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We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where

baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this

model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an

automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic

gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the

leptophobic gauge boson has to be below the TeV scale, one finds that in the first scenario there is a

lower bound on the elastic cross section of about 5� 10�46 cm2. Even though baryon number is

gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess

is possible. There can be a tension between achieving both the measured baryon excess and the dark

matter density.
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I. INTRODUCTION

In the LHC era, we hope to either verify the standard
model or discover the theory that describes the physics of
the weak scale. One of the open issues in the standard
model (SM) is the origin of the accidental global symme-
tries, Uð1ÞB and Uð1ÞL, where B stands for baryon number
and L for the total lepton number. At the nonrenormaliz-
able level in the SM, one can find operators that violate
baryon number and lepton number. For example,
QQQl=�2

B and llHH=�L, where�B and�L are the scales
where B and L are, respectively, broken [1]. Since the
QQQl=�2

B operator gives rise to proton decay [2] the
cutoff of the theory has to be very large �B > 1015 GeV.
There is no other reason that the cutoff of the SM has to be
that large and so it is worth thinking about the possibility
that both B and L are local gauge symmetries that are
spontaneously broken [3] at a much lower scale (e.g., the
weak scale) and it is these gauge symmetries that prevent
proton decay.

Recently, two simple models [denoted model (1) and
model (2)]) where B and L are local gauge symmetries
have been proposed [3]. In these models, all anomalies are
cancelled by adding a single new fermionic generation.
One of the theories [model (1)] has an interesting realiza-
tion of the seesaw mechanism [4–6] for neutrino masses,
and they both have a natural suppression of tree-level
flavor changing neutral currents in the quark and leptonic
sectors due to the gauge symmetries and particle content.
In model (2), the neutrinos have Dirac masses. In addition,
for model (2), the lightest new field with baryon number is
a candidate for the cold dark matter and its stability is an
automatic consequence of the gauge symmetry. It has been

shown in Ref. [3] that B and L can be broken at the weak
scale and one does not generate dangerous operators
mediating proton decay. We show how a dark matter
candidate can arise in model (1).
In this article, we investigate the properties of the cold

dark matter candidates in the models proposed in Ref. [3]
and study the implications of spontaneous B and L break-
ing at the weak scale for the baryon asymmetry in the
Universe. In model (2), the dark matter candidate X, which
has baryon number�2=3, can either annihilate through the
leptophobic ZB present in the theory or through the Higgs
boson. We study the constraints from the relic density and
the predictions for the elastic cross section relevant for
direct detection experiments. We discuss the implications
of the gauging of B and L for baryogenesis. In model (2),
there is a potential conflict between the measured baryon
excess and dark matter density.
For model (1), we discuss the generation of a baryon

excess. We introduce a limit of the theory where L is
broken at a high scale but B is spontaneously broken at
the weak scale. In this limit, standard leptogenesis plus a
primordial excess in the field responsible for baryon num-
ber breaking can give rise to an acceptable baryon excess
and dark matter density even though the baryon number
gauge symmetry is not broken until the weak scale.
This paper is organized as follows: In Sec. II, we discuss

the main features of the model. In Sec. III, we discuss, for
model (2), the properties of the dark matter candidate in
the theory, constraints from the relic density, and the
predictions for the elastic cross section relevant for direct
detection experiments. The properties of the dark matter
candidate in model (1) are similar to cases already dis-
cussed in the literature (see for example [7,8]). In Sec. IV,
we discuss the implications of the breaking of B and L at
the weak scale for baryogenesis. We summarize the main
results in Sec. V.
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II. SPONTANEOUS B AND L BREAKING

The theory proposed in Ref. [3] is based on the gauge
group

SUð3ÞC
O

SUð2ÞL
O

Uð1ÞY
O

Uð1ÞB
O

Uð1ÞL:

To fix notation, the particle content of the SM is summa-
rized in Table I. The superscript index (i) on standard
model fermion fields labels the generation. We have added
three generations of right-handed neutrinos to the minimal
standard model.

When gauging B and L, one can have two different
scenarios.

