide update steps satisfying
the sufficient decrease criterion (4.2.1) and thus global convergence of the ensuing method
to an optimal solution is ensured. As we approach the solution, where the additional semi-
smoothness assumptions hold, we can thus estimate the values of the corresponding remainder
term formulations as follows:

In the generic case of (4.2.14), we remember (4.1.40) stating that

f
(
x+ ∆s(ω)

)
− f(x)− f ′(x)∆s(ω)− 1

2
Hx

(
∆s(ω)

)2
= ρ(x, ω) + o

(∥∥∆s(ω)
∥∥2

X

)
holds where we additionally denoted ρ(x, ω) := 1

2(Hx+(ω) −Hx)
(
x+(ω)− x∗

)2. This term can
be handled by taking advantage of the additional continuity assumption (4.2.13). All in all,
we conclude that the absolute value term in (4.2.14) is o

(∥∥∆s(ω)
∥∥2

X

)
as the current iterate

approaches an optimal solution which directly implies the convergence of the estimator to zero.
For the numerically stable formulation from (4.2.15) we can use the corresponding estimates

from the proof of the transition result in Proposition 4.1.13. There, we have verified∥∥f ′(x+ ∆x(ω)
)
− f ′(x)−Hx

(
∆x(ω)

)∥∥
X∗

= o
(∥∥∆s(ω)

∥∥
X

)
in the limit of the iterate x to the solution x∗ which again provides us with convergence to
zero of the estimator.

We can conclude that the above theoretical framework supports the plausibility stemming
from the remainder term illustration for this choice of the regularization parameter and thus
rigorously enables its numerical investigation in Section 4.2.3. The decision when to use the
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original formulation of the remainder term estimator from (4.2.14) and when the numerically
stable alternative defined in (4.2.15) is made under the same deliberations as discussed towards
the end of the description of the controller strategy above.

4.2.2 Choice of the Forcing Term

The second algorithmic aspect which we want to take into consideration is the choice of forcing
terms for the first inexactness criterion (4.1.13) controlling the relative error of the inexactly
computed update steps ∆s(ω). As we have pointed out before, local acceleration depends on
the forcing terms η tending to zero which is what we will take into account also here.

Generally, there are still various possibilities for the choice of forcing terms with this
constraint. In our previous numerical investigations in Section 4.1.6, we have considered a
generic null-sequence update of the form

[η]1(η) := 0.6η

after every successful step computation according to (4.2.1) or (4.2.2). While in theory such a
choice eventually yields accelerated convergence, an adaptive alternative is always superior. In
particular, the forcing term choice should be able to recognize phases of the algorithm where
additional exactness pays off at the expense of computational effort and where we can spare
subproblem steps without losing progress in minimization. In particular, this demands the
possibility of not only decreasing but also increasing forcing terms throughout the run of the
algorithm. For this reason, we will also here take additional information about the objective
functional into consideration.

In [24], the authors propose the following two strategies for choosing ηk within the frame-
work of an inexact Newton method to find a root of some differentiable objective function ψ:

ηk :=

∥∥ψ(xk)− ψ(xk−1)− ψ′(xk)∆sk−1

∥∥∥∥ψ(xk−1)
∥∥ (4.2.16a)

or ηk := η0

( ∥∥ψ(xk)
∥∥∥∥ψ(xk−1)
∥∥
)ξ

for given η0 ∈ ]0, 1] , ξ ∈ ]1, 2] . (4.2.16b)

Furthermore, they also add some safeguard values in order to prevent the so-called oversolving
phenomenon, i.e., the forcing terms from becoming too small too quickly. In [55], this choice
has been adapted to a (finite dimensional) Proximal Newton setting via an expression of the
form

ηk := min

{
m

2
,

∥∥Gf̂k−1/M
(xk)−Gf/M (xk)

∥∥∥∥Gf/M (xk−1)
∥∥

}
(4.2.17)

where M,m > 0 denote upper and lower bounds on the bilinear forms Hx, G is a generalized
composite gradient mapping and f̂ is a second order model of the smooth part f . For this
implementation, both the knowledge of M and m as well as many evaluations of composite
gradient mappings are necessary the problematic nature of which we have already discussed
when introducing an existing inexactness criterion at the end of Section 4.1.1. We will now
propose two strategies which rather fit the setting that we find ourselves in here.



162 4.2. CHOICE OF PARAMETERS

The Model-Based Approach

The first one is a model-based approach considering the following two aspects: Firstly, the
agreement of the model which is used for step computation and the actual non-linearity of
the objective functional plays an important role. The better these both coincide, the more
exact we want to solve the step computation subproblem since then we can be sure that we
will obtain a satisfying update step. In this case, the forcing term η should be chosen very
small. If they do not coincide well on the other hand, we want to give some freedom to the
inexact step computation and choose η rather large. Strategy (4.2.16a) from above (or (4.2.17),
respectively,) greatly regards this aspect.

Secondly, the rate of reduction within the objective functional as in (4.2.16b) should have
an impact on our choice in some sense. In [2], the authors propose a new way of choosing η for
smooth inexact Newton methods which reflects on both of the aspects discussed above. We
adapt their choice to our non-smooth Proximal Newton scenario and show that also here we
can take advantage of its beneficial convergence properties.

To this end, we introduce a measure for the actual decrease of F at some x in direction
of some update step ∆s(ω) relative to the decrease predicted by some arbitrarily regularized
second order model λx,ω̃ via the so-called reduction quotient

r : X × [0,∞[×[0,∞[→]−∞,∞] , r (x, ω, ω̃) :=
F
(
x+ ∆s(ω)

)
− F (x)

λx,ω̃
(
∆s(ω)

) . (4.2.18)

Thereby, we also provide an indicator for the agreement of λx,ω̃ and the actual non-linearity
of our objective functional F , at least in the direction of the update step ∆s(ω).

Note that the parameter ω̃ in the second order model in the denominator does not nec-
essarily match the one used for the computation of some inexact update step ∆s(ω). For
coinciding parameters ω̃ = ω we find that r(x, ω, ω) is just the decrease ratio function γ(x, ω)
in the generic case from (4.2.3).

While for r (x, ω, ω̃) ≈ 1 the regularized model and F itself match quite well, this relation
deteriorates the smaller the reduction quotient becomes. The case r(x, δx, ω̃) � 1 suggests
that the models do not coincide but we obtain large descent nevertheless which is tolerable as
well. At last, r (x, ω, ω̃) < 0 would signify objective value increase but should not occur due
to the sufficient decrease criterion (4.2.1) for the regularization parameter ω even though the
ω̃ might slightly differ from that one.

Since the above quantities have all been introduced with respect to the original sufficient
decrease criterion (4.2.1), we still have to develop a corresponding formulation in the case where
we want to achieve additional numerical robustness by taking advantage of (4.2.2) instead. To
this end, we define the alternative reduction quotient r̃ : X × [0,∞[×[0,∞[→ R via

r̃ (x, ω, ω̃) :=

[
f ′
(
x+ ∆s(ω)

)
− f ′(x)− (Hx + ωR

)(
∆s(ω)

)]
∆s(ω)

−ω̃
∥∥∆s(ω)

∥∥2

X

. (4.2.19)

Apparently, the exact interpretation of this alternative version as a comparison between
regularized model and actual non-linearity of the objective function breaks down. On a differ-
ent note, the respective roles from the corresponding sufficient decrease criterion (4.2.2) justify
the definition of both the numerator and the denominator in the above reduction quotient.
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The second real-valued argument as before might differ from the damping parameter used for
computation of ∆s(ω) and determines the “new model” used for subsequent step computation.
Due to the diminished significance for the evaluation whether the current step computation
model aligns well with the actual non-linearity, we will try to make use of (4.2.19) instead of
(4.2.18) only in exceptional cases.

As discussed above, we will now adapt the forcing term η according to the corresponding
reduction quotient for intuitively chosen arguments. To this end, we choose parameters 0 <
p1 < p2 < p3 < 1 with p1 ∈ ]0, 1

2 [ and then determine the trial forcing term η̃ according to the
following scheme:

At the beginning of step computation for ∆sk(ωk), the procedure for finding adequate
regularization parameters provides us with a trial value ω+ = [ω̂]i(ωk−1) according to one of
the above estimators i ∈ {1, 2, 3} and ω̂ ∈ {ω, ω̃}. This determines the second order model
λx,ω+ for the computation of the subsequent step.

Already for the update of the regularization parameter, we have discussed in which sce-
narios numerically stable formulations should be used and when not. This decision also has
to be made here with respect to the contrasting definitions of reduction quotients in (4.2.18)
and (4.2.19). We can link this consideration to the one elaborated on for regularization pa-
rameters insofar that we now determine a value r+ depending on whether the original or the
alternative sufficient decrease criterion has been used in order to either admit or reject the
prior update step, cf. Figure 4.11. According to the respective case for ω̂ before, we now
set r+ := r̂(xk, ωk−1, ω

+) either as in (4.2.18) or as in (4.2.19). With this value at hand, we
compute the trial forcing term as η+ := [η]2(ηk−1) according to:

[η]2(η) :=


1− 2p1 , r̃ < p1 ,

η , p1 ≤ r̃ < p2 ,
4
5η , p2 ≤ r̃ < p3 ,
1
2η , r̃ ≥ p3 .

(4.2.20)

Obviously, the shrinking factors 4
5 and 1

2 above are arbitrary (< 1) and the result of com-
putational experiments with respect to their effectiveness in [2]. After choosing the forcing
term, a trial iterate ∆s+(ω+) is computed for this η+. If this trial update does not satisfy
the respective sufficient decrease criteria, we adapt ω+ and recompute the reduction quotient
with the most recent information which we have gathered on both the second order model and
the actual non-linearity. For this purpose, we use the non-valid trial step ∆s+(ω+) at the cur-
rent iterate xk and compute r+ := r̂

(
xk, ω

+, [ω̂]i(ω
+)
)
again depending on the computational

scenario with respect to numerical robustness, i.e., the hat not existing or being a tilde.

This in turn yields a new trial forcing term η+ determined as in (4.2.20). Once we then
obtain a valid update step ∆s+(ω+), we save ηk = η+ and ωk = ω+ in order to move on to
the next sequence index k + 1. The above, rather wordy, description can also be retraced in
the illustration of Figure 4.11.

As we have pointed out before, it is crucial for local acceleration that the choice of (ηk) in
(4.2.20) yields a null-sequence.
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Proposition 4.2.7: Limit Behavior of the Model-Based Forcing Term Ap-
proach

Suppose that all of the assumptions required for the respective transition result from
either Proposition 4.1.10 for the original case or Proposition 4.1.13 for the numerically
stable formulation hold.

Then, the choice for ηk, k ∈ N, according to (4.2.20) yields a null-sequence for forcing
terms.

