22,610 research outputs found

    Extension of formal conjugations between diffeomorphisms

    Full text link
    We study the formal conjugacy properties of germs of complex analytic diffeomorphisms defined in the neighborhood of the origin of Cn{\mathbb C}^{n}. More precisely, we are interested on the nature of formal conjugations along the fixed points set. We prove that there are formally conjugated local diffeomorphisms ϕ,η\phi, \eta such that every formal conjugation σ^\hat{\sigma} (i.e. ησ^=σ^ϕ\eta \circ \hat{\sigma} = \hat{\sigma} \circ \phi) does not extend to the fixed points set Fix(ϕ)Fix (\phi) of ϕ\phi, meaning that it is not transversally formal (or semi-convergent) along Fix(ϕ)Fix (\phi). We focus on unfoldings of 1-dimensional tangent to the identity diffeomorphisms. We identify the geometrical configurations preventing formal conjugations to extend to the fixed points set: roughly speaking, either the unperturbed fiber is singular or generic fibers contain multiple fixed points.Comment: 34 page

    A Symmetry Adapted Approach to Molecular Spectroscopy: The Anharmonic Oscillator Symmetry Model

    Get PDF
    We apply the Anharmonic Oscillator Symmetry Model to the description of vibrational excitations in D3h{\cal D}_{3h} and Td{\cal T}_d molecules. A systematic procedure can be used to establish the relation between the algebraic and configuration space formulations, by means of which new interactions are found in the algebraic model, leading to reliable spectroscopic predictions. We illustrate the method for the case of D3h{\cal D}_{3h}-triatomic molecules and the Td{\cal T}_d Be-cluster.Comment: 12 pages, invited talk at XIX Oaxtepec Symposium on Nuclear Physics, January 199

    The enigmatic young object : Walker 90/V590 Monocerotis

    Get PDF
    Aims. We assess the evolutionary status of the intriguing object Walker 90/V590 Mon, which is located about 20 arcmin northwest of the Cone Nebula near the center of the open cluster NGC 2264. This object, according to its most recent optical spectral type determination (B7), which we confirmed, is at least 3 mag too faint in V for the cluster distance, but it shows the classical signs of a young pre-main sequence object, such as highly variable H emission, Mg II emission, IR excess, UV continuum, and optical variability. Methods. We analyzed a collection of archival and original data on Walker 90, covering 45 years including photometry, imaging, and spectroscopic data ranging from ultraviolet to near-infrared wavelengths. Results. According to star formation processes, it is expected that, as this object clears its primordial surroundings, it should become optically brighter, show a weakening of its IR excess and present decreasing line emissions. This behavior is supported by our observations and analysis, but timescales are expected to be longer than the one observed here. Based on photometric data secured in 2007, we find Walker 90 at its brightest recorded optical magnitude √(12.47 ± 0.06). We document an evolution in spectral type over the past five decades (from A2/A3 to currently B7 and as early as B4), along with a decrease in the near-infrared K fluxes. From near-infrared VISIR images secured in 2004, Walker 90 appears as a point source placing an upper limit of < 0.1" for its diameter. Evidence of turbulent inflows is found in rapidly changing inverse P-Cygni profiles in the lower Balmer lines, with a broadening of ±400 km s-1 in Hα and a redshifted component in Hβ with a terminal velocity of ~600 km s-1. The measured steep UV continuum fluxes (mimicking a star as early as B4), added to a tentative identification of N V emission, suggest a strong non-photospheric component, typically of fluxes arising from a thermally inhomogeneous accretion disk. We detect a well defined 2200 Å bump, indicative of dense material in the line-of-sight. We conclude that many observational features are explained if W90 is a flared disk system, surrounded by an inclined optically thick accretion disk

    Dark Matter, Baryon Asymmetry, and Spontaneous B and L Breaking

    Get PDF
    We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10^{-46} cm^2. Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There is tension between achieving both the measured baryon excess and the dark matter density.Comment: 23 pages, 5 figures; revised version, typos removed, references added, discussion expande

    NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Get PDF
    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2_2Cu3_3O7_7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T <μ0H<< \mu_0 H < 1 T) and temperature (0.3 K <T<< T< 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1 - 30) ×106μB\times 10^6\,\mu_{\rm B}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets

    Internal transitions of negatively charged magnetoexcitons in quantum dots

    Full text link
    We report calculations of oscillator strengths for the far infrared absorption of light by the excitonic complexes Xn- (the excess charge, n, ranging from one to four) confined in quantum dots. The magnetic field is varied in an interval which corresponds to ``filling factors'' between 2 and 3/5. Electron-hole interaction effects are seen in the deviations of the peak positions from the Kohn lines, and in the spreading of the oscillator strengths over a few final states. Transition densities are used as an additional tool to characterize the absorption peaks.Comment: Presented as a poster in the Third Stig Lundqvist Conference on Advancing Frontiers of Condensed Matter Physics: Fundamental Interactions and Excitations in Confined Systems, Trieste, August 11 - 1

    Vector magnetic hysteresis of hard superconductors

    Full text link
    Critical state problems which incorporate more than one component for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C[H(x)]{\cal C}[\vec{H}(\vec{x})] which weighs the changes of the magnetic field vector within the sample. We show that Bean's simplest prescription of choosing the correct sign for the critical current density JcJ_c in one dimensional problems is just a particular case of finding the components of the vector Jc\vec{J}_c. Jc\vec{J}_c is determined by minimizing C{\cal C} under the constraint JΔ(H,x)\vec{J}\in\Delta (\vec{H},\vec{x}), with Δ\Delta a bounded set. Upon the selection of different sets Δ\Delta we discuss existing crossed field measurements and predict new observable features. It is shown that a complex behavior in the magnetization curves may be controlled by a single external parameter, i.e.: the maximum value of the applied magnetic field HmH_m.Comment: 10 pages, 9 figures, accepted in Phys. Rev.

    From Strong to Weak Coupling Regime in a Single GaN Microwire up to Room Temperature

    Full text link
    Large bandgap semiconductor microwires constitute a very advantageous alternative to planar microcavities in the context of room temperature strong coupling regime between exciton and light. In this work we demonstrate that in a GaN microwire, the strong coupling regime is achieved up to room temperature with a large Rabi splitting of 125 meV never achieved before in a Nitride-based photonic nanostructure. The demonstration relies on a method which doesn't require any knowledge \'a priori on the photonic eigenmodes energy in the microwire, i.e. the details of the microwire cross-section shape. Moreover, using a heavily doped segment within the same microwire, we confirm experimentally that free excitons provide the oscillator strength for this strong coupling regime. The measured Rabi splitting to linewidth ratio of 15 matches state of the art planar Nitride-based microcavities, in spite of a much simpler design and a less demanding fabrication process. These results show that GaN microwires constitute a simpler and promising system to achieve electrically pumped lasing in the strong coupling regime.Comment: 14 pages, 4 figure

    Fixing the Solar Neutrino Parameters with Sterile Neutrinos

    Full text link
    Neutrino mixing matrix appears to be close to bimaximal mixing, but for the solar mixing angle which is definitively smaller than forty five degrees. Whereas it seems quite easy to understand bimaximal mixing with the use of new global symmetries, as in models using LeLμLτL_e - L_\mu - L_\tau, understanding the about to eleven degrees of deviation in the observed solar angle seems less simple. We suggest that such a deviation could be due to a light sterile neutrino that mixes with the active sector. The mass scale needed to produce the effect has to be smaller than atmospheric scale, and it would introduce a new mass squared difference which should be smaller than the solar scale. We present a toy model that exemplifies these features.Comment: 19 pages, two figures. Discussion extended. References adde

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379
    corecore