A. Model (1)

In this model, the baryonic anomalies are cancelled by
adding the new quarks Q0

L, u
0
R, and d0R, which transform

under the SM gauge group in the same way as the SM
quarks but have baryon number B ¼ �1. At the same time,
the leptonic anomalies are cancelled if one adds new
leptons l0L, �0

R, and e0R with lepton number L ¼ �3. All
anomalies in the SM gauge group are cancelled since we
have added one full new family. The particle content of
model (1), beyond that of the SM, is summarized in the
Table II.

Let us discuss the main features of this scenario.
(i) Quark Sector

In this model, the masses for the new quarks are
generated through the terms

� �Lð1Þ
q0mass

¼ Y0
U
�Q0
L
~Hu0R þ Y0

D
�Q0
LHd0R þ H:c:

(1)

Here ~H ¼ i�2H
�. In order to avoid a stable colored

quark, the scalar doublet � has been added to medi-
ate the decays of the fourth generation of quarks.
The following terms occur in the Lagrange density

� �Lð1Þ
DM ¼ Y1

�Q0
L
~�uR þ Y2

�QL�d0R þ H:c:: (2)

Here flavor indices on the Yukawa couplings Yi and
the standard model quark fields have been sup-
pressed. The field � does not get a vacuum expec-
tation value (VEV), and so there is no mass mixing
between the new exotic generation of quarks and
their SM counterparts. When the real or imaginary
component of � is the lightest new particle with
baryon number, it is stable. The field � has flavor
changing couplings that cause transitions between
quarks with baryon number�1 and the usual quarks
with baryon number 1=3. However, since there is no
mass mixing between these two types of quarks,
integrating out the� does not generate any tree-level
flavor changing neutral currents for the ordinary
quarks.
These effects first occur at one loop. For example,
there are one loop box diagrams (see Fig. 1) that give
a contribution to K � �K mixing.
We estimate this mixing to be of order

�mK �
�
f2KmKY

4

16�2M2

�
; (3)

where Y4 is a shorthand for something quartic in the
Yukawa couplings Y1, Y2. For M ¼ 400 GeV and
Yukawas of about 10�2, this mass difference is on
the order of 10�15 MeV which is much smaller than
the measured value. A detailed study of the model’s
flavor sector is beyond the scope of this work and
will be reserved for a future publication.

TABLE I. Standard Model Particle Content.

Field SUð3Þ SUð2Þ Uð1ÞY Uð1ÞB Uð1ÞL
QðiÞ

L ¼
�
uðiÞL
dðiÞL

�
3 2 1

6
1
3 0

uðiÞR 3 1 2
3

1
3 0

dðiÞR 3 1 � 1
3

1
3 0

lðiÞL ¼
�
�ðiÞ
L

eðiÞL

�
1 2 � 1

2 0 1

�ðiÞ
R 1 1 0 0 1

eðiÞR 1 1 �1 0 1

H ¼
�
Hþ
H0

�
1 2 1

2 0 0

FIG. 1. Box diagram leading to a contribution toK � �K mixing.

TABLE II. Particle Content Beyond the SM in Model (1).

Field SUð3Þ SUð2Þ Uð1ÞY Uð1ÞB Uð1ÞL
Q0

L ¼
�
u0L
d0L

�
3 2 1

6 �1 0

u0R 3 1 2
3 �1 0

d0R 3 1 � 1
3 �1 0

l0L ¼
�
�0
L

e0L

�
1 2 � 1

2 0 �3

�0
R 1 1 0 0 �3

e0R 1 1 �1 0 �3

SB 1 1 0 � 8
3 0

SL 1 1 0 0 2

S 1 1 0 � 4
3 0

� ¼
�

�þ
�0

R þ i�0
I

�
1 2 1

2
4
3 0
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(ii) Leptonic Sector
The interactions that generate masses for the new
charged leptons are

��Lð1Þ
l ¼ Y0

E
�l0LHe0R þ H:c:; (4)

while for the neutrinos they are

��Lð1Þ
� ¼ Y�lH�C þ Y0

�l
0HN þ �a

2
�CSL�

C

þ �b�
CSyLN þ H:c:; (5)

where SL � ð1; 1; 0; 0; 2Þ is the Higgs that breaks
Uð1ÞL, generating masses for the right-handed
neutrinos and the quark-phobic Z0

L. We introduce
the notation �C ¼ ð�RÞC andN ¼ ð�0

RÞC. After sym-
metry breaking, the mass matrix for neutrinos in the
left handed basis ð�; �0; N; �CÞ is given by the eight
by eight matrix

