5,514 research outputs found

    Regulación funcional del receptor de quimiocinas CXCR4 por proteínas asociadas al citoesqueleto de actina

    Full text link
    Tesis doctoral inédita realizada en la Universidad Autónoma de Madrid, Facultad de Medicina. Departamento de Bioquímica. Fecha de lectura:18 de Junio de 201

    Bounded distortion homeomorphisms on ultrametric spaces

    Get PDF
    It is well-known that quasi-isometries between R-trees induce power quasi-symmetric homeomorphisms between their ultrametric end spaces. This paper investigates power quasi-symmetric homeomorphisms between bounded, complete, uniformly perfect, ultrametric spaces (i.e., those ultrametric spaces arising up to similarity as the end spaces of bushy trees). A bounded distortion property is found that characterizes power quasi-symmetric homeomorphisms between such ultrametric spaces that are also pseudo-doubling. Moreover, examples are given showing the extent to which the power quasi-symmetry of homeomorphisms is not captured by the quasiconformal and bi-H\"older conditions for this class of ultrametric spaces.Comment: 20 pages, 1 figure. To appear in Ann. Acad. Sci. Fenn. Mat

    Reliability-based economic model predictive control for generalized flow-based networks including actuators' health-aware capabilities

    Get PDF
    This paper proposes a reliability-based economic model predictive control (MPC) strategy for the management of generalized flow-based networks, integrating some ideas on network service reliability, dynamic safety stock planning, and degradation of equipment health. The proposed strategy is based on a single-layer economic optimisation problem with dynamic constraints, which includes two enhancements with respect to existing approaches. The first enhancement considers chance-constraint programming to compute an optimal inventory replenishment policy based on a desired risk acceptability level, leading to dynamically allocate safety stocks in flow-based networks to satisfy non-stationary flow demands. The second enhancement computes a smart distribution of the control effort and maximises actuators’ availability by estimating their degradation and reliability. The proposed approach is illustrated with an application of water transport networks using the Barcelona network as the considered case study.Peer ReviewedPostprint (author's final draft

    Multiscale thermo-mechanical analysis of multi-layered coatings in solar thermal applications

    Get PDF
    Solar selective coatings can be multi-layered materials that optimize the solar absorption while reducing thermal radiation losses, granting the material long-term stability. These layers are deposited on structural materials (e.g., stainless steel, Inconel) in order to enhance the optical and thermal properties of the heat transfer system. However, interesting questions regarding their mechanical stability arise when operating at high temperatures. In this work, a full thermo-mechanical multiscale methodology is presented, covering the nano-, micro-, and macroscopic scales. In such methodology, fundamental material properties are determined by means of molecular dynamics simulations that are consequently implemented at the microstructural level by means of finite element analyses. On the other hand, the macroscale problem is solved while taking into account the effect of the microstructure via thermo-mechanical homogenization on a representative volume element (RVE). The methodology presented herein has been successfully implemented in a reference problem in concentrating solar power plants, namely the characterization of a carbon-based nanocomposite and the obtained results are in agreement with the expected theoretical values, demonstrating that it is now possible to apply successfully the concepts behind Integrated Computational Materials Engineering to design new coatings for complex realistic thermo-mechanical applications.Peer ReviewedPostprint (author's final draft

    Assessment of natural radiactivity from building materials in Spain

    Get PDF
    The industrial construction sector is very important in Spain. Building materials used in this industry are sources of radiation from natural radionuclides they contain. The aim of this work is to measure the natural radioactivity in building materials. The relevance of the contribution of natural radiation that they generate implies their analysis taking into account the limitations imposed by national and international regulations and legislations. The studies about this subject have increased notably during last years. This, probably, can be associated with the increase interest from natural radiation radiological risk on indoor exposure. Radioactivity of some building materials could be increase, during the manufacturing processes, as results of the addition of NORM products to improve their properties. All building materials have varying amounts of natural radionuclides. They belong to natural radionuclides of uranium (238U) and thorium (232Th) series, together with the radioactive isotope of potassium (40K). The concentration of the natural radioactivity in the selected cements and ceramics were conducted with a coaxial ReGe detector. The energy an absolute efficiency calibration of the spectrometer was made using a sample certificated by IAEA-312 and IAEA-385. Software use to analyze the spectrum is the Cenie-2000 v.2.0 Canberra Nuclear. The activity concentrations from 226Ra, 232Th and 40K respectively from samples of Portland cements, tiles, ceramic and natural stones were determined. To compare the radiological effects of the materials used in the building which contain 226Ra, 232Th and 40K, a common index is required to obtain the sum of activities and according to RP 112 the absorbed dose in air can be calculated. Some indices dealing with the assessment of the excess gamma radiation arising from building materials such as Radium Equivalent Activity (Raeq); External Hazard Index (Hex),;the Activity Concentration Index(I); Absorbed Gamma Dose Rate in indoor air (D); and Annual Effective Dose Equivalent (AEDE). In this paper 150 samples from granitic, calcareous, sedimentary zones of Spain have been evaluated Concentration of natural radionuclides (226Ra, 232Th and 40K) are in usual range (except few exceptions) and below maximal permitted values, so that examined materials could be used for construction of new buildings (for interior and external works) as well as for covering of pavements, floors, etc.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    High-temperature mechanical behavior of polycrystalline yttrium-doped barium cerate perovskite