Proof. It is sufficient to show that the respective decrease quotient r̂ converges to anything
larger than p2 ∈ ]1

2 , 1[ as we approach an optimal solution of problem (3.2.1). This, on the
other hand, can be retraced along the lines of the proof of the convergence of the decrease
ratio functions from (4.2.3) and (4.2.4).

The only difference is the potentially differing regularization parameter ω̃ in the denomi-
nator model expression. This does not hinder the fundamental arguments of the proof.

The Regularization-Based Approach

Due to the similar requirements on their convergence behavior towards optimal solutions of
the underlying problem, it seems reasonable to tie the choice of η to the one of ω specified
beforehand in Section 4.2.1. The previous concept of comparing and assessing the quadratic
model is very plausible but in practice might lead to unreasonably small values for η since for
very large regularization parameters the models align very well along the very short steps. At
the same time, additional exactness in solving the subproblem does not yield the anticipated
progress towards the minimizer far away from it.

To this end, we will present another strategy for choosing η which takes into account
whether the algorithm is still stuck in the globalization phase where small forcing terms do
not lead to acceleration or it has already reached the region of local superlinear convergence
where η tending to zero is essential. The behavior of the regularization parameter is a great
indicator for the phase of convergence which we find ourselves in.

For this reason, we fix some rather large offset value η0 ∈ [0, 1[ which we then scale
according to the current phase of convergence. Then, rather straight-forwardly, we choose the
next forcing term for the relative error criterion (4.1.13) as

[η]3(ωk) :=
ωk
ωmax

η0 (4.2.21)

where ωmax denotes the largest regularization parameter which has been employed over the
current algorithmic run up until now. This choice implies that as long as the regularization
parameter is increasing or constant for subsequent accepted update steps we use the offset
value η0 in order to spare unnecessary subproblem steps during the globalization phase of the
algorithm. Once the regularization parameter decreases, indicating the approach of an optimal
solution, so does the forcing term within the span η ∈ [0, η0]. In particular, as soon as ω might
rise again within another globalization phase, the forcing term again rises towards its original
value η0 and the forcing term estimator adaptively recognizes the switch between globalization
and anticipated local acceleration phases.

As ω then tends to zero close to the minimizer, η apparently inherits this behavior in the
local acceleration phase of the method. We also summarize this property within a proposition:
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Proposition 4.2.8: Limit Behavior of the Regularization-Based Forcing Term
Approach

The above choice for ηk, k ∈ N, according to (4.2.21) yields a null-sequence for forcing
terms if also the corresponding sequence of regularization parameters tends to zero.

Another aspect, which have decided to add to both adaptive choices of the forcing term, is
not of theoretical but rather of algorithmic character when thinking about concrete implemen-
tations of our parameter choice: Close to optimal solutions, i.e., once the proximity criterion
from (3.2.44) holds, we will always decrease the forcing term at least by a fixed factor once an
update step has been rejected by the sufficient decrease criteria. This safeguard-type strategy
close to optimal solutions does not disrupt the adaptive behavior of our above choices but
rather ensures that admissibility of updates does not deteriorate due to inexactness, and gives
a them a rough direction once the globalization phase of our algorithm is over.

4.2.3 Numerical Results

In order to now study the peculiarities in application of the above strategies for choosing algo-
rithmic parameters within our inexact Proximal Newton method, we reconsider the function
space problem from the previous investigation of inexactness features in Section 4.1.6.

The Objective Function

In order to shortly recapitulate the setting considered there, we remember that we are looking
for some a vector field u ∈ H1

ΓD
(Ω,R3) on the cubical domain Ω := [0, 1]3 that minimizes the

composite objective functional F defined via

F (u) := f(u) +

∫
Ω
c
∥∥u∥∥

2
dx

for again some parameter c > 0 as a weight for the L2-norm term where the smooth part
f : H1

ΓD
(Ω,R3)→ R is given by

f(u) :=

∫
Ω

1

2

∥∥∇u∥∥2

F
+αmax

(∥∥∇u∥∥
F
−1, 0

)2
+ β

u3
1u

2
2u3

1 + u2
1 + u2

2 + u2
3

+ ρ · udx

with parameters α, β ∈ R as well as a force field ρ : Ω→ R3.

Specifics of the Implementation and Test Scenarios

All in all, the details of the implementation are identical to the ones considered before for this
problem except for – obviously – the choice of the regularization parameter and the forcing
terms. We use automatic differentiation by adol-C in order to establish the second order model
and TNNMG to solve update step computation subproblems. Our main focus is to test whether
the theoretical results from above carry over to an actual implementation of the strategies for
parameter choice with regard to both algorithmic functionality and computational efficiency
when minimizing an actual function space objective with our solver.

As far as the test scenarios within the current section are concerned, we will stay true to the
scheme of our earlier investigations in order to provide consistency and sufficient comparability
of our results here with respect to findings from previous sections. This means that we will
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again choose fixed β = 10, c = 10, and ρ = −20 as a load factor for the vector with unit entries.
The parameter α, which governs the influence of the non-linear squared max term, will again
be varied between 0 and 240 in steps of 40 in order to provide computational scenarios of
different difficulty.

The constant determining the subgradient inexactness criterion – where needed – remains
unchanged as ω̃max = 1010 just like the threshold values ε = 10−10 and ε̃ = 10−4 for the
stopping and proximity criteria (4.1.37) and (4.1.46). As before, all results within the current
section have been computed after conducting three uniform grid refinements of the cubical
domain Ω which results in 84 = 4096 grid elements.

Choices for the Regularization Parameter

We start with the choice of the regularization parameter ω: Before now conducting first
actual tests using the different strategies formulated in Section 4.2.1, let us consider quantities
and statistics which determine the quality of the respective choice. For the regularization
parameter, this deliberation is a quite straight-forward one to make. A good determination
strategy chooses ω just as large such that the corresponding sufficient decrease criterion is
fulfilled but also just as small such that the second order decrease model is as “pure” as possible.
In particular, such a choice implies that we can benefit from unregularized computation as
soon as possible in order to make significant progress in terms of minimizing the objective.

Satisfying the first one of this demands implies that few to no steps have to be rejected
due to non-admissibility with respect to the sufficient decrease criterion sparing “outer” iter-
ations in the globalization phase of our algorithm. Fulfilling the second one leads to strongly
recognizable local acceleration and a fast approach of the solution in the later stages of the
algorithm. In conclusion, we can thus simply summarize that the less wall-time our solver
requires to minimize the objective, the better the considered regularization strategy.

In order to keep the focus on the choice of the regularization parameter, we disregard
inexact computation of update steps for the corresponding numerical investigations. For both
the controller and remainder term approach, we chose the respective safety factor as ρ = 0.95,
i.e., close to its maximal value of one.

Investigation of the Root Order for the Controller Strategy

However, before comparing the three computational strategies for regularization parameters
from Section 4.2.1, let us first consider a rather delicate topic for the controller strategy: the
root order within the update formula (4.2.11). Our theoretical deliberations with arguments
from control theory for ODEs suggested the choice of θ > 3/2 close to that lower bound. In
order to get a grasp on the influence of the choice of this algorithmic parameter, we conduct
tests for three different root orders as θ1 = 1/0.5 = 2, θ2 = 1/0.58 ≈ 1.724, and θ3 = 1/0.66 =
1.51. Since in practice the controller strategy seems to tend to rather drastic increases in the
case of non-admissibility of updates, we provide an upper bound in the form that the newly
computed regularization parameter should at most be 10 times the previously employed one.
This safeguard value does not stand in contrast to the operating principle of the controller
strategy but merely provides a boundary for efficient computation. At the same time, we still
leave enough space for the philosophy and adaptivity of this idea from ODE step size theory.

As mentioned beforehand, we increase the prefactor α ∈ {0, 40, ..., 240} across one test
series. Figure 4.6a shows the wall-times of test runs across this series and Figure 4.6b gives an
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(b) Number of accepted, declined, and total Proximal Newton iterations. For each value of α, the
respective numbers are given for three choices of the root order θ1 = 1/0.5 = 2, θ3 = 1/0.58 ≈
1.724, and θ2 = 1/0.66 = 1.51 from left to right.

Figure 4.6: Algorithmic Comparison of different root orders across the test series with c = 10,
β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}.

insight on the respective numbers of accepted, declined, and total Proximal Newton iterations
required for finding the solution of the minimization problem.

Even though from a theoretical standpoint, θ3 should provide the best results, our numer-
ical investigations suggest that the largest choice, i.e., θ1 = 2, is actually the best of the three.
This can be retraced to the abovementioned tendency of our adaptive choice to choose rather
large regularization parameters in case of failure of the sufficient decrease criterion. While a
rather large choice of the root order “flattens the curve” and reduces the trial value for the
next ω, small root orders on the other hand rather encourage drastic increases. For local
acceleration, however, high root order should work better due to their behavior close to the
optimal case ared = pred which we want to approach close to optimal solutions. Due to the
advantageous performance over the course of the above test series, we have decided to choose
θ1 = 2 for all upcoming tests involving the controller strategy.

From the standpoint of algorithmic functionality, however, we can conclude that the con-
troller strategy, indifferent of the choice of the root order θ, perfectly implements our demands
on the regularization parameter choice. Global convergence has been achieved in all test sce-
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Figure 4.7: Graphs of correction norms and regularization parameters for c = 10, β = 10,
ρ = −20, α ∈ {80, 160, 240}, and different values of the root order θ within the controller
strategy. Correction norm plots are not extended for the sake of perspicuity.

narios and – as can be seen in Figure 4.7 – also local acceleration has been unlocked by the
convergence of ω to zero as we approach the optimal solution.

Remainder Term Regularization and Comparison of Strategies

The second adaptive strategy which we have introduced for the choice of the regularization
parameter is the remainder term strategy from (4.2.14) and (4.2.15). Since there are no
questionable parameters governing the evaluation of this approach, we will first point out the
algorithmic functionality of the strategy as displayed in Figure 4.8 and then – without further
ado – compare it to the remaining two strategies with regard to computational efficiency. Also
for the remainder term procedure we provided a span of values relative to the formerly used
regularization parameter in which the new trial ω can be chosen: not more than 10 times but
also not less than 0.01 times the previous value.

Figure 4.9a illustrates the wall-times required for solving the minimization problem with
(4.1.47) as an objective functional and Figure 4.9b allows us to compare the corresponding
numbers of accepted, declined, and total Proximal Newton iterates. From the numerical
investigations and resulting data at hand, it is apparent to conclude that the heuristic choice
for the regularization parameter yields the most efficient Proximal Newton method – at least
across the investigated test scenarios.

Even though one could surely construct a set of model problem parameters and bounds
on the adaptive strategies such that these outperform the heuristic choice, this does not stand
in conformity with our understanding of scientific rigor. As a consequence, we will simply
acknowledge the superior performance of the heuristic strategy and cherish the algorithmic
functionality of our adaptive approaches which stands in conformity with our theoretical de-
liberations from Section 4.2.1. Furthermore, we still believe that adaptive formulations are
suited better for generic real-world application problems. Due to its slightly better perfor-
mance among the two, we will thus choose the controller strategy with θ = 2 as an algorithmic
component of our modified method.
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Figure 4.8: Graphs of correction norms and regularization parameters for c = 10, β = 10,
ρ = −20 and α ∈ {0, 40, ..., 240} using the remainder term strategy for the choice of the reg-
ularization parameter. Dashed extensions of the correction norm plots show the last declined
step leading to the stop of the algorithm.