M N ¼
0 0 0 MD
0 0 M0

D 0
0 ðM0

DÞT 0 Mb

MT
D 0 MT

b Ma

0
BB@

1
CCA: (6)

Here, MD ¼ Y�vH=
ffiffiffi
2

p
and Ma ¼ �avL=

ffiffiffi
2

p
are

3� 3 matrices, Mb ¼ �bv
�
L=

ffiffiffi
2

p
is a 1� 3 matrix,

M0
D ¼ Y0

�vH=
ffiffiffi
2

p
is a number and hSLi ¼ vL=

ffiffiffi
2

p
.

Let’s assume that the three right-handed neutrinos
�C are the heaviest. Then, integrating them out
generates the following mass matrix for the three
light-neutrinos:

M � ¼ MDM
�1
a MT

D: (7)

In addition, a Majorana mass M0 for the fourth-
generation right-handed neutrino N,

M0 ¼ MbM
�1
a MT

b ; (8)

is generated. Furthermore, suppose that M0 � M0
D,

then the new fourth-generation neutrinos �0 and N
are quasi-Dirac with a mass equal toM0

D. Of course,
we need this mass to be greater than MZ=2 to be
consistent with the measured Z-boson width. In this
model, we have a consistent mechanism for neutrino
masses which is a particular combination of Type I
seesaw.

(iii) Higgs Sector
The minimal Higgs sector needed to have a realistic
theory, where B and L are both gauged and have a
DM candidate, is composed of the SM Higgs, H,
SL, S� ð1; 1; 0;�4=3; 0Þ, SB, and�. SB and SL are
the scalars field whose vacuum expectation values
break Uð1ÞB and Uð1ÞL, respectively, generating
masses for the gauge bosons coupling to baryon
number and lepton number. Here, one introduces
the scalar field S in order to have a viable cold dark
matter candidate. In this case, the scalar potential of
the model must contain the terms

�1ðHy�ÞSþ�2S
y
BS

2 þ H:c: (9)

in order to generate the effective interaction:
cðHy�Þ2SB þ H:c:, which breaks the degeneration
between the �0

R and �0
I . Here S does not get the

vev. Then, one of them can be a dark matter can-
didate and the mass splitting is given by

M2
�0

R

�M2
�0

I

¼ ffiffiffi
2

p v2
HvB�

2
1�2

M4
S

: (10)

By adjusting the phases of the fields S and �, the
parameters �1;2 can be made real and positive. In

this case, the imaginary part of the neutral compo-
nent of�, denoted�0

I , is the dark matter candidate.
Notice that this DM scenario is quite similar to the
case of the Inert Higgs Doublet Model since we do
not have annihilation through the ZB in the non-
degerate case. It is well-known that if the real and
imaginary parts are degenerate in mass, one cannot
satisfy the bounds coming from direct detection;
therefore, one needs a mass splitting. This dark
matter candidate is very similar to that of the
Inert Doublet Model (see, for example, [7,8]).

Before concluding the discussion of model (1) one
should mention that in this model local Uð1ÞB and Uð1ÞL
are broken by the Higgs mechanism, as explained before,
and one gets that in the quark sector a global symmetry
(baryonic) is conserved, while in the leptonic sector the
total lepton number is broken.

B. Model (2)

In this model, the baryonic anomalies are cancelled by
adding the new quarks Q0

R, u
0
L, and d0L, which transform

under the SM gauge group the same way as the SM quarks
but have opposite chirality and baryon number B ¼ 1. At
the same time, the leptonic anomalies are cancelled if one
adds new leptons l0R, �0

L, and e0L with opposite chirality of
their SM counterparts and with lepton number L ¼ 3. The
particle content of model (2), beyond that of the SM, is
summarized in the Table III.
(i) Quark Sector

In this model, the masses for the new quarks are
generated through the terms

��Lð2Þ
q0mass

¼ Y0
U
�Q0
R
~Hu0L þY0

D
�Q0
RHd0L þH:c:: (11)

As in the previous model, one has to avoid a stable
colored quark. For this reason, we add the scalar field
X to mediate the decays of the fourth generation of
quarks. The following terms occur in the Lagrange
density

