48 research outputs found

    Deep CO 2 soil inhalation / exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe

    Get PDF
    Knowledge of all the mechanisms and processes involved in soil CO2 emissions is essential to close the global carbon cycle. Apart from molecular diffusion, the main physical component of such CO2 exchange is soil ventilation. Advective CO2 transport, through soil or snow, has been correlated with the wind speed, friction velocity or pressure (p). Here we examine variations in subterranean CO2 molar fractions (χc) over two years within a vertical profile (1.5 m) in a semiarid ecosystem, as influenced by short-timescale p changes. Analyses to determine the factors involved in the variations in subterranean χc were differentiated between the growing period and the dry period. In both periods it was found that variations in deep χc (0.5–1.5 m) were due predominantly to static p variations and not to wind or biological influences. Within a few hours, the deep χc can vary by fourfold, showing a pattern with two cycles per day, due to p oscillations caused by atmospheric tides. By contrast, shallow χc (0.15 m) generally has one cycle per day as influenced by biological factors like soil water content and temperature in both periods, while the wind was an important factor in shallow χc variations only during the dry period. Evidence of emissions was registered in the atmospheric boundary layer by eddy covariance during synoptic pressure changes when subterranean CO2 was released; days with rising barometric pressure – when air accumulated belowground, including soil-respired CO2 – showed greater ecosystem uptake than days with falling pressure. Future assessments of the net ecosystem carbon balance should not rely exclusively on Fick's law to calculate soil CO2 effluxes from profile data.This research was funded by the Andalusian regional government project GEOCARBO (P08-RNM-3721) and GLOCHARID, including European Union ERDF funds, with support from Spanish Ministry of Science and Innovation projects Carbored-II (CGL2010-22193-C04-02), SOILPROF (CGL2011-15276-E) and CARBORAD (CGL2011-27493), as well as the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 244122

    Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

    Get PDF
    The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation (Rn) and soil heat fluxes (G) are treated differently, and typically only Rn is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal Rn and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal Rn, when only vertical Rn measurements are available.Andalusia Regional Government through projects P12RNM-2409Andalusia Regional Government through projects P10-RNM-6299Spanish Ministry of Economy and Competitiveness though projects CGL2010-18782, CGL2014-52838-C2-1-R (GEISpain) and CGL2013-45410-REuropean Community’s Seventh Framework Programme through INFRA-2010-1.1.16-262254 (ACTRIS),INFRA-2011-1-284274 (InGOS) and PEOPLE-2013-IOF-625988 (DIESEL) project

    Protein-ligand complex for structure-based design: impact on the affinity and antitumor activity of new tubulin ligands

    Get PDF
    Resumen del trabajo presentado en el XVIII Congreso de la Sociedad Española de Química Terapéutica, celebrado en Salamanca (España), del 23 al 26 de enero de 2018Microtubules, made of ¿ß¿tubulin heterodimers, are the key components of the cytoskeleton and play a crucial role in many cellular processes, such as cell motility, morphogenesis and mitosis.[1] Interference with microtubule dynamics induces cell cycle arrest during mitosis and triggers cell death. Compounds that interact with tubulin, especially those binding at the colchicine domain, have been deeply investigated as anticancer drugs due to their dual mechanism of action as antimitotics and as vascular disrupting agents.[2,3] Our research group has recently described a new family of colchicine¿domain binders, based on a cyclohexanedione skeleton, with potent antiproliferative activity against tumor and endothelial cells.[4] Moreover, to gain insight into the binding mode of these cyclohexanediones, we have determined the crystal structure of ¿ß¿tubulin in complex with our hit compound (TUB075). Based on this detailed information and by applying the affinity maps program cGRILL, a structurebased synthesis of new cyclohexanedione derivatives has been accomplished with the objective of improving their affinity for tubulin and their antitumor activity. Following this approach, we have obtained new compounds with potent antiproliferative activity against tumor and endothelial cells (IC50=8¿31 nM) and with the highest Kb value reported for compounds binding at the colchicine site in tubulin. Additional studies have shown that they arrest cell cycle at G2/M and disrupt a network of endothelial cells. Moreover they keep antiproliferative activity against cell lines overexpressing P¿gp, further supporting the potential of these compounds.The financial support of the Spanish MINECO (SAF2012‐39760‐C02‐01 and SAF 2015‐64629‐C2‐1‐R), Comunidad de Madrid (BIPEDD2; ref P2010/BMD‐2457) and the COST action CM1407 (to M J. P.P., S.L., M.O.S. and J.F.D.) is sincerely acknowledge

    Antivascular and antitumor properties of the tubulin-binding chalcone TUB091

    Get PDF
    We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3’’-amino-4’’-methoxyphenyl)-1-(5’-methoxy-3’,4’-methylendioxyphenyl)- 2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-tostraight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs.M-DC thanks the Fondo Social Europeo (FSE) and the JAE Predoc Programme for a predoctoral fellowship. This work has received the Ramón Madroñero award for young researchers (to M-DC and OB) in the XVII call www.impactjournals.com/oncotarget 17 Oncotarget sponsored by the Spanish Society of Medicinal Chemistry (SEQT). This project has been supported by the Spanish Ministerio de Economia y Competitividad (SAF2012- 39760-C02-01 to M-JC, M-JP-P, SV and E-MP; and BIO2013-42984-R to JFD), Comunidad de Madrid (BIPEDD2; ref. P2010/BMD-2457 to M-JC and J-FD), the Swiss National Science Foundation (310030B_138659 and 31003A_166608; to MOS). The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery” and COST action CM1470.Peer reviewe