Choices for the Forcing Term

The last algorithmic ingredient which we will investigate before considering the application of
our Proximal Newton method to the finite strain plasticity problem is the strategy for choosing
the forcing term from the relative error inexactness criterion (4.1.13). In order to keep the
focus on the influence of the respective approaches for the control of η, we employ the heuristic
regularization strategy across all of the ensuing test runs.

Figure 4.10 shows the graphs of forcing terms across the respective test series which again
consists of increasing α from 0 to 240 in steps of 40. The model-based approach from (4.2.20),
which is depicted in Figure 4.10a, apparently is able to increase the forcing term after an initial
drop but does not exhibit the desired convergence to zero as we approach the solution of the
minimization problem. From a theoretical standpoint, this even rules out local superlinear
convergence of the ensuing method which can also in practice be retraced in the corresponding
correction norm plot in Figure 4.10c.

The regularization-based approach from (4.2.21), however, also in practice exhibits both of
our desired properties for the choice of the forcing term. As can be clearly seen in Figure 4.10b,
over the course of the runs from our test series, the forcing term both increases during the
globalization phase and converges to zero in the local acceleration phase of the algorithm.
Even though the forcing strategy simply inherits this desired behavior from the choice of the
regularization parameter, this is just what we need from the standpoints of both algorithmic
functionality and computational efficiency. As a consequence, we are able to spare unnecessary
subproblem solver iterations in the globalization phase of the algorithm while still being able
to benefit from local acceleration in the later stages. The local superlinear convergence of the
ensuing method is apparent in Figure 4.10d and the gains in computational efficiency can be
retraced from the corresponding wall-times compared to the ones of the heuristic approach in
Table 4.3.

Let us also note here that the safeguard-like strategy for the forcing term described at the
end of Section 4.2.2 only came into play for the model-based approach in the case of α = 240
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Figure 4.9: Algorithmic Comparison of the three considered regularization strategies across
the test series with c = 10, β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}.

and thus did not affect the numerical investigation of our adaptive parameter strategies here.
In conclusion, we can say that while the model-based approach does not meet our expec-

tations from theory, the regularization-based approach allows us to boost the computational
efficiency of the inexact Proximal Newton method even further. Consequently, we will make the
latter strategy a fixed ingredient of our modified method. These findings finalize the numerical
investigations of our parameter choice strategies presented over the course of Section 4.2.
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Figure 4.10: Graphs of forcing terms and correction norms across the test series for c = 10,
β = 10, ρ = −20 and α ∈ {0, 40, ..., 240} using either the model- or regularization-based
approach. Dashed extensions of the correction norm plots show the last declined step leading
to the stop of the algorithm.

Prefactor α 0 40 80 120 160 200 240

Wall-Times
Heuristic 112.67 152.12 195.11 199.00 201.61 196.66 211.08
Reg.-Based 111.19 151.24 193.72 174.16 198.21 185.66 188.47

Table 4.3: Wall-times across the test series of c = 10, β = 10, ρ = −20 and α ∈ {0, 40, ..., 240}
for the inexact Proximal Newton method with either the heuristic or regularization-based
approach for choosing the forcing term η in (4.1.13).
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4.3 Algorithmic Conclusion

Before we now will expose our algorithm to the computation of solutions for the time-incremen-
tal minimization problems in the framework of finite strain plasticity from Section 2.2.4, we
will give an overview of it in its final form. This time around, however, we do not resort to the
typical algorithmic representation which we have used beforehand but use a more insightful
visualization of our computational strategy. Additionally, we recapitulate all inequalities which
we require for its formulation afterwards for the convenience of the reader.

The theory behind this algorithmic strategy has been explained elaborately within the
preceding sections. The following scheme thus only serves illustrative purposes:

START, Initialization

Trial Step Computation According to (4.3.1)
Such That (4.3.2) and (4.3.3) hold

Original Sufficient Decrease Criterion (4.3.4)

Proximity Criterion (4.3.6) for
Possible Numerical Cancellation

Alternative Sufficient Decrease
Criterion (4.3.5)

Accept Update Accept Update Reject Update Reject Update

Update ω and η
Originally

Update ω and η
Originally

Update ω and η
Robustly

Update ω and η
Robustly

Save Old ω and η
Update Iterate and Index

Stopping Criterion (4.3.7)

STOP, Termination

not
satisfied

satisfied
not

satisfied not

satisfied

not

Figure 4.11: Final form of the inexact Proximal Newton method
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For the update of the regularization parameter and the forcing term, we have provided
formulations both for the original and numerically susceptible setting. In the above algorithmic
scheme, we have referred to these respective formulations as updating ω and η “originally” and
“robustly”. As mentioned beforehand, we now recapitulate all occurring definitions and criteria:
Update steps are computed by minimizing a modified second order decrease model

∆x(ω) := arg min
δx∈X

λx,ω(δx) := f ′(x)δx+
1

2
Hx(δx)2 +

ω

2

∥∥δx∥∥2

X
+g(x+ δx)− g(x) (4.3.1)

for the regularization parameter ω ≥ 0 such that the relative error inexactness criterion∥∥∆x(ω)−∆si(ω)
∥∥
X∥∥∆x(ω)

∥∥
X

≤
θ

1−θ
∥∥δi∥∥

X∥∥∆si(ω)
∥∥
X
− θ

1−θ
∥∥δi∥∥

X

!
≤ η (4.3.2)

holds for some forcing term η ∈ [0, 1[ as well as subproblem solver increments δi, iterates
∆si(ω), and linear convergence rate θ ∈ ]0, 1[. Additionally, the inexact update step has to
satisfy the subgradient inexactness criterion

ω̃ := −
∥∥f ′(x) + µ

∥∥2

X∗

2λx,ω
(
∆s(ω)

) !
< ω̃max (4.3.3)

for an adequately chosen Fréchet-subderivative µ ∈ ∂F g(x) and some large ω̃max > 0. The
original formulation of the sufficient decrease criterion is given by

F
(
x+ ∆s(ω)

)
− F (x) ≤ γλx,ω

(
∆s(ω)

)
(4.3.4)

for the sufficient decrease parameter γ ∈ ]0, 1] and we introduce the numerically robust formu-
lation via [

f ′
(
x+ ∆s(ω)

)
− f ′(x)−Hx

(
∆s(ω)

)]
∆s(ω) ≤ 1− γ

2
ω
∥∥∆s(ω)

∥∥2

X
(4.3.5)

which uses the same sufficient decrease parameter γ and is checked in case the original decrease
criterion fails and additionally the proximity criterion

1 + ω

1− η
∥∥∆s(ω)

∥∥
X
< ε̃ (4.3.6)

is fulfilled by the current update step for some threshold value ε̃ > 0. Finally, if the stopping
criterion

1 + ω

1− η
∥∥∆s(ω)

∥∥
X
< ε (4.3.7)

is fulfilled for some tighter threshold ε̃ > ε > 0, the update step computation is terminated
and we assume to have reached a solution of the underlying composite minimization problem
(3.2.1).



Chapter 5

Application to Finite Strain Plasticity

With all of the theoretical deliberations and numerical investigations with respect to rather
simple function space problems from the prior two chapters at hand, it is now time to put
our algorithm to its final test: the time-incremental minimization problems from finite strain
plasticity which we have already formulated in a suitable fashion in Section 2.2.4.

The Objective Function

There, we have established the structure of the time-incremental minimization problems
(IMP)Π which is necessary for the application of Proximal Newton methods, i.e., the split
of the objective functional

F (y, δB) := E
(
tk,y,∆

+
sym

(
Pk−1, exp(δB)

))
+ T0

∫
Ω

∥∥δB∥∥
F

dx (5.0.1)

into the smooth stored energy functional and the non-smooth dissipation distance part.
We have already elaborated on possible definitions of the stored energy density and their

corresponding shortcomings in view of existence theory in Section 2.2.4. We will go into detail
on the respective problem geometries and material models when presenting the scenarios of
concrete tests later on. The goal of these tests is to first showcase both the functionality of
our method from Chapter 3 in general and the improvements in efficiency by our algorithmic
modifications from Chapter 4 for a complicated real-world application problem.

Chapter Outline

In order to achieve this goal, we dissect the chapter in the following way: In Section 5.1, we
start out with specifics on the implementation of our solution algorithm for the finite strain
plasticity problem which do not depend on the problem geometry and material model at hand.
Next, in Section 5.2, we first set up the problem geometry of our “Five” benchmark series and
elaborate on the chosen material model, boundary conditions and test scenarios in order to
afterwards conduct several algorithmic comparisons with respect to variants of the method
presented in this manuscript. At last, in Section 5.3, we will showcase the capabilities of our
algorithm on a very demanding and suggestive problem geometry for finite strain plasticity
problems: pulling and then releasing one end of a metal paperclip while the other end remains
fixed. This will conclude our numerical investigations on the inexact Proximal Newton method.

174



CHAPTER 5. APPLICATION TO FINITE STRAIN PLASTICITY 175

5.1 Specifics of the Implementation

Let us now lay out the general framework for the concrete implementation of our inexact
Proximal Newton method for the finite strain plasticity problem. While many of these aspects
can be seen as fairly similar to their counterparts in the rather simple numerical investigations
of previous chapters, treating this demanding real-world application also has its peculiarities
due to the manifold-structure as already pointed out in Section 2.2.4.

The code which we have used for our numerical investigations has been developed in close
collaboration with Patrick Jaap from TU Dresden, who is in particular responsible for most of
the plasticity-related implementations like delicate spatial discretization and material model
evaluation strategies. A solid foundation for the code has already been established in [92]
where he considered the small strain case together with his supervisor Oliver Sander.

However, let us first shortly consider the canonical choices for algorithmic building blocks
which we have also used in prior instances of our method: In general, the differentiation of the
smooth part of our objective functional is again taken care of by automatic differentiation with
adol-C, and solving the discretized update step computation subproblems within the Proximal
Newton method is approached via the TNNMG method from Appendix Section A.1.

While the choice of “dynamic” algorithmic parameters ω and η might differ from test to
test, their intitial values ω0 = 64 and η0 = 0.99 will remain fixed over the course of all
investigations. The same holds true for the general sufficient decrease parameter γ = 1

2 . For
inexact update step computations, ω̃max > 0 governing the subgradient inexactness criterion
(4.3.3) is invariably chosen very large as ω̃max = 1010. Also ε = 10−10 and ε̃ = 10−4 from the
stopping criterion (4.3.7) and the proximity criterion (4.3.6), respectively, will have the same
value for all tests.