��Lð2Þ
DM ¼ �QX �QLQ

0
R þ �UX �uRu

0
L þ �DX �dRd

0
L

þ H:c: (12)
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Here flavor indices on the Yukawa couplings Y, �
and the standard model quark fields have been sup-
pressed. The field X does not get a vacuum expecta-
tion value (VEV) and so there is no mass mixing
between the new exotic generation of quarks and
their SM counterparts. When X is the lightest new
particle with baryon number, it is stable. This occurs
because the model has a global Uð1Þ symmetry,
where the Q0

R, u
0
L, d

0
L, and X get multiplied by a

phase. This Uð1Þ symmetry is an automatic conse-
quence of the gauge symmetry and the particle con-
tent. Notice that the new fermions have V þ A
interactions with the W bosons.
The field X has flavor changing couplings that cause
transitions between quarks with baryon number 1
and the usual quarks with baryon number 1=3.
However, since there is no mass mixing between
these two types of quarks, integrating out the X
does not generate any tree-level flavor changing
neutral currents for the ordinary quarks. Those first
occur at the one loop level [see the discussion con-
cerning such flavor changing effects in model (1)].

(ii) Leptonic Sector
The interactions for the new leptons are

��Lð2Þ
l ¼ Y0

E
�l0RHe0L þ �e �eRS

y
Le

0
L þ Y�

�lL ~H�R

þ Y0
�
�l0R ~H�0

L þ �a

2
�T
RCS

y
L�R

þ �b ��RS
y
L�

0
L þ �l

�l0RSLlL þ H:c: (13)

The neutrinos are Dirac fermions with masses pro-
portional to the vacuum expectation value of the SM
Higgs boson. Here, SL must be introduced to evade
the experimental constraints on heavy stable Dirac
neutrino from dark matter direct detection and col-
lider bounds. In order to avoid flavor violation in the
leptonic sector, we assume that SL does not get a
vacuum expectation value.

(iii) Higgs Sector
The minimal Higgs sector needed to have a realistic
theory, where B and L are both gauged and have a
DM candidate, is composed of the SM Higgs, H,
SL, S

0
L, SB, and X. SB and S0L are the scalars field

whose vacuum expectation values break Uð1ÞB and
Uð1ÞL, respectively, generating masses for the
gauge bosons coupling to baryon number and lep-
ton number. The scalar potential of the model is
given by

Vð2Þ
BL ¼ X

�i¼H;SL;S
0
L;SB;X

M2
�i
�y

i �i

þ X
�i�j

��i�j
ð�y

i �iÞð�y
j�jÞ: (14)

In this theory, one has five physical CP-even neu-
tral Higgses fH0; S0L; S

00
L ; S

0
B; X

0
Rg and two CP-odd

neutral Higgses X0
I and S0I . Here, X

0
R and X0

I have
the same mass, and they are cold dark matter
candidates.

In this model, one should notice that the local symmetries
Uð1ÞB and Uð1ÞL are broken, and after symmetry breaking
one has a baryonic and leptonic global symmetries.
Therefore, the proton is stable and the neutrinos are
Dirac fermions.
These are the main features of the two models that are

needed to investigate the implications and/or constraints
coming from cosmological observations.

III. X AS A CANDIDATE FOR THE COLD DARK
MATTER IN MODEL (2)

As we have mentioned before, the lightest new field with
baryon number, X, is a cold dark matter candidate in
model (2). In this section, we study in detail the possible
cosmological constraints and the predictions for elastic
dark matter-nucleon cross section relevant for direct
searches of dark matter. Some of this material is standard
and has been discussed in the literature in the context of
other dark matter candidates; however, we include it for
completeness.

A. Constraints from the relic density

There are two main scenarios for the study of the relic
density. In the first case, X annihilates through the lepto-
phobic ZB gauge boson, while in the second case X anni-
hilates through the SM Higgs. The properties of a SM
singlet scalar dark matter candidate that annihilates
through the Higgs have been investigated in many previous
studies [9–13]; however, the case of annihilation through
the ZB is more specific to the model we are currently
examining.
(i) XXy ! Z�

B ! q �q:
We begin by studying the case where X annihilation

TABLE III. Particle Content Beyond the SM in Model (2).

