38 research outputs found

    Searching for selective scaffolds against Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase

    Get PDF
    Malaria is a parasitic disease caused by Plasmodium spp., being one of the major causes of death worldwide with two-hundred million new infections and hundreds of thousands of deaths in 2015. Despite the important advances in its prevention and treatment, its resistance to current drug therapies is still a serious risk in its eradication. There is urgency in finding novel targets and drugs operating by novel mechanisms, avoiding cross-resistance to classical antimalarials. In this context, the bifunctional enzyme Glucose-6- phosphate dehydrogenase 6-phosphogluconolactonase appears to be a promising therapeutic target due to its crucial role in regulating the PPP pathway (pentose phosphate pathway), which is the major source of redox potential in Plasmodium falciparum. In the last few years, our group detected a specific mutation between the human and the Plasmodium falciparum form in the binding site of Glucose-6-phosphate (G6P), the endogenous ligand of Glucose-6-phosphate dehydrogenase (G6PD). This mutation involves the substitution of an Arginine (human) by an Aspartate (parasite), which allowed us to create a validated in-house homology model of PfG6PD. Based on this result, the group has focused their efforts, through different molecular modelling techniques, in the discovery of selective scaffolds against PfG6PD. Current efforts address the development of a complete structural model of the bifunctional enzyme, which may offer novel opportunities to develop molecules capable of inhibiting this relevant enzyme

    Glutathione peroxidase contributes with heme oxygenase-1 to redox balance in mouse brain during the course of cerebral malaria

    Get PDF
    Oxidative stress has been attributed both a key pathogenic and rescuing role in cerebral malaria (CM). In a Plasmodium berghei ANKA murine model of CM, host redox signaling and functioning were examined during the course of neurological damage. Host antioxidant defenses were early altered at the transcriptional level indicated by the gradually diminished expression of superoxide dismutase-1 (sod-1), sod-2, sod-3 and catalase genes. During severe disease, this led to the dysfunctional activity of superoxide dismutase and catalase enzymes in damaged brain regions. Vitagene associated markers (heat shock protein 70 and thioredoxin-1) also showed a decaying expression pattern that paralleled reduced expression of the transcription factors Parkinson disease 7, Forkhead box O 3 and X-box binding protein 1 with a role in preserving brain redox status. However, the oxidative stress markers reactive oxygen/nitrogen species were not accumulated in the brains of CM mice and redox proteomics and immunohistochemistry failed to detect quantitative or qualitative differences in protein carbonylation. Thus, the loss of antioxidant capacity was compensated for in all cerebral regions by progressive upregulation of heme oxygenase-1, and in specific regions by early glutathione peroxidase-1 induction. This study shows for the first time a scenario of cooperative glutathione peroxidase and heme oxygenase-1 upregulation to suppress superoxide dismutase, catalase, heat shock protein-70 and thioredoxin-1 downregulation effects in experimental CM, counteracting oxidative damage and maintaining redox equilibrium. Our findings reconcile the apparent inconsistency between the lack of oxidative metabolite build up and reported protective effect of antioxidant therapy against CM.Ministerio de Educación y Ciencia (España)Universidad Complutense de MadridDepto. de Bioquímica y Biología MolecularFac. de FarmaciaTRUEpu

    Searching for Selective Scaffolds against Plasmodium falciparum Glucose-6-Phosphate Dehydrogenase 6-Phosphogluconolactonase

    Get PDF
    Malaria is a parasitic disease caused by Plasmodium spp., being one of the major causes of death worldwide with two-hundred million new infections and hundreds of thousands of deaths in 2015. [...

    EstandarizaciĂłn de un modelo murino de malaria cerebral en fases clĂ­nicas para la evaluaciĂłn de terapias antimalĂĄricas y de rescate

    Get PDF
    Cerebral malaria (CM) is included among the more devastating SNC infectious diseases due to its high mortality and severe sequelae in children. Currently, no specific pharmacological treatment for CM or rescue therapy for neurocognitive residual injury are available, and research on this topic has been hampered due to the lack of well-defined experimental models. In the present study we have characterized the CM murine infection phenotypically, evaluating clinical parameters, which allowed establishing a model encompassing four distinct disease stages. This protocol provides the experimental framework to study adjunctive neuroprotective therapies that may prevent and/or eliminate the neurological sequelae in individuals surviving CM.Entre las enfermedades infecciosas mĂĄs devastadoras del SNC se incluye la MC, debido a la alta mortalidad y las graves secuelas que ocasiona. Actualmente, no existe tratamiento farmacolĂłgico especĂ­fico, ni de rescate de lesiones neurocognitivas residuales, y su desarrollo estĂĄ limitado por la inexistencia de modelos experimentales bien definidos. En este trabajo se caracterizĂł fenotĂ­picamente la infecciĂłn en un modelo murino de MC evaluando parĂĄmetros clĂ­nicos que permitieron establecer cuatro estadios de la enfermedad. Este protocolo proporciona el marco experimental adecuado para estudiar terapias coadyuvantes neuroprotectoras que puedan prevenir y/o eliminar las secuelas neurolĂłgicas presentes en los individuos que sobreviven