The initial deformation state is always undeformed, i.e., we have y0 ≡ id and P0 ≡ I
as the corresponding intitial values. We will go into detail on other, rather problem-specific
parameters and quantities whenever they start to play an explicit role within our test scenarios.

Spatial Discretization

The aspect which we will elaborate on more deliberately than for our previous numerical
investigations is the one of spatial discretization for the main quantities to be computed within
the present finite strain plasticity problem. For more details in that regard, we refer to [43],
where the discretization techniques described below have been developed and this concern is
treated as one of the main subjects of research.

The homotopy step problem, i.e., finding minimizers of (5.0.1) will be discretized in space
using different finite element methods. There are three quantities to be discretized: the
deformation y : Ω→ R3, the plastic strain Pk−1 : Ω→ SL(3)+

sym of the previous load step, and
the tangential plastic increment δB : Ω→ S3

0. Let Ω be discretized by a conforming grid with
n ∈ N vertices that in particular resolves the Dirichlet boundary ΓD.

The deformation field y is the easiest to handle. It maps into a vector space and will
be discretized using standard first-order Lagrange finite elements. Let {φi(x)}i=1,...,n be the
scalar nodal basis and e1, e2, e3 the canonical basis of R3. The discrete deformation field is
then

yh(x) =

n∑
i=1

3∑
j=1

ȳijφi(x) ej (5.1.1)

with real-valued coefficients ȳij .
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For the computation of multiple subsequent homotopy steps, discretizing the plastic strain
Pk−1 of the previous load step can require more advanced techniques. By the pointwise in-
compressibility constraint Pk−1(x) ∈ SL(3)+

sym for almost all x ∈ Ω, the space of all admissible
strain fields is non-linear. This problem is trivial to solve if the material model does not
contain strain gradient terms (k2 = 0 in (2.2.30)). In that case, Pk−1 can be approximated
by piecewise constant matrix-valued finite element functions. By the definition of the up-
date operator from (2.2.32), also Pk−1 will map to SL(3)+

sym for all k ≥ 1 if P0 maps to
SL(3)+

sym. For a conforming discretization of the model with a strain gradient term (k2 > 0

in (2.2.30)) we need an approximation space for Pk−1 that consists of continuous functions
mapping into SL(3)+

sym. Various such spaces have been constructed by Hardering and Sander
[37] under the name of geometric finite elements. We use here the so-called projection-based
finite elements that are defined by taking the space of standard R3×3-valued Lagrange space
and projecting the functions pointwise onto SL(3)+

sym. For the computation of this projection
R3×3 → SL(3)+

sym and its derivative we use an iterative method described in Appendix A.2.
The third field to be discretized is the field δB of plastic corrections. By definition, δB

maps into the tangent space of SL(3)+
sym at the identity matrix, or equally, into S3

0. This is
again a linear space, and therefore mappings δB can be approximated by standard first-order
Lagrange finite elements. Note, however, that this discretization is not compatible with the
one which we have selected for the previous plastic strain Pk−1: If Pk−1 is approximated by
projection-based finite elements, and the strain increment δB by Lagrange finite elements,
then the new plastic strain Pk as produced by the update operator from (2.2.32) will not be
a projection-based finite element function.

In principle, this problem could be avoided by replacing the Lagrange finite elements
for the approximation of δB by the set of functions that, when used in the update formula
from (2.2.32), yield projection-based finite elements. However, these functions are difficult to
characterize directly, and we therefore do use Lagrange finite elements for δB and accept the
discrepancy as a new source of discretization error. We expect that this error is not larger
than the main discretization error.

For the plastic update component δB, a basis of the trace-free symmetric matrices is chosen
as

B1 :=
1√
2

1 0 0
0 −1 0
0 0 0

 , B2 :=
1√
6

1 0 0
0 1 0
0 0 −2

 ,

B3 :=
1√
2

0 1 0
1 0 0
0 0 0

 , B4 :=
1√
2

0 0 1
0 0 0
1 0 0

 , B5 :=
1√
2

0 0 0
0 0 1
0 1 0

 .

This forms an orthonormal basis of S3
0 under the Frobenius inner product. Therefore, it also

defines an isometry between R5 equipped with the Euclidean norm ‖ · ‖2 and S3
0 with the

Frobenius norm, as ∥∥ 5∑
j=1

ajBj
∥∥
F

=
∥∥a∥∥

2

holds for all coefficient vectors a ∈ R5. For other dimensions than d = 3, similar construc-
tions are possible but not relevant for the present treatise. The discrete plastic strain field is
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represented by

δBh(x) =
n∑
i=1

5∑
j=1

b̄ijφi(x)Bj

with scalar coefficients b̄ij . Some numerical tricks are included in order to evaluate the objective
functional F from (5.0.1). Since order one Lagrangian shape functions are non-negative, the
dissipation term can be approximately evaluated as a lumped sum

∫
Ω

∥∥δBh(x)
∥∥
F

dx ≈
n∑
i=1

∫
Ω

∥∥ 5∑
j=1

b̄ijφi(x)Bj
∥∥
F

dx =

n∑
i=1

∫
Ω
φi(x) dx

∥∥b̄i∥∥2
=:

n∑
i=1

γi
∥∥b̄i∥∥2

(5.1.2)
which enables the usage of efficient solvers like TNNMG, cf. Section A.1, treating these now
separated non-smooth parts directly. Due to the symmetry inherent to our spinless approach,
the gradient

∇Ph(x) = ∇
(

(Pk−1
h (x))

1
2 exp(δBh(x))(Pk−1

h (x))
1
2

)
(5.1.3)

is computed explicitly as a sum of three terms using the product rule. The Fréchet-derivative
of the matrix square root of a matrix A in direction E can be obtained by setting s(A) := A

1
2

and deriving s(A)2 −A = 0 in direction E. This leads to the Sylvester-like equation

s(A)X +Xs(A) = E , (5.1.4)

which has a unique solution X ∈ R3×3 if all eigenvalues of s(A) are positive [38, Section B.14].
This is in particular the case for A ∈ SL(3)+

sym. Then, the square root A
1
2 is also well-defined.

For symmetric A and d = 3, the problem (5.1.4) is a linear equation with only 6 unknowns,
and hence solved directly. Furthermore, A

1
2 can be computed by the eigenvalue decomposition

of A which is given directly for d = 3. The Fréchet-derivative ∇ exp(A)[E] of the matrix
exponential of A in direction E can be easily computed by evaluating

exp

(
A E
0 A

)
=

(
exp(A) ∇ exp(A)[E]

0 exp(A)

)
and extracting the top right block [38, Section 10.6]. The matrix exponential itself is computed
by the so-called Scaling and Squaring Method, cf. [38, Ch. 10.3]. With these tools at hand, we
can properly evaluate the gradient from (5.1.3) by the ensuing product rule expression. For
the sake of simplicity, we do not use a projection for the corresponding integral.

In summary, let yh, Bh and Pk−1
h denote adequate finite element approximations of the

deformation field, the plastic update and the previous plastic strain, respectively. The fully
discrete increment problem then reads

Find (yh, δBh) that minimizes E
(
yh,∆

+
sym

(
Pk−1
h , exp(δBh)

))
+D(exp(δBh))

and set Pk
h := ∆+

sym

(
Pk−1
h , exp(δBh)

)
(in a suitable finite element space).

The minimization problems which are now a part of the above homotopy update formulation
are in the following tackled by our (inexact) Proximal Newton method.
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5.2 The “Five” Benchmark Tests

The goal for now is to show that single homotopy problems can be solved efficiently by our
inexact Proximal Newton method. As a consequence, the first series of benchmark tests
for our minimization algorithm has the focus of solving a single increment problem and not
chaining them to a whole homotopy of problems which would then govern a time discretization
for a time-dependent formulation of a rate-independent system. Later on, we will consider
concatenations of different so-called loading steps and scenarios which in particular demand
the deliberate construction of the spatial discretization as we have described it in Section 5.1.

Section Outline

In order to give a clear overview of how we aim to achieve these goals, we split up the section
as follows: At first, in Section 5.2.1, we establish the problem geometry which we will consider
as well as describe the grid used to discretize the geometry, clarify the material model together
with all related parameters, and specify the boundary conditions which will govern the de-
formation of the test body throughout our numerical investigations. With this framework at
hand, Section 5.2.2 will then consider algorithmic comparisons for the solution process of the
single homotopy step problem. To this end, we will contrast the performance of the unmodified
version of our Proximal Newton method from Chapter 3 and the refined inexact version with
adaptive parameter strategies from Chapter 4.

5.2.1 Problem Geometry and Test Scenarios

We use a test body which has already been studied in the small strain theory in [92]. The body
takes the shape of the number 5 which also explains the name of the corresponding benchmark
test series referred to as “Five” here. The geometry is coarsely discretized by a grid of 25 cubical
grid elements as shown in Figure 5.1. For our numerical test runs, two uniform grid refinements
are conducted resulting in 1600 cubical grid elements. The boundary conditions, which govern
the deformation of the test body, are placed as follows: The bottom face (, where x2 = 0,) is
a Dirichlet boundary for the deformation field, i.e., we demand y(x) = x for x2 = 0. External
surface loads are applied at the top face ΓN = [0, 4] × {7} × [0, 1].19 For the tensile tests,
we will compute a series of different scenarios which are determined by the loading parameter
α > 0 in the energy functional

〈`pull(t),y〉 := α · 103

∫
Γ
y2(x) dS . (5.2.1)

As a consequence, the load only acts on the second component y2 of the deformation
field, i.e., the force applied to the body always points “upwards”. Illustratively, the tensile
tests conducted here can thus be understood as pulling the steel-like model of the number
five upwards with a fixed force until it reaches an equilibrium state. The problem geometry
together with boundary conditions and coarse grid discretization are displayed in Figure 5.1.

As we have already mentioned in the above illustrative description, the test body here
can be seen as “steel-like”. This interpretation stems from our choice to use the St. Venant

19Technically, the Neumann boundary ΓN is determined by the larger set ∂Ω \ ΓD where ΓD is the bottom
face as specified beforehand. Here, however, we refer to ΓN as the set where non-trivial Neumann forces are
applied in our tests.
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Figure 5.1: Geometry and boundary conditions of the 3D test object “Five”.

Kirchhoff material model from (2.2.27) in its simplified form (2.2.29) which we remember as

WSVK(F) =
1

2
λ|tr(E)|2 + µ

∥∥E
∥∥2

F

with the Green-Lagrange strain tensor E = 1
2

[
FTF−I

]
. The Lamé parameters for our material

model stem from parameter identifications for perfect Prandtl-Reuss elasto-plasticity of a
steel alloy specimen conducted in [87, Page 388] which yield a Young’s modulus of E =
206900N/mm2 and a Poisson’s ratio of ν = 0.29. We can directly translate these parameters
to the ones we need for material model determination via

λ =
Eν

(1 + ν)(1− 2ν)
= 8.01937 · 104 N/mm2 and µ =

E

2(1 + ν)
= 1.107438 · 105 N/mm2 .