Field SUð3Þ SUð2Þ Uð1ÞY Uð1ÞB Uð1ÞL
Q0

R ¼
�
u0R
d0R

�
3 2 1

6 1 0

u0L 3 1 2
3 1 0

d0L 3 1 � 1
3 1 0

l0R ¼
�
�0
R

e0R

�
1 2 � 1

2 0 3

�0
L 1 1 0 0 3

e0L 1 1 �1 0 3

SB 1 1 0 nB 0

SL 1 1 0 0 2

S0L 1 1 0 0 nL
X 1 1 0 � 2

3 0
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through the baryon number gauge boson ZB, i.e.
XXy ! Z�

B ! q �q, dominates the annihilation cross
section. Here we include all the quarks that are kine-
matically allowed. Of course the heavy fourth-
generation quarks must be heavier than the X so
that they do not occur in the final state. This also
limits the upper range of X masses since the theory is
not perturbatively unitary if the fourth-generation
Yukawa’s are too large.
The annihilation cross section through intermediate
ZB in the nonrelativistic limit with a quark-antiquark
pair in the final state is given by

�ZB
v¼ 2g4B

81�

M2
X

M4
ZB

v2

ð1� 4
M2

X

M2
ZB

Þ2 þ �2
ZB

M2
ZB

X
q

�

�
1� mq

MX

�

�
�
1þ

�
m2

q

2M2
X

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

q

M2
X

vuut ; (15)

where� is the unit step function and �ZB
is the width

of the ZB. The width of the leptophobic gauge boson
is given by

�ZB
¼ X

q

g2BMZB

36�

�
1� 2

m2
q

M2
ZB

��
1� 4

m2
q

M2
ZB

�
1=2

��

�
1� 4

m2
q

M2
ZB

�
: (16)

(ii) XXy ! H� ! SMSM:
In the case where X annihilates into massive SM
fields, through an intermediate H, we find that the
annihilation cross section (in the nonrelativistic
limit) is

�Hv ¼ X
f

�
�2
1N

f
c

4�M2
H

��
mf

MH

�
2 �ð1� mf

MX
Þð1� ðmf

MX
Þ2Þ3=2

ð1� 4
M2

X

M2
H

Þ2 þ �2
H

M2
H

þ
�

�2
1

2�M2
H

��ð1� MW

MX
Þð1� ðMW

MX
Þ2Þ1=2

ð1� 4
M2

X

M2
H

Þ2 þ �2
H

M2
H

�
�
1þ 3M4

W

4M4
X

�M2
W

M2
X

�
þ (17)

þ
�

�2
1

4�M2
H

��ð1� MZ

MX
Þð1� ðMZ

MX
Þ2Þ1=2

ð1� 4
M2

X

M2
H

Þ2 þ �2
H

M2
H

�
�
1þ 3M4

Z

4M4
X

�M2
Z

M2
X

�
þ

�
�2
1

64�M2
X

�

�
�
1�

�
MH

MX

�
2
�
1=2

�

�
1�MH

MX

�

�
��������1þ

3

ð4M2
X

M2
H

� 1Þ þ i �H

MH

��������
2

; (18)

where Nf
c is the number of colors of the particular

species of fermion, MW;Z are the W and Z boson

masses. Included in the width, where kinematically
allowed, is the invisible decay to dark matter. We
have ignored corrections to this formula that come
from annihilation into two standard model massless
gauge bosons. For previous studies of this type of
scenario see [9–13].

Using these results, we are ready to compute the approxi-
mate freeze-out temperature xf ¼ MX=Tf assuming that

one of the two annihilation channels dominates the anni-
hilation of the dark matter. Writing the thermally-averaged
annihilation cross section as h�vi ¼ �0ðT=MXÞn, then the
freeze-out temperature is given by

xf ¼ ln

�
0:038ðnþ 1Þ

�
gffiffiffiffiffi
g�

p
�
MPlMX�0

�
�

�
nþ 1

2

�

� ln

�
ln

�
0:038ðnþ 1Þ

�
gffiffiffiffiffi
g�

p
�
MPlMX�0

��
; (19)

where MPl is the Planck mass, g is the number of internal
degrees of freedom, and g� is the effective number of
relativistic degrees of freedom evaluated around the
freeze-out temperature.1