    Hypothyroidism confers tolerance to cerebral malaria

    Get PDF
    The modulation of the host’s metabolism to protect tissue from damage induces tolerance to infections increasing survival. Here, we examined the role of the thyroid hormones, key metabolic regulators, in the outcome of malaria. Hypothyroidism confers protection to experimental cerebral malaria by a disease tolerance mechanism. Hypothyroid mice display increased survival after infection with Plasmodium berghei ANKA, diminishing intracranial pressure and brain damage, without altering pathogen burden, blood-brain barrier disruption, or immune cell infiltration. This protection is reversed by treatment with a Sirtuin 1 inhibitor, while treatment of euthyroid mice with a Sirtuin 1 activator induces tolerance and reduces intracranial pressure and lethality. This indicates that thyroid hormones and Sirtuin 1 are previously unknown targets for cerebral malaria treatment, a major killer of children in endemic malaria areas.This work was funded by grants SAF2017-83289-R to S.A. and A.A., SAF2017-90604REDT to A.A. supported by the The European Regional Development Fund (FEDER) and BIO2016-77430-R to J.M.B. from the Ministerio de Economía y Competitividad; B2017/BMD-3724 to S.A. and A.A. from the Comunidad de Madrid; and CIBERONC CB/16/00228 to A.A. from the Instituto de Salud Carlos III

    Long-Term Outcomes After Autologous Versus Allogeneic Stem Cell Transplantation in Molecularly-Stratified Patients With Intermediate Cytogenetic Risk Acute Myeloid Leukemia: A PETHEMA Study

    Get PDF
    PETHEMA (Programa Español de Tratamientos en Hematología) and GETH (Grupo Espa~nol de Trasplante Hematopoyético y Terapia Celular) Cooperative GroupsAcute myeloid leukemia (AML) with intermediate risk cytogenetics (IRcyto) comprises a variety of biological entities with distinct mutational landscapes that translate into differential risks of relapse and prognosis. Optimal postremission therapy choice in this heterogeneous patient population is currently unsettled. In the current study, we compared outcomes in IRcyto AML recipients of autologous (autoSCT) (n = 312) or allogeneic stem cell transplantation (alloSCT) (n = 279) in first complete remission (CR1). Molecular risk was defined based on CEBPA, NPM1, and FLT3-ITD mutational status, per European LeukemiaNet 2017 criteria. Five-year overall survival (OS) in patients with favorable molecular risk (FRmol) was 62% (95% confidence interval [CI], 50-72) after autoSCT and 66% (95% CI, 41-83) after matched sibling donor (MSD) alloSCT (P = .68). For patients of intermediate molecular risk (IRmol), MSD alloSCT was associated with lower cumulative incidence of relapse (P < .001), as well as with increased nonrelapse mortality (P = .01), as compared to autoSCT. The 5-year OS was 47% (95% CI, 34-58) after autoSCT and 70% (95% CI, 59-79) after MSD alloSCT (P = .02) in this patient subgroup. In a propensity-score matched IRmol subcohort (n = 106), MSD alloSCT was associated with superior leukemia-free survival (hazard ratio [HR] 0.33, P = .004) and increased OS in patients alive 1 year after transplantation (HR 0.20, P = .004). These results indicate that, within IRcyto AML in CR1, autoSCT may be a valid option for FRmol patients, whereas MSD alloSCT should be the preferred postremission strategy in IRmol patients.Supported by a Río Hortega academic clinical fellowship (CM19/00194) from the Instituto de Salud Carlos III, Spain (E.R.A.). Additional funding has been provided by CIBERONC grants to J.P.S. (CB16/12/00480), M.M.S. (CB16/12/00369) and B.V. (CB16/12/00233)

    COVID-19 Severity and Survival over Time in Patients with Hematologic Malignancies: A Population-Based Registry Study