The yield stress T0 = 5 · 103 N/mm2 in the dissipation functional from (5.0.1) is chosen ac-
cordingly and the scaling parameters k1 = k2 = 2 · 103 N/mm2 for the kinematic hardening
terms from (2.2.30) are of identical value in the same order of magnitude. In particular, we
consider the case of linear kinematic hardening as introduced in Section 2.2.4, i.e., we choose
ppl = pgr = 2.

5.2.2 Algorithmic Comparisons

With the problem geometry, material parameters and testing scenarios in mind, we can now
turn our attention back to the Proximal Newton algorithms which we have developed over the
course of this manuscript.

Comparing “Raw” and “Modified” Proximal Newton Methods

Let us first focus on how we intend to compare the original version of our Proximal Newton
method from Chapter 3 with the modified one from Chapter 4 with respect to their algorithmic
performance.

In that regard, we refer to the exact Proximal Newton method from Algorithm 10 with
the heuristic regularization strategy (4.2.5) as raw and to the inexact Proximal Newton
method from Algorithm 12 with the controller regularization (4.2.12) (θ = 2) and the
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regularization-based forcing (4.2.21) as modified.

We will consider the single step homotopy tensile problem from above for α ∈ {1, 2, ..., 7}
in (5.2.1) and proceed similar to the numerical investigation of Section 4.1.6 when we added
inexactness to our algorithmic framework: At first, we will ensure that both variants obtain
the same result. Afterwards, we will compare rather “subjective” indicators of quality for our
methods, i.e., graphs of update step norms, regularization parameters, and forcing terms. At
last, we will additionally consider “objective” such indicators like the amount of both Proximal
Newton and TNNMG update steps as well as wall-time needed in order to find a solution.

For a first illustration of the results achieved by both the raw and modified version of our
Proximal Newton method, we refer to Figure 5.2 where the deformed state of the test body
at the end of the test is depicted. We only show the solution found by the raw version since
the result computed by the modified version relatively differs from that one only by at most
1.31 · 10−12 in the deformation and not at all in the plastic strain across all three test runs.
These relative discrepancies are at every grid point xk computed by the intuitive formulae

errPrel(x
k) :=

∣∣∥∥Pmod(xk)− I
∥∥
F
−
∥∥Praw(xk)− I

∥∥
F

∣∣∥∥Praw(xk)− I
∥∥
F

(5.2.2)

for the relative difference in our plastic strain measure (distance to the identity) and

erryrel(x
k) :=

∥∥ymod(xk)− yraw(xk)
∥∥

2∥∥yraw(xk)
∥∥

2

(5.2.3)

for the displacement where the respective index expressions determine the variant of the Prox-
imal Newton method by which the corresponding grid solution has been computed. The
maximal values of the ensuing relative differences for the complete test set are depicted in
Table 5.1. Overall, we conclude that both variants of our algorithm obtain the same result
within the scenario tested here if both are run until sufficient accuracy is achieved according
to the norm stopping criterion (4.3.7).

maxk∈{1,...,N} α = 1 α = 2 α = 3 α = 4

erryrel(x
k) 1.81 · 10−13 8.51 · 10−14 7.56 · 10−14 1.39 · 10−13

errPrel(x
k) 0.0 0.0 0.0 0.0

maxk∈{1,...,N} α = 5 α = 6 α = 7

erryrel(x
k) 1.12 · 10−12 1.31 · 10−12 1.45 · 10−11

errPrel(x
k) 0.0 0.0 0.0

Table 5.1: Maximal relative discrepancies of displacement and plastic strain using either the
raw or modified variant of the Proximal Newton method across all grid points for the “Five”
benchmark series computed via (5.2.2) and (5.2.3).

As a short interpretation of the results depicted in Figure 5.2 from a physical standpoint,
one can clearly see that both the deformation of the test body and the plastic strain within
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Figure 5.2: Results of the pull test for α ∈ {2, 3, ..., 7} in ascending order.

it increase as the force on the Neumann boundary grows larger. For better comparability,
the bottom of the test body is fixed to the same height for α ∈ {2, 3, 4} in the top row and
for α ∈ {5, 6, 7} in the bottom row, respectively, and the color scales for the plastic strain
remain the same across all six pictures. While only a slight deformation and no noticeable
plastic strain occur for α = 1, these circumstances drastically change along the way to α = 7
where all of the test body exhibits non-trivial plastic strain and every part but the Dirichlet
boundary on the bottom face is significantly deformed. The volume preserving behavior of our
material model becomes apparent insofar that the test body is “truly stretched”, i.e., shrinks
in width along the deformed parts.

Let us now take a look at the graphs for update step norms, regularization parameters,
energy differences and numbers of TNNMG steps per Proximal Newton step across the seven
tests conducted here. For higher transparency concerning the algorithmic behavior, we again
consider also declined Proximal Newton steps for the regularization parameters and amount
of TNNMG steps. The graphs are depicted in Figure 5.3 and can be interpreted as follows:
Firstly, both the raw and the modified version clearly exhibit local superlinear convergence
both in the correction norms and the energy differences to the optimal value. Secondly, the
regularization parameter behaves similarly even though we have to note the increase towards
the end of the run for the modifed method and α ∈ {6, 7}. There, the rather restrictive nature
of the alternative sufficient decrease criterion expresses itself but still helps to obtain global
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residual convergence as predicted by our theory. We will discuss this phenomenon in detail
later. Lastly, the graph for the number of TNNMG steps per trial PN update shows that also
within this benchmark series we can spare many (apparently unnecessary) subproblem solver
iterations during the globalization phase of our algorithm.
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(d) Graphs of TNNMG iteration numbers.

Figure 5.3: Graphs of correction norms, energy differences, regularization parameters, and
TNNMG iteration numbers for the raw and modified method across the “Five” benchmark
series.

While the graphs of update step norms, energy differences, regularization parameters, and
TNNMG iteration numbers only suggest the advantageous properties of the version of the
Proximal Newton method featuring our modifications from Chapter 4, we will now consider
some unambiguous measures of quality for the assessment of our algorithmic variants. Table 5.2
gives valuable insight into the statistics behind computations with both the raw and modified
version of our Proximal Newton method: It displays the number of accepted (“Acc.”), declined
(“Decl.”), and total Proximal Newton steps required for the respective variant of our method
in order to find the solutions displayed in Figure 5.2.

Additionally, both the total number of TNNMG iterations and different shares of wall-time
necessary in order to compute the solutions can be found in the table. Here, the “TNNMG”
column intuitively refers to the time spent on subproblem solving (including the evaluation of
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inexactness criteria), the “Assembler” column lists the time needed to establish the regularized
second order models, i.e., mainly to compute gradients and hessians at the respective iterate
points. These numbers do not add up to the total wall-time presented in the last column since
the latter additionally includes further processes like reading and refining the grid, update
procedures within the algorithm, and writing intermediate homotopy outputs and results. In
order to give a clear illustration of the corresponding ratios and a comparison between the raw
and modified method, the latter information on wall-times is also depicted in Figure 5.4.

α Variant
PN-Iterations

TNNMG-It.
Wall-Time in sec.

Acc. Decl. Total TNNMG Assembler Total

1
Raw 7 0 7 21 7.14 219.42 246.15
Mod. 5 1 6 15 5.14 190.44 212.68

2
Raw 7 2 9 36 19.87 257.29 305.16
Mod. 5 2 7 18 10.18 218.83 251.32

3
Raw 7 3 10 50 51.53 326.77 415.71
Mod. 7 1 8 21 21.63 326.11 378.47

4
Raw 7 5 12 110 185.83 471.14 709.70
Mod. 7 1 8 36 62.15 414.64 514.15

5
Raw 8 4 12 260 640.94 591.49 1295.86
Mod. 9 3 12 82 215.33 669.20 954.25

6
Raw 14 4 18 576 1662.58 1257.56 3036.69
Mod. 12 7 19 128 382.75 1116.77 1636.58

7
Raw 18 5 23 773 2427.86 1960.17 4563.79
Mod. 15 11 26 241 782.66 1573.48 2565.72

Table 5.2: Comparative statistics for the raw and modified variant of our Proximal Newton
method with respect to the “Five” benchmark series.

The interpretation of these numbers is straight-forward: While for the rather simple sce-
narios of α ∈ {1, .., 4} the wall-time required by the assembler dominates the minimization
process, for the more demanding problems with α ∈ {5, 6, 7} the algorithmic modifications
both with respect to inexact computation of update steps and adaptive parameter choice
clearly pay off. Firstly, the gain of efficiency achieved by inexactly computing updates is ap-
parent when taking into account the wall-time spent within the TNNMG subproblem solver.
Across the simulations for α ∈ {5, 6, 7}, we spared an average of 1116.88 seconds and thereby
70.82% of computational time in that regard. Secondly, also the adaptive choice of parame-
ters has contributed significantly to the shorter total wall-times for our algorithmic runs: On
the one hand, the regularization strategy allows for a reduction of the number of accepted
Proximal Newton updates in order to find the minimizer. In particular, this implies that the
second order model has to be established less often and thereby spares wall-time spent by the
assembler. On the other hand, the forcing term strategy adequately controls the accuracy
with which the step computation subproblems have to be solved within the respective phases
of an algorithmic run. Consequently, we can take advantage of a rather “cheap” globalization
phase but still experience local acceleration close to the solution.

Thus, we can conclude that the theoretical deliberations behind our algorithmic modifi-
cations in Chapter 4 ultimately payed off and provide us with a minimization algorithm for
demanding real world problems which exhibits both algorithmic functionality and efficiency.
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Figure 5.4: Assembler-, TNNMG-, and total wall-times required for algorithmic runs across the
“Five” benchmark series. The left bar represents the raw method and the right bar corresponds
to the modified variant.

Splitting Into Multiple Homotopy Steps

Another interesting consideration to make is the behavior of our solver with respect to splitting
the single step homotopy problem into several “shorter” such steps. To this end, we consider
the tensile tests from above for the more demanding scenarios α ∈ {5, 6, 7} but split up
the homotopy into five steps in order to compute the same result. Each of the ensuing single
homotopy step problems thus should become easier to solve. The idea is to now assess whether
splitting up homotopy problems further than the external force intuitively requires is worth
from a computational standpoint.

If both discretization schemes yield the same result and thereby significance with respect to
the application at hand, the comparison of algorithmic statistics across the respective test runs
could provide useful information for the development of simulation strategies for real-world
scenarios.