The present day energy density of the relic dark matter
particles X is given by

�Xh
2 ¼ 1:07� 109

GeV

�ðnþ 1Þxnþ1
fffiffiffiffiffi

g�
p

�0MPl

�
; (20)

where we have used the fact that g�;SðTÞ ¼ g�ðTÞ in our

case (all particle species have a common temperature).
The Wilkinson Microwave Anisotropy Probe (WMAP)
team recently gave a 7 yr fit [15] and found the present
day dark matter energy density to be �DMh

2 ¼ 0:1109�
0:0056.
Using the experimental constraints on the relic density

of the cold dark matter and the annihilation cross sections
calculated above, we plot in Fig. 2 (left panel) the allowed
values for the gauge coupling gB and the mass of X when
the annihilation occurs through an intermediate ZB boson.
Here, we use as input parameter the mass of ZB, MZB

¼
500 GeV. In order to understand the behavior of the nu-
merical solutions close to resonance, we show the results in
Fig. 2 (right panel), where the mass regionMX � MZB

=2 is

focussed on. In the second scenario, when the annihilation
takes place through the SM Higgs boson, one can display
similar results. Assuming only annihilation at tree level
into SM fermions and gauge bosons for simplicity, we
show in Fig. 3 the allowed parameter space after imposing
the constraints on the relic density when MH ¼ 120 GeV.

1See, for example, [14].
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It is important to note that using the perturbative limit on
the Yukawa couplings for the new fermions jY0j< 2

ffiffiffiffi
�

p
,

the masses of the new quarks Mq0 ¼ Y0vH=
ffiffiffi
2

p
are smaller

than 500 GeV (since the VEV of the SM Higgs vH is
246 GeV). In order to achieve the right value for the relic
density,MX has to be close to theMZB

=2. Hence, in the first

scenario, MZB
must be below a TeV if X annihilates pri-

marily through the ZB and is the dark matter. This is an
acceptable kinematic range for discovery at the LHC. Next,
we study the constraints coming from the direct detection
experiments (which have already been used in the right
panels of Figs. 2 and 3).

A more precise calculation of the dark matter relic
density is required when annihilation proceeds near reso-
nance. This is because the expansion of the annihilation
cross section in terms of a polynomial in the temperature

breaks down near the resonance [16]. Generalizing Eq. (15)
and (18) for general relative velocities, we determine
the relic abundance near the resonance using the more
precise calculation described below. The freeze-out tem-
perature can be determined iteratively from the following
equation:

xf ¼ ln

�
0:038gMXMPlh�viffiffiffiffiffiffiffiffiffiffi

g�xf
p

�
; (21)

where the thermally-averaged annihilation cross section is
determined numerically by

h�vi ¼ x3=2

2�1=2

Z 1

0
v2ð�vÞe�xv2=4dv: (22)

The relic density is then given by

�h2 ¼ 1:07� 109

GeV

�
1

J
ffiffiffiffiffi
g�

p
MPl

�
; (23)

where

J ¼
Z 1

xf

h�vi
x2

dx (24)

takes into account the annihilations that continue to occur,
but become less effective, after the free-zeout temperature.
In Fig. 4, we show the contour that leads to the observed

relic abundance of dark matter, assuming annihilation
through an intermediate ZB with mass of 500 GeV is
dominant. After comparing this plot to the right panel in
Fig. 2, it is clear that one needs to take into account the
precise thermal averaging when annihilation proceeds near
resonance. The thermal averaging works to widen the
contour and move the minimum below MZB

=2. This is

because at finite temperatures, the effective mass of the

MZB
500 GeV

MX GeV

log10 gB

100 150 200 250 300 350 400
2.0

1.5

1.0

0.5

0.0

CDMS II Upper Limit
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log10 gB

240 245 250 255 260
2.0

1.8

1.6
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1.2

1.0

0.8

0.6

FIG. 2. In these figures, we plot the values of the (logarithm of the) coupling gB and dark matter massMX that lead to the value of the
dark matter relic abundance measured by WMAP assuming annihilation through intermediate ZB is dominant. We use MZB

¼
500 GeV for these plots. The plot on the right is an enlarged version of the left plot around the region near the resonance. For dark
matter masses around 250 GeV, CDMS II excludes dark matter-nucleon elastic scattering cross sections larger than 6� 10�44 cm2.
The region below the dashed line is allowed by CDMS II [17].