    Get PDF
    Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February–June 2020; n = 769 (66%)) and later (July 2020–February 2021; n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11–0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77; 2.01–3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34; 0.22–0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12; 0.81–1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.Depto. de MedicinaFac. de MedicinaTRUEFundaciĂłn Madrileña de HematologĂ­a y HemoterapiaFundaciĂłn Leucemia y LinfomaAsociaciĂłn Madrileña de HematologĂ­a y Hemoterapiapu

    Influence of tructure on the properties of polypropylene copolymers and termopolymers

    Get PDF
    Several Ziegler-Natta copolymers of iPP with ethylene or 1-butene, and terpolymers with both counits have been characterized, devoting special attention to the effect of composition and processing conditions on the crystal structure and final properties. DSC and X-ray diffraction were used to study the polymorphism of copolymers and terpolymers. Comonomer insertion interrupts the isotactic sequences, acting as a structural defect, and the formation of g form is enhanced. Moreover, crystallinity decreases and crystal structure is modified. Comonomer type and concentration determine the extent of these modifications, resulting in important changes in macroscopic properties. In particular, the excellent optical properties of the analyzed terpolymers make them very attractive for applications such as transparent film or packagingThe financial support of MINECO (projects CYTED 311RT0417 and MAT2016-79869-C2-1-P (AEI/FEDER, UE)), is gratefully acknowledgedPeer reviewe

    Differential immune response associated to malaria outcome is detectable in peripheral blood following Plasmodium yoelii infection in mice.

    Get PDF
    Malaria infection in humans elicits a wide range of immune responses that can be detected in peripheral blood, but we lack detailed long-term follow-up data on the primary and subsequent infections that lead to naturally acquired immunity. Studies on antimalarial immune responses in mice have been based on models yielding homogenous infection profiles. Here, we present a mouse model in which a heterogeneous course of Plasmodium yoelii lethal malaria infection is produced in a non-congenic ICR strain to allow comparison among different immunological and clinical outcomes. Three different disease courses were observed ranging from a fatal outcome, either early or late, to a self-resolved infection that conferred long-term immunity against re-infection. Qualitative and quantitative changes produced in leukocyte subpopulations and cytokine profiles detected in peripheral blood during the first week of infection revealed that monocytes, dendritic cells and immature B cells were the main cell subsets present in highly-parasitized mice dying in the first week after infection. Besides, CD4(+)CD25(high) T cells expanded at an earlier time point in early deceased mice than in surviving mice and expressed higher levels of intracellular Foxp3 protein. In contrast, survivors showed a limited increase of cytokines release and stable circulating innate cells. From the second week of infection, mice that would die or survive showed similar immune profiles, although CD4(+)CD25(high) T cells number increased earlier in mice with the worst prognosis. In surviving mice the expansion of activated circulating T cell and switched-class B cells with a long-term protective humoral response from the second infection week is remarkable. Our results demonstrate that the follow-up studies of immunological blood parameters during a malaria infection can offer information about the course of the pathological process and the immune response

    Screening for retroviruses and hepatitis viruses using dried blood spots reveals a high prevalence of occult hepatitis B in Ghana

    No full text
    Background: Recent advances in antiviral therapy show potential for a cure and/or control of most human infections caused by hepatitis viruses and retroviruses. However, medical success is largely dependent on the identification of the large number of people unaware of these infections, especially in developing countries. Dried blood spots (DBS) have been demonstrated to be a good tool for collecting, storing and transporting clinical specimens from rural areas and limited-resource settings to laboratory facilities, where viral infections can be more reliably diagnosed. Methods: The seroprevalence and virological characterization of hepatitis B virus (HBV) and hepatitis C virus (HCV), as well as human retroviruses (HIV-1, HIV-2, human T-cell leukaemia virus type 1 [HTLV-1] and human T-cell leukaemia virus type 2 [HTLV-2]), were investigated in clinical specimens collected from DBS in Ghana. Results: A total of 305 consecutive DBS were collected. A high prevalence of chronic HBV (8.5%) and occult hepatitis B (14.2%) was found, whereas rates were lower for HIV-1, HTLV-1 and HCV (3.2%, 1.3% and 0.6%, respectively). HIV-2 and HTLV-2 were absent. CRF02_AG was the predominant HIV-1 subtype, whereas genotype E was the most frequent HBV variant. Conclusions: DBS are helpful in the diagnosis and virological characterization of hepatitis and retrovirus infections in resource-limited settings. The high rate of hepatitis B in Ghana, either overt or occult, is noteworthy and confirms recent findings from other sub-Saharan countries. This should encourage close clinical follow up and antiviral treatment assessment in this population, as well as universal HBV vaccine campaigns
    corecore