At first, we note that both the plastic strain and the deformation within the test body show
non-trivial discrepancies when computed by either one of the ways to discretize the homotopy.
We compute the respective relative differences similarly as we have done before for the raw
and modified version of our algorithm and this time around take the finer homotopy split as
a baseline value. The corresponding formulae are intuitively given by

errPrel(x
k) :=

∣∣∥∥Psingle(x
k)− I

∥∥
F
−
∥∥Psplit(x

k)− I
∥∥
F

∣∣∥∥Psplit(xk)− I
∥∥
F

(5.2.4)

for the relative difference in our plastic strain measure (distance to the identity) and

erryrel(x
k) :=

∥∥ysingle(x
k)− ysplit(x

k)
∥∥

2∥∥ysplit(xk)
∥∥

2

(5.2.5)
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Figure 5.5: Computational relative discrepancies in displacement (top row) and plastic strain
(bottom row) according to the formulae (5.2.5) and (5.2.4) for trivial and non-trivial homotopy
splitting with (from left to right) α ∈ {5, 6, 7}.

for the displacement where again xk refers to the grid point at which the quantity is computed,
and the subscripts “single” and “split” describe the homotopy discretization scheme. The results
for these computations are given in Table 5.3 both as the maximal and the average value
across the grid. Since these discrepancies between the minimization results are non-trivial, we
furthermore illustrate their distribution across the reference configuration in Figure 5.5.

maxk∈{1,...,N} α = 5 α = 6 α = 7

erryrel(x
k) 3.34 · 10−1 1.12 · 10−1 7.53 · 10−2

errPrel(x
k) 1.85 1.24 2.22 · 10−1

avgk∈{1,...,N} α = 5 α = 6 α = 7

erryrel(x
k) 2.01 · 10−2 2.11 · 10−2 9.62 · 10−3

errPrel(x
k) 4.34 · 10−2 3.12 · 10−2 1.33 · 10−2

Table 5.3: Maximal and average computational relative discrepancies in displacement and
plastic strain according to the formulae (5.2.5) and (5.2.4) for trivial and non-trivial homotopy
splitting with α ∈ {5, 6, 7}.

The non-trivial discrepancies suggest that it is definitely reasonable to use a fine homotopy
discretization for significance of results from an application standpoint. In particular, the high
maximal relative discrepancies in the plastic strain measure demonstrate the importance of
choosing small homotopy step sizes in order to accurately predict the behavior of a test object
under Neumann force application. Furthermore, this substantiates the convergence results



186 5.2. THE “FIVE” BENCHMARK TESTS

from the description of finite strain plasticity problems as rate-independent systems from
Chapter 2. The finer we choose the time discretization of the underlying problem, the surer we
can be concerning the significance of our computed results. This effect even becomes apparent
for the simple, one-directional Neumann forces which we have applied for our computational
example here.

Let us now consider the algorithmic comparison of both ways to compute the solution of
the homotopy problem: Table 5.4 – just like previous comparisons of that kind – shows the
number of accepted, declined, and total Proximal Newton steps as well as TNNMG steps and
wall-time shares necessary in order to compute the corresponding result.

α Variant
PN-Iterations

TNNMG-It.
Wall-Time in sec.

Acc. Decl. Total TNNMG Assembler Total

5
split 31 13 44 241 446.49 1744.78 2388.22
single 9 3 12 82 215.33 669.20 954.25

6
split 33 10 43 269 621.65 2107.99 2932.10
single 12 7 19 128 382.75 1116.77 1636.58

7
split 40 6 46 329 868.71 2920.16 4031.14
single 15 11 26 241 782.66 1573.48 2565.72

Table 5.4: Comparative statistics for solving the same plasticity problem by either one single
or multiple split homotopy steps.

It is easy to see that the discretization scheme of applying the whole one-directional Neu-
mann force to the body within one single homotopy step results in significantly lower required
computational time than the split into multiple homotopy steps. The interpretation of this
result, however, is not straight-forward: While the coarse discretization in the homotopy is
rewarded by quick computation of a result, this result seems to be of lesser quality than the
solution computed by splitting the homotopy up into multiple steps. The latter solution has
to be interpreted to be more accurate since the theory for rate-independent systems from
Chapter 2 predicts convergence of the time-incremental solutions to the energetic one as the
fineness of the time discretization tends to zero.

As a consequence, we have the classical trade-off between a fine time discretization, which
yields accurate results but requires large computational times, and large homotopy steps which
spare wall-time in computation but provide results of inferior physical significance. Investi-
gating the particular interdependence of the time discretization and the computational error
is rather a question of solving the time-continuous problem and not of solver development for
the increment problems which puts it outside the scope of this manuscript.

On a different note, however, the above recognition lets us come back to the discussion
of incorporating plastic spin at the end of Section 2.2.4: Seeing that the choice of a fine
time discretization also has significant advantages with respect to solution quality somewhat
justifies the assumption of small plastic increments and thereby their symmetry also in the
case where plastic spin is incorporated to the problem formulation. This would have been
different if the split into multiple homotopy steps above would have yielded the same results
but took significantly longer in computation. Then, one would have to split the homotopy
only for the sake of choosing symmetric values in the spin formulation. Now, however, a fine
time discretization has to be employed in order to obtain significant results regardless of the
symmetry of plastic increments which justifies this crucial symmetry assumption a posteriori.
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5.3 The “Paperclip” Benchmark Tests

Our second series of benchmark tests for the Proximal Newton algorithm now does not have
the focus of comparing methods and displaying algorithmic efficiency of our modifications
from Chapter 4. For the last numerical investigations of our methods, we want to display
the capabilities of the final modified form of our algorithm in the solution of a finite strain
plasticity problem with a more demanding problem geometry and yet another material model.
In particular, we will also consider a non-trivial homotopy split of the corresponding (rather
simple) time-dependent Neumann forces acting on the test body.

Section Outline

The section itself is structured similarly as the previous one: In the first part, i.e., Section 5.3.1,
the problem geometry and its coarse grid discretization are established, the material model
together with all related parameters is clarified, and boundary conditions governing the de-
formation of the test body are specified. Afterwards, in Section 5.3.2, we investigate the
numerical solution of the problem via the refined inexact version of our method with adaptive
parameter strategies from Chapter 4. As per usual, we to this end consider graphs for signif-
icant algorithmic quantities and display the deformed configurations of the test body for the
scenario of loading and unloading in two homotopy steps with different pulling forces.

5.3.1 Problem Geometry and Test Scenarios

The test body which we will consider here comes from one of the most natural perceptions
of plasticity in everyday life: We will conduct tensile tests of a steel-like paperclip with a
total height of 3cm, a total width of 1cm, and a wire diameter of 1mm. The geometry of the
model is illustrated in Figure 5.6 and coarsely discretized by 980 prism-like elements. Along

Figure 5.6: Geometry and initial grid of the 3D-paperclip.

the cross sections of the wire there are always 7 triangular elements to model the cylindrical
geometry of the wire. For the simulations, one uniform grid refinement is computed resulting
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in 7840 grid elements in total. Initially, the paperclip lays in the x-z-plane and zero Dirichlet
boundary conditions are placed at the outer face of the wire, i.e., the latter should remain
fixed on the “desktop”. For the first step within our so-called binary homotopy step problem, a
scaled Neumann force of the form

〈`pull(t),y〉 := α · 25

∫
Γ
y2(x) dS . (5.3.1)

for the loading parameter α > 0 is applied to inner end of the wire which thus constitutes the
Neumann boundary ΓN . The load only acts on the third component y2 of the deformation field
which represents pulling the inner end of the wire upwards, i.e., perpendicular to the desktop
in our illustrative example. The loading step as before ends when the paperclip reaches an
equilibrium state induced by the applied Neumann force. Afterwards, in the so-called unloading
step we completely let go of the force and investigate to which extent both the elastic and
plastic deformation of the paperclip remain.

As we have already mentioned beforehand, we still consider a “steel-like” material but this
time around will use a different stored energy functional for modeling the material properties.
To this end, we will use an approximation technique from [14, Theorem 4.10-2] which allows
us to give a representation of our previously used St. Venant Kirchhoff material model in the
form of a polyconvex Mooney-Rivlin formula as introduced in (2.2.25). More precisely, we use

WMR(F) := a
∥∥F
∥∥2

F
+b
∥∥cof(F)

∥∥2

F
+cdet(F)2 − d ln(det(F)).

In order to favor volume-preserving behavior, we set d = 2a+ b+ c, such that for hydrostatic
deformations F = ρ I the energy WMR(ρ I) is minimal for ρ = 1. By fitting the remaining
parameters a, b, c > 0 to the Lamé coefficients λ and µ from above, we can thus reach an
approximation of the corresponding material model up until cubical terms in the Frobenius
norm of the Green-Lagrange strain tensor E. Thus, by choosing c = 104 N/mm2 and from
there computing a = 4.5323475 · 104 N/mm2 as well as b = 1.0048425 · 104 N/mm2, we obtain

WMR(F) = WSVK(F) +O
(∥∥E

∥∥3

F

)
for E :=

1

2

(
FTF− I

)
.

The yield stress within the dissipation functional from (5.0.1) is now set to T0 = 2 ·103 N/mm2

and the scaling parameters k1 = k2 = 2 · 103 for the kinematic hardening terms from (2.2.30)
are of identical value in the same order of magnitude. In particular, we as before consider the
case of linear kinematic hardening as introduced in Section 2.2.4, i.e., we choose ppl = pgr = 2.

5.3.2 Numerical Results

Having established the problem geometry, material model, and general testing scenario over
the course of our above elaborations, we will now consider the solution of the ensuing binary
homotopy step problem for loading with fixed parameters α > 0 and subsequent unloading in
order to simulate the behavior of the steel paperclip. Quite intuitively, we will refer to the test
scenarios described above for α ∈ {1, ..., 4} as the “Paperclip” benchmark series.

For the interpretation of the corresponding results, let us start with Figure 5.7 which
depicts the deformation of the paperclip for the pulling scenarios α ∈ {2, 4} both in the
loading and the unloading step. It is apparent that both the displacement and the plastic
strain increase as the Neumann force is doubled. In both scenarios, we recognize that after
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Figure 5.7: Results of the paperclip deformation simulation for α = 2 (top row) and for α = 4
(bottom row). From left to right: side-view for both loading and unloading, front-view for
loading, front-view for unloading. The reference configurations are displayed in solid color.

unloading the two variables determining the deformation of the test body have diminished but
still remain significant. This demonstrates the irreversible nature of plastic deformation and
thereby stands in conformity with the deliberations made for material modeling in Section 2.2.
Thinking of a “real” paperclip, however, one might expect the displacement to diminish less
while unloading, i.e., letting go of the previously employed force to the inner end of the
paperclip. Since we are rather interested in the behavior of our solution algorithm than in the
one of the material, we put this “problem” of choosing adequate material parameters out of
the scope of our elaborations here.

As far as the behavior of the solver is concerned, we take a look at Figure 5.8 which
contains all of the relevant information in order to evaluate the algorithmic runs for this
benchmark series. The superlinear convergence of the method is apparent when considering
the graphs for correction norms and energy difference to the optimal value both in the loading
and the unloading step. In particular, the globalization phases are significantly longer for
this demanding problem than for previously considered scenarios. Once the region of local
convergence is encountered by the algorithm, however, the acceleration allows us to quickly
approach the optimal solution of the problem.