XENON100 Upper Limit

CDMS II Upper Limit

XENON100 Projected Upper Limit

log10 1

MX GeV

MH 120 GeV

100 200 300 400 500

1.5

1.0

0.5

FIG. 3 (color online). In these figures, we plot the values of the
(logarithm of the) coupling �1 and dark matter mass MX that
lead to the value of the dark matter relic abundance measured by
WMAP assuming annihilation through intermediate Higgs is
dominant. We use MH ¼ 120 GeV for these plots.

DULANEY, PÉREZ, AND WISE PHYSICAL REVIEW D 83, 023520 (2011)

023520-6



dark matter candidate is higher, and therefore the minimum
of the contour is shifted to lower dark matter masses.

Similarly, in Fig. 5, we show the contour that leads to the
observed relic abundance of dark matter, assuming anni-
hilation through an intermediate Higgs with mass of
120 GeV is dominant.

B. Constraints from direct detection

In this section, we present the cross sections for elastic
scattering of our dark matter candidate off of nucleons.
These cross sections are very tightly constrained by the
Cryogenic Dark Matter Search (CDMS) for dark matter
masses in above approximately 100 GeV and XENON100

for dark matter masses below approximately 100 GeV
[17,18].
In the first scenario discussed above, we need the con-

straints coming from direct detection when the scattering is
through theUð1ÞB gauge boson. In the nonrelativistic limit,
the cross section for elastic scattering of dark matter off of
nucleons through an intermediate ZB is given by

�B
SI ¼

4g4B
9�

�
�2

M4
ZB

�
; (25)

where� ¼ MNMX=ðMN þMXÞ is the reduced mass of the
dark matter-nucleon final state and MN is the nucleon
mass. Putting in the numbers, this cross section can be
written as

�B
SI ¼ ð8:8� 10�40 cm2Þg4B

�
500 GeV

MZB

�
4
�

�

1 GeV

�
2
: (26)

From the CDMS II upper limits on the spin-independent
cross section in [17], one can conclude that if we want the
correct relic abundance, then 235 GeV & MX & 250 GeV
and gB & 10�1 for MZB

� 500 GeV. For the relevant re-

gion of parameter space, see Fig. 4.
IfMZB

is near its 1 TeVupper bound, the direct detection

limits on the coupling gB are the weakest and the required
range is 0:06 & gB & 0:2. Using the plot in Fig. 4 and
Eq. (26), we set a lower limit on the dark matter-nucleon
scattering cross section of about �B

SI * 5� 10�46 cm2.

For the second case, when the elastic scattering of
the dark matter off of nucleons is via the Higgs exchange,
we need the effective coupling of the Higgs to nucleons.
For this purpose, we follow [19], and we find this
effective coupling appropriate for at rest nucleon matrix
element to be

L ¼ � h

v

�X
l

ml �qlql þ
X
h

mh �qhqh

�

! � h

v

�
10

27
þ 17

27
�̂þ

�
MNð �ppþ �nnÞ: (27)

Using the leading order chiral perturbation theory result in
the Appendix of [19] and the ��N term from [20], we
obtain �̂þ ¼ 0:55� 0:18, where the errors are indicative
of a 30% violation of SUð3Þ flavor symmetry. This value of
�̂þ gives

L ¼ � h

v
ð0:72ÞMNð �ppþ �nnÞ: (28)

With the three generations of the SM, one would have
expected a number 2=9þ 7=9ð0:55Þ ¼ 0:65 instead of
0.72. This is consistent with the 0:56� 0:11 number
quoted in references [21,22].
One can use this result to compute the elastic scattering

cross section

CDMS II  Upper Limit

MZB
500 GeV

MX GeV

log10 gB

230 235 240 245 250

1.4

1.3

1.2

1.1

1.0

0.9

0.8

FIG. 4 (color online). In this figure, we plot the results of the
numerical relic abundance calculation with the correct thermal
averaging around the resonance. The contour plotted shows the
values of the (logarithm of the) coupling gB and dark matter
massMX that lead to the value of the dark matter relic abundance
measured by WMAP assuming annihilation through an inter-
mediate ZB is dominant. We use MZB

¼ 500 GeV for this plot.