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate.We acknowledge insightful discussions with Dario Papale and apologize for having a cappuccino after lunch. We further acknowledge Ulrich Weber for preparing the cappuccino. M.G. acknowledges funding by Swiss National Science Foundation project ICOS‐CH Phase 2 20FI20_173691. L.Š. was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program, grant number LM2015061, and by SustES‐Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). G.W. acknowledges support by the Austrian National Science Fund (FWF, project I03859) and the Province of South Tyrol (“Cycling of carbon and water in mountain ecosystems under changing climate and land use”). R.P. was supported by grants CGL2014‐55883‐JIN, RTI2018‐095297‐J‐I00 (Spain), and by a Humboldt Research Fellowship for Experienced Researchers (Germany). This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: Ameri‐Flux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet‐Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux‐TERN, TCOS‐Siberia, and USCCC. The ERA‐Interim reanalysis data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux, and AsiaFlux offices. Open access funding enabled and organized by Projekt DEAL

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    Get PDF
    Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.We thank all members of the Brain Metastasis Group and A. Chalmers, E. Wagner, O. Fernández-Capetillo, R. Ciérvide and A. Hidalgo for critical discussion of the manuscript; the CNIO Core Facilities for their excellent assistance; and Fox Chase Cancer Center Transgenic Facility for generation of S100A9 mice. We thank EuCOMM repository for providing S100A9 targeted embryonic stem cells. We also thank J. Massagué (MSKCC) for some of the BrM cell lines and M. Bosenberg (Yale) for the YUMM1.1 cell line. Samples from patients included in this study that provided by the Girona Biomedical Research Institute (IDIBGI) (Biobanc IDIBGI, B.0000872) are integrated into the Spanish National Biobanks Network and in the Xarxa de Bancs de Tumors de Catalunya (XBTC) financed by the Pla Director d’Oncologia de Catalunya. All patients consented to the storage of these samples in the biobank and for their use in research projects. This study was funded by MINECO (SAF2017-89643-R) (M.V.), Fundació La Marató de TV3 (201906-30-31-32) (J.B.-B., M.V. and A.C.), Fundación Ramón Areces (CIVP19S8163) (M.V.) and CIVP20S10662 (E.O.P.), Worldwide Cancer Research (19-0177) (M.V. and E.C.-J.M.), Cancer Research Institute (Clinic and Laboratory Integration Program CRI Award 2018 (54545) (M.V.), AECC (Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.), LAB AECC 2019 (LABAE19002VALI) (M.V.), ERC CoG (864759) (M.V.), Portuguese Foundation for Science and Technology (SFRH/bd/100089/2014) (C.M.), Boehringer-Ingelheim Fonds MD Fellowship (L.M.), La Caixa International PhD Program Fellowship-Marie Skłodowska-Curie (LCF/BQ/DI17/11620028) (P.G.-G.), La Caixa INPhINIT Fellowship (LCF/BQ/DI19/11730044) (A.P.-A.), MINECO-Severo Ochoa PhD Fellowship (BES-2017-081995) (L.A.-E.) and an AECC postdoctoral fellowship (POSTD19016PRIE) (N.P.). M.V. is an EMBO YIP member (4053). Additional support was provided by Gertrud and Erich Roggenbuck Stiftung (M.M.), Science Foundation Ireland Frontiers for the Future Award (19/FFP/6443) (L.Y.), Science Foundation Ireland Strategic Partnership Programme, Precision Oncology Ireland (18/SPP/3522) (L.Y.), Breast Cancer Now Fellowship Award with the generous support of Walk the Walk (2019AugSF1310) (D.V.), Science Foundation Ireland (20/FFP-P/8597) (D.V.), Paradifference Foundation (C.F.-T.), “la Caixa” Foundation (ID 100010434) (A.I.), European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 847648 (CF/BQ/PI20/11760029) (A.I.), Champalimaud Centre for the Unknown (N.S.), Lisboa Regional Operational Programme (Lisboa 2020) (LISBOA01-0145-FEDER-022170) (N.S.), NCI (R01 CA227629; R01 CA218133) (S.I.G.), Fundació Roses Contra el Càncer (J.B.-B.), Ministerio de Universidades FPU Fellowship (FPU 18/00069) (P.T.), MICIN-Agencia Estatal de Investigación Fellowships (PRE2020-093032 and BES-2017-080415) (P.M. and E. Cintado, respectively), Ministerio de Ciencia, Innovación y Universidades-E050251 (PID2019-110292RB-I00) (J.L.T.), FCT (PTDC/MED-ONC/32222/2017) (C.C.F.), Fundação Millennium bcp (C.C.F.), private donations (C.C.F.) and the Foundation for Applied Cancer Research in Zurich (E.L.R. and M.W.)

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests

    Get PDF
    © 2015, Springer Science+Business Media New York. Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation

    Ecological functioning in grass–shrub Mediterranean ecosystems measured by eddy covariance

    No full text
    Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (Reco). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, Reco and VE) we present, over a climate/ altitude range, the annual and interannual variability of NEE, GPP, Reco and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m−2 in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m−2 year−1), with precipitation as the main factor controlling annual GPP and Reco. Finally, the importance of VE as 0–23 % of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources
    corecore