The investigation of graphs for regularization parameters and forcing terms from the re-
maining two images in Figure 5.8, on the other hand, reveals the rather restrictive nature of
the alternative sufficient decrease criterion. We have already gotten a glimpse of that phe-
nomenon for the more demanding scenarios of the “Five” benchmark series. In particular, we
perceive the increase of regularization parameters towards the end of the algorithmic run in
four of the eight homotopy steps considered above – in the loading step for α ∈ {2, 3, 4} and
in the unloading step for α = 1.

As we take a closer look at – for example – the loading step for α = 4, we can see that
the regularization parameter again starts decreasing just before update step computation ends
due to the stopping criterion. We interpret this behavior of ω in the way that – in particu-
lar for very demanding scenarios – the neighborhoods of optimal solutions from the respective
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(a) Graphs of correction norms. Plots are not
extended for the sake of perspicuity.
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(d) Graphs of forcing terms.

Figure 5.8: Graphs of correction norms, energy differences, regularization parameters, and
TNNMG iteration numbers for the raw and modified method across the “Paperclip” benchmark
series.

transition results for either the original or the alternative sufficient decrease criterion in Propo-
sitions 4.1.10 and 4.1.13 significantly differ in size. While this region of general admissibility
for undamped update steps has clearly already been entered in the aforementioned scenario
around trial step k = 370 for the original formulation, this is not the case for the numerically
robust version.

As a consequence, the regularization parameter is decreased further and further by the
original procedure – up until the point where the corresponding sufficient decrease criterion
can not be evaluated any more due to numerical cancellation. Then, as intended, we switch
to the robust formulation but find ourselves outside of the neighborhood of the solution which
allows for unregularized computation by this sufficient decrease criterion. For that reason, we
have to increase the regularization parameter again in order to continue global convergence as
described in Section 3.2.6.

The cause for these symptoms, however, is not an inherently wrong formulation or defective
algorithmic development but rather the insufficient quantifiability of regions for undamped
update steps in computationally demanding scenarios. Due to the general framework of our
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formulations with respect to differentiability and convexity, this is a drawback which we have
to acknowledge. As we conclude the algorithmic behavior of our method, however, we can
definitely say that it passed the test also in the most demanding scenario at least considered
over the course of the present treatise.

α Phase
PN-Iterations

TNNMG-It.
Wall-Time in sec.

Acc. Decl. Total TNNMG Assembler Total

1
Loading 67 87 154 453 314.4 16292.3 20659.44
Unloading 78 92 170 344 232.0 19025.2 24603.3

2
Loading 80 83 163 630 1240.6 28177.4 36318.7
Unloading 70 71 141 288 197.2 16989.8 20420.6

3
Loading 130 125 255 1221 3640.4 55379.9 68187.8
Unloading 73 71 144 553 410.9 18461.0 24533.1

4
Loading 190 200 390 2254 8004.9 92608.9 115347.5
Unloading 83 70 153 595 542.4 24459.7 32843.6

Table 5.5: Algorithmic statistics for the solution of the binary homotopy step problems from
the “Paperclip” benchmark series.

As a last deliberation, we consider the statistics for the “Paperclip” benchmark series
which are listed in Table 5.5. Two central perceptions strike the eye as we take a look at the
corresponding numbers of iterations and wall-times across all values for the Neumann force
prefactor: Firstly, the complexity of the problem becomes apparent by the order of magnitude
in which the quantities are located – in particular in comparison with the scenarios considered
in previous numerical investigations of our method. Secondly, we recognize that the time
required for assembling subproblems again constitutes the determining share of wall-time in
all computations. On the one hand, this shows that considerable room for improvement is still
present in that regard which lays beyond the scope of the present treatise. On the other hand,
this allows for the conclusion that the remaining part of computations necessary for finding a
solution is handled quite well by the procedure which we have intended to optimize over the
course of the manuscript.



Chapter 6

Conclusion and Outlook

Let us now shortly reflect on both the achievements within the present treatise and possible
enhancements of our theory developed here in order to either improve the established results
or cover corresponding topics in greater generality:

We have developed a Proximal Newton method for function space problems which works
under very general assumptions with respect to convexity and differentiability of the objective
functional. Global convergence of the method does not rely on the strong convexity of either the
smooth or the non-smooth part of the objective due to a quadratic norm regularization strategy
within the update step computation subproblems. Furthermore, we have been able to verify
local accelerated convergence of the method in case the functional to be minimized exhibits
additional convexity properties close to stationary points of the problem. Establishing this
result has been made possible by the consideration of adequate semi-smoothness assumptions
together with a generalized interpretation of scaled proximal mappings as operators originating
in the dual space of the underlying Hilbert space. In particular, our theory depends on the
choice of the second order bilinear forms Hx as Newton-derivatives of the Lipschitz-continuous
derivative of the smooth part. This rather restrictive property can under adequate assumptions
be generalized to the so-called Dennis-Moré condition (3.1.21) which has not been pursued in
our context.

For the transition to local convergence of our method, we have introduced the novel con-
cept of second order semi-smoothness for continuously differentiable operators. Similar to
existing notions of semi-smoothness, the definition uses an approximation property which is
adequately lifted to the second order level for the evaluation of corresponding models in the
context. Furthermore, we have established a general calculus for the concept and have given
sufficient requirements for the second order semi-smoothness of adequately defined superposi-
tion operators. These theoretical aspects of the manuscript can be augmented by considering
the question of the concrete choice of the generalized second order differential for a given
example and providing strategies to then show second order semi-smoothness with respect
to it. The treatment of these aspects has been pursued for “first order” semi-smoothness in
the general example of non-linear complementarity problems in [111] and following a similar
approach looks promising also in the present scenario.

Coming back to algorithmic deliberations, our alternative sufficient decrease criterion for
numerical robustness allows for very accurate identification of limit points due to computa-
tional evaluability also for very small update steps. This modification of the basic Proximal
Newton algorithm can be considered a powerful tool which significantly improves the conver-
gence behavior for concrete implementations of our method. In contrast to these advantageous
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properties and the well-established theory for the alternative formulation, concrete implemen-
tations sometimes encounter problems with satisfying the criterion as we have already elabo-
rated on towards the end of Section 5.3. To this end, a more extensive investigation regarding
the switch of corresponding characterizations for sufficient decrease in demanding scenarios
might provide a better understanding and even yield algorithmic improvements of the concept.

Furthermore, we have modified our method for algorithmic efficiency with the introduc-
tion of inexactness to update step computations. For that reason, we have payed particular
attention to peculiarities with respect to both the composite structure of the minimization
problem and the function space setting which we find ourselves in. In particular, we have
designed inexactness criteria which can be evaluated efficiently, save a considerable amount of
computational effort, and preserve the favorable convergence properties of the exact method.

As far as the choice of algorithmic parameters is concerned, we have introduced adaptive
strategies which use the structure of the underlying minimization problem. The controller
strategy takes inspiration from time step size choice for numerics of ODEs and works with
estimated relative error quantities between the second order model and actual non-linearities of
the composite objective functional in order to adjust the regularization parameter for the next
trial step computation. Similarly, the remainder term strategy in an intuitive way estimates
the regularization parameter as a suitable prefactor for capturing non-linearities which are
not incorporated into the second order model used for update step computation. Both of
these approaches conceptually work very well in practice but are slightly outperformed by the
heuristic alternative in the test scenarios which we have considered. This behavior should be
investigated across a greater variety of applications which might yield a better understanding
of possible drawbacks and enable the determination of optimal meta-parameter configurations.

The main application in mind for the newly developed function space algorithm has been
the solution of time-incremental minimization problems for rate-independent finite strain plas-
ticity. We have explained all of the underlying concepts for this specific problem in sufficient
generality and have elucidated the contribution of the individual components of the model to
the existence of solutions to time-incremental and time-continuous problems. Furthermore,
we have elaborated on their importance for the significance of the ensuing physical descrip-
tion for real world phenomena. As is to be expected, there is a conflict of interest between
theory and application but we have tried to pursue both aspects equally and bring them into
accordance for our formulation. An augmentation of our work could rigorously incorporate
the concept of plastic spin with respect to both modeling theory of elasto-plastic media and
the implementation of the corresponding solution algorithm.

With the restriction to spinless plasticity, however, we have successfully reformulated the
time-incremental minimization problems of the corresponding rate-independent framework into
an optimization problem which can be handled by our Proximal Newton method. The results
from the application of the latter to that problem have fulfilled our expectations and verify
our procedure as an efficient way to simulate the behavior of plastic materials at finite strain.
Room for improvement is still present in assembling second order models of the objective
function in short time which has not been considered in this manuscript.

In order to make the scheme of our Proximal Newton method applicable to further problem
classes, the incorporation of equality constraints to the composite minimization problem sug-
gests itself to be a natural extension. Even though this augmentation will surely be non-trivial
both with respect to theoretical deliberations and numerical implementations, composite step
methods have proven themselves in that regard across a wide field of applications, cf. e.g. [58,
94], and constitute a promising perspective for future scientific work in that direction.
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Specifications of the Implementation

The Appendix chapter consists of the following contents: At first, in Section A.1, we give an
elaborate description of the TNNMG method which is used in order to solve the update step
computation subproblems across all numerical investigations of the manuscript. Afterwards,
Section A.2 concerns the projection algorithm used for mapping matrices to elements from
SL(3)+

sym in the spatial discretization for the finite strain plasticity problem in Section 5.1.
The specifications on the test machine, on which the calculations have been conducted, can be
found in Section A.3. At last, we give instructions for recomputing the data evaluated across
the present treatise in the data availability statement of Section A.4.

A.1 A Truncated Non-Smooth Newton Multigrid Method

As we have pointed out several times throughout the derivation and numerical investigation
of our inexact Proximal Newton method, a central ingredient for concrete implementations of
the algorithm is a (at least linearly convergent) subproblem solver for finding update steps.
For this algorithmic component, we want to use as much structure of our composite objective
functional as possible. For the applications of our method which we have mind, the main
structural peculiarity to be exploited is so-called block-separability.

The subproblem solver which we take advantage of is the so-called Truncated Non-smooth
Newton MultiGrid method (TNNMG) which constitutes a robust and efficient solution algo-
rithm for a wide range of block-separable convex minimization problems. Originally, it has
been designed with the intent to use it for such problems stemming from discretizations of
non-linear and non-smooth partial differential equations. We will shortly elaborate on its con-
ceptual idea and main algorithmic components here, and refer to the overview from [33] for a
detailed description and convergence analysis. Our deliberations here in particular mirror the
ones from [33].