    Get PDF
    The high-temperature mechanical properties of the mixed ionic-electronic conductor perovskite BaCe0.95Y0.05O3-δ with average grain size of 0.40μm have been studied in compression between 1100 and 1300°C in air at different initial strain rates. The true stress-true strain curves display an initial stress drop, followed by an extended steady-state stage. As the temperature decreases and/or the strain rate increases, there is a transition to a damage-tolerant strain-softening stage and eventually to catastrophic failure. Analysis of mechanical and microstructural data revealed that grain boundary sliding is the primary deformation mechanism. The strength drop has been correlated with the growth of ultrafine grains during deformation, already present at grain boundaries and triple grain junctions in the as-fabricated material.Ministerio de Ciencia e Innovación MAT2009-13979-C03-0

    A Mixed Data-Based Deep Neural Network to Estimate Leaf Area Index in Wheat Breeding Trials

    Get PDF
    Remote and non-destructive estimation of leaf area index (LAI) has been a challenge in the last few decades as the direct and indirect methods available are laborious and time-consuming. The recent emergence of high-throughput plant phenotyping platforms has increased the need to develop new phenotyping tools for better decision-making by breeders. In this paper, a novel model based on artificial intelligence algorithms and nadir-view red green blue (RGB) images taken from a terrestrial high throughput phenotyping platform is presented. The model mixes numerical data collected in a wheat breeding field and visual features extracted from the images to make rapid and accurate LAI estimations. Model-based LAI estimations were validated against LAI measurements determined non-destructively using an allometric relationship obtained in this study. The model performance was also compared with LAI estimates obtained by other classical indirect methods based on bottom-up hemispherical images and gaps fraction theory. Model-based LAI estimations were highly correlated with ground-truth LAI. The model performance was slightly better than that of the hemispherical image-based method, which tended to underestimate LAI. These results show the great potential of the developed model for near real-time LAI estimation, which can be further improved in the future by increasing the dataset used to train the model

    Root-to-Shoot Hormonal Communication in Contrasting Rootstocks Suggests an Important Role for the Ethylene Precursor Aminocyclopropane-1-carboxylic Acid in Mediating Plant Growth under Low-Potassium Nutrition in Tomato

    Get PDF
    Selection and breeding of rootstocks that can tolerate low K supply may increase crop productivity in low fertility soils and reduce fertilizer application. However, the underlying physiological traits are still largely unknown. In this study, 16 contrasting recombinant inbred lines (RILs) derived from a cross between domestic and wild tomato species (Solanum lycopersicum × Solanum pimpinellifolium) have been used to analyse traits related to the rootstock-mediated induction of low (L, low shoot fresh weight) or high (H, high shoot fresh weight) vigor to a commercial F1 hybrid grown under control (6 mM, c) and low-K (1 mM, k). Based on hormonal and ionomic composition in the root xylem sap and the leaf nutritional status after long-term (7 weeks) exposure low-K supply, a model can be proposed to explain the rootstocks effects on shoot performance with the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) playing a pivotal negative role. The concentration of this hormone was higher in the low-vigor Lc and Lk rootstocks under both conditions, increased in the sensitive HcLk plants under low-K while it was reduced in the high-vigor Hk ones. Low ACC levels would promote the transport of K vs. Na in the vigorous Hk grafted plants. Along with K, Ca, and S, micronutrient uptake and transport were also activated in the tolerant Hk combinations under low-K. Additionally, an interconversion of trans-zeatin into trans-zeatin riboside would contribute to decrease ACC in the tolerant LcHk plants. The high vigor induced by the Hk plants can also be explained by an interaction of ACC with other hormones (cytokinins and salicylic, abscisic and jasmonic acids). Therefore, Hk rootstocks convert an elite tomato F1 cultivar into a (micro) nutrient-efficient phenotype, improving growth under reduced K fertilization.This research has received funding from the Spanish MINECO-FEDER (project AGL2014-59728-R) and from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 289365 (project ROOTOPOWER).USD 2,116.5 APC fee funded by the EC FP7 Post-Grant Open Access PilotPeer reviewe
    corecore