The kind of minimization problems which TNNMG is tailored to is of the following form:
Given an objective functional J : Rn →]−∞,∞], we assume the additive split

J = J0 + ϕ (A.1.1)

where J0 : Rn → R is coercive and (at least) continuously differentiable, and ϕ : R→]−∞,∞] is
block separable. Block separability is characterized by the existence of functionals ϕi : Rni →
] − ∞,∞] for i ∈ {1, ...,M}, M ∈ N, that are convex, proper, lower semi-continuous, and
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continuous on their domains such that

ϕ(v) =
M∑
i=1

ϕi(vi) (A.1.2)

holds for all v ∈ Rn with correspondingly restricted vi ∈ Rni . Apparently, also
∑M

i=1 ni = n
is necessary here. For a detailed analysis as in [33], it is necessary to give precise defini-
tions of compatible Euclidean space decompositions and block separability with respect to such
decompositions but for our introductory elaborations here the above formulation is sufficient.

While in previous investigations, TNNMG has been successfully employed for the solution
of contact and friction models in solid mechanics (cf. [50],[81]), certain models of porous media
flow (cf. [8]), Allen-Cahn-type phase-field models (cf. [48]), and even small strain elasto-
plasticity (cf. [92]), we cannot directly solve a discretized version of our global homotopy step
problem from Section 2.2.4 using TNNMG since, in general, convexity of the stored energy
functional E is not ensured. Therefore, another method is necessary to create a series of
regularized convex subproblems which can be handled by TNNMG even though they do not
have the motivational PDE-background. Additionally, TNNMG is a purely algebraic solver
formulated for finite dimensional minimization problems only. To this end, we consider the
thoroughly described inexact Proximal Newton method as an iterative regularizing procedure
to fulfill this task.

The TNNMG method can be viewed as a combination of local relaxation methods with a
generalized Newton approach. Generally, a non-linear pre-smoother is followed by an inexact
linear corrector step of flexible definition – even though typically given by one multigrid iter-
ation. In particular, it achieves multigrid-like convergence behavior (, i.e., mesh-independent
convergence rates and linear time complexity,) on a wide range of difficult non-linear problems
without regularizing them or involving parameters that would need to be selected manually.

Let us now give an algorithmic overview of the TNNMG method as introduced in [33,
Section 3] and give a short explanation of each algorithmic component afterwards. There,
for given initial iterate u0 ∈ domJ and iteration number ν ∈ N ∪ {0}, one update step is
determined as follows:

As can be retraced in the scheme from Algorithm 13, the update step computation for
TNNMG generally consists of three main components: The first one is non-linear pre-smoothing
which can in this formulation be understood as a non-linear Gauß-Seidel iteration. More specif-
ically, in (A.1.3) the objective functional J is minimized subsequently on search spaces Vk
which stem from the decomposition of the domain space Rn according to block-separability
of J . In our notation here, we would have Vk := Rnk and thereby simply minimize J with
respect to the corresponding components of its arguments, adding up the respective solutions
to the so-called intermediate iterate uν+1/2. The approximate equality to the minimizer in
(A.1.3) suggests that even inexact solution of the corresponding minimization problem is suffi-
cient for satisfying convergence results. Details on this technically delicate matter and possible
definitions of suitable solvers for (A.1.3) have been discussed in [33, Section 5].
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Algorithm 13: Update Step Computation for the TNNMG Method

Input: Current iterate uν

begin Non-Linear Pre-Smoothing
Set wν,0 := uν ;
for k = 1,...,M do

Compute wν,k ∈ wν,k−1 + Vk as

wν,k :≈ arg min
v∈wν,k−1+Vk

J (v) ; (A.1.3)

end
Set uν+1/2 := wν,m ;

end
begin Truncated Linear Correction

Determine large subspace Wν ⊂ Rn such that J
∣∣
uν+1/2+Wν

is twice
continuously differentiable near uν+1/2 ;
Compute vν ∈Wν as

vν :≈ −
(
J ′′
(
uν+1/2

)∣∣
Wν×Wν

)−1(J ′(uν+1/2
)∣∣
Wν

)
; (A.1.4)

end
begin Post-Processing

Compute the projection ṽν := ΠdomJ−uν+1/2(vν) ;
Compute step length ρν ∈ [0,∞[ such that J

(
uν+1/2 + ρν ṽ

ν
)
≤ J

(
uν+1/2

)
;

end
Output: Set uν+1 := uν+1/2 + ρν ṽ

ν ;

Afterwards, we compute the truncated linear correction which under adequate assump-
tions enables fast convergence of the method. It consists of an (inexact) Newton step in an
iteration-dependent subspace Wν of Rn on which the objective functional J is sufficiently
regular. Apparently, depending on the problem, the practical construction of this subspace
can be technical. We note here that the subspaces do not have to be chosen optimally for the
convergence results from [33], i.e., we do not have to find the largest subspace possible such
that J is twice continuously differentiable on(

uν+1/2 +Wν

)
∩Bε

(
uν+1/2

)
for some ε > 0 but merely need one that allows for a well-defined Newton problem in (A.1.4).
If J0 from the splitting (A.1.1) is a C2-functional, Wν can be straight-forwardly defined
using a product space of Wν,k ⊂ Rnk on which the ϕk from the block-separability condition
(A.1.2) are locally smooth. A possibility resulting from this point of view is disabling entire
so-called inactive blocks where the ϕk are non-smooth and are thus not considered for the
computation of the Newton correction. For functionals as considered across all of the numerical
investigations in this manuscript, i.e., where the non-smoothness is a block-wise norm function,
this procedure provides the optimal smooth subspace in the sense explained beforehand. More
general examples and more involved constructions of suitable subspaces for the truncated linear
correction are considered in [33, Section 6].
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At last, simply adding the linear coarse grid correction vν to the intermediate iterate
uν+1/2 in order to obtain the new iterate might lead to infeasibility since the definition of the
former is not aware of the domain of J . For this reason, a suitable post-processing procedure
is often necessary. In order to both ensure feasibility of the updated iterate and to avoid
very small damping parameters which might lead to poor convergence, the theoretical update
uν+1/2 + vν is first projected onto the domain of J and the ensuing update step is then scaled
such that objective decrease is achieved. This stands in contrast to mere scaling of the Newton
update where aforementioned small damping parameters might appear. Across our numerical
investigations, however, the effective domain of the objective functional is never restricted
since values equal to ∞ are not possible for our concrete definitions of the respective J . As a
consequence, post-processing procedures do not feature non-trivial projection steps and only
consist of adequately scaling the linear correction from before such that objective decrease is
achieved.

A.2 Projection Algorithm onto the Special Linear Group

The algorithm is inspired by [26] and starts with a quasi-projection step in the direction cof(A).
Note that the extrinsic derivative ∇ det(·) = cof(·) is Frobenius-orthogonal to the polynomial
restriction det(·) = 1 of the manifold P. Therefore, the initial iterate is given by

P̃ 0 := A+ γ0 cof(A) = A+ γ0 det(A)A−T ,

with γ0 ∈ R such that det(P̃ 0) = 1, and hence P̃ 0 ∈ P. From there, we compute a sequence
(P̃ i)i∈N in P with the following procedure: For each P̃ i ∈ P, let Q̃i denote the closest point to
A in the tangential space TP̃ iP. Then, the next quasi-projection is done in direction Q̃i −A.
For the next iterate P̃ i+1, find a γi+1 ∈ R such that

P̃ i+1 := A+ γi+1(Q̃i −A)

is again in P. Although we have no convergence proof at hand, we observe similar convergence
properties as those in [26]. In practice, the algorithm stopped after at most four iterations
in our simulations with the criterion

∥∥P̃ i+1 − P̃ i
∥∥
F
≤ 10−8. For an efficient implementation,

note that it is not necessary to compute the points Q̃i explicitly. Since the direction Q̃i − A
is orthogonal to TP̃ iP, we can directly use the direction cof(P̃ i) and compute the next iterate
by

P̃ i+1 := A+ γi+1 cof(P̃ i) .

The γi+1 can be computed directly by solving a cubic equation and afterwards choosing the
solution with the smallest absolute value.

A.3 Test Machine Specifications

All tests are executed single-threaded on a Intel(R) Core(TM) i5-8265U CPU with clock
frequency fixed to 1600 Mhz in order to avoid overheating and to ensure comparability of
all test runs. The test machine runs the current snapshot of Debian 12, including updates as
of January 30, 2023. The C++ Codes are compiled with the flags -03 -DNDEBUG using the
gcc compiler in version 12.2.0.
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A.4 Data Availability Statement

The easiest way to access the data evaluated over the course of the numerical investigations of
our method is to directly recompute the results under the configuration which we have used.
Let us give a short instruction on how to download the respective C++-codes together with
the libraries required for conducting the tests in a docker image:20

First, create a directory where you save the docker file available from the link

Dockerfile Link

under the name Dockerfile.txt .21 Afterwards, open a terminal in that directory and use the
command

sudo docker image build -t dissertation-dune-docker .

(including the dot at the end) in order to create a virtual machine in which you can reproduce
the directory structure which we have used in order to conduct the numerical tests. When
encountering an error message similar to

fatal: unable to access ’...’: Could not resolve host: ...

just restart the procedure by reusing the command above. After successfully having created
the docker image, you can run it in interactive terminal mode by using the command

sudo docker run -it dissertation-dune-docker:latest

which lets you end up in the terminal view of the desired directory structure. The directories
dune-proxnewton-modelproblems and dune-plasticity contain the files necessary in order to
reproduce the computations from the respective sections of numerical results. The structure
is straight-forward and directory names within src/Benchmarks make it easy to navigate to
the test which has to be conducted. Having reached the desired directory, you can then use
the executable run.sh-file in order to start the computation.

Apparently, also all of the code used for the computations can be found and examined
within the docker image. Thus, you can also easily implement changes to the existing methods
and compile them using the make command in the respective build-release directory.

After having completed your numerical research on Proximal Newton methods, you can
log out from the docker image using Ctrl.+d.

20Obviously, this requires having installed docker which can be accessed by using sudo apt install docker.io .
21For printed versions: The full link is https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity-snapshot-

poetzl/-/blob/82551a1fcaa32a7092c6e4e8e05d959c5a6b7d01/Dockerfile.

https://gitlab.mn.tu-dresden.de/jaap/dune-plasticity-snapshot-poetzl/-/blob/82551a1fcaa32a7092c6e4e8e05d959c5a6b7d01/Dockerfile
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Several parts of this thesis are contained in the publications above. The deliberations on
dual scaled proximal mappings and ensuing algorithmic developments in Section 3.2 have first
been considered in [84]. The latter work also in parts contains the introduction to the notion
of second order semi-smoothness which we have elaborated on in a more detailed fashion here
in Section 3.2.4. The alternative sufficient decrease criterion for numerical robustness close to
optimal solutions from Section 3.2.6 has not been a part of this publication.

The submitted preprint [83] considers the inexact computation of update steps and thereby
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merical investigations conducted for the influence of inexactness for the present manuscript.
Also in that regard, the consideration of the alternative sufficient decrease criterion, cf. Sec-
tion 4.1.5, crucially improved the results from the standpoint of both convergence analysis and
numerical investigations for the version in this manuscript.
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