XENON100 Upper Limit

XENON100 Projected Upper Limit

MH 120 GeV

MX GeV

log10 1

45 50 55 60 65

3.5

3.0

2.5

2.0

1.5
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FIG. 5 (color online). In this figure, we plot the results of the
numerical relic abundance calculation with the correct thermal
averaging around the resonance. The contour plotted shows the
values of the (logarithm of the) coupling �1 and dark matter
massMX that lead to the value of the dark matter relic abundance
measured by WMAP assuming annihilation through an inter-
mediate Higgs is dominant and taking MH ¼ 120 GeV.
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�H
SI ¼

�2
1

4�

�
10

27
þ 17

27
�̂þ

�
2
�
�2M2

N

M2
XM

4
H

�
: (29)

Plugging in the numbers, this cross section can be written
as (using �̂þ ¼ 0:55)

�H
SI ¼ ð3:0� 10�41 cm2Þ�2

1

�
120 GeV

MH

�
4
�

�

1 GeV

�
2

�
�
50 GeV

MX

�
2
: (30)

In order to satisfy the direct detection bounds from
XENON100 [18] for elastic scattering of dark matter off
of nucleons, 51 GeV & MX & 63 GeV with �1 & 10�1:5

for a 120 GeV Higgs. This gives us a narrow region of
parameter space that is not yet ruled out by the
XENON100 experiment and that also leads to the correct
dark matter relic abundance. See Fig. 5 for a plot of the
allowed region. For a 120 GeV Higgs, the dark matter-
nucleon elastic cross section has a lower bound of about
�H

SI * 10�48 cm2.

One can see from Fig. 3 that if XENON100 reaches its
projected sensitivity without detecting DM, the scenario
where annihilation proceeds through the Higgs will be all
but ruled out. The only region that will be allowed from
this future experiment will be the region in Fig. 5. For dark
matter masses at the lower end of this region, the decay of
the SMHiggs is dominated by the invisible decay into dark
matter.

In a more generic context, this model is different from
the literature in that the dark matter mass has an upper
bound (since it facilitates the decay of the fourth-
generation quarks and these quarks should have mass
below about 500 GeV if perturbative unitarity holds).
Most models of scalar dark matter do not have an upper
limit on the dark matter mass, and therefore a wider region
of masses are allowed at the TeV scale.

We need to also consider the limits direct detection
experiments place on dark matter scattering off of nucleons
from the interactions �X �qq0. To fix notation, the interac-
tions in Eq. (12) are

��LDM ¼ ~�QX �u

�
1þ �5

2

�
u0 þ ~�UX �u

�
1� �5

2

�
u0

þ �0
QX

�d

�
1þ �5

2

�
d0 þ �0

dX
�d

�
1� �5

2

�
d0

þ H:c:; (31)

where fu; dg (fu0; d0g) are the Dirac spinors corresponding
to the standard model (fourth generation) quarks and

ð~�QÞi ¼ Uyðu; LÞji ð�QÞj and ð�0
QÞi ¼ Uyðd; LÞji ð�QÞj are

the coefficients in Eq. (12) after rotating to the mass
eigenstate basis. We find the effective low energy interac-
tion of the dark matter with the standard model quarks by
integrating out the heavy fourth-generation quarks. Then,
the effective interactions for nonrelativistic X is given by

�Leff ¼
�
XyXMX

2M2
u0

�
ðjð~�QÞij2 þ jð~�uÞij2ÞðuyÞiui

þ
�
XyX
2Mu0

�
ðð~�QÞið~��

uÞi þ ð~�QÞið~��
uÞiÞ �uiui

þ
�
XyXMX

2M2
d0

�
ðjð�0

QÞij2 þ jð�0
dÞij2ÞðdyÞidi

þ
�
XyX
2Md0

�
ðð�0

QÞið�0�
d Þi þ ð�0

QÞið�0�
d ÞiÞ �didi ; (32)

where the flavor index i should be summed over. To get the
effective interaction with nucleons, we need the nucleon
matrix elements hNjqyqjNi and hNj �qqjNi when q ¼ u, d.
We truncate the sum over flavors to the light up and down
flavors. The former simply counts the number of individual
valence quarks in the nucleon and the latter matrix element
is related by the coefficients fTq to the former matrix

elements. This gives the effective interactions appropriate
for the nucleon matrix elements

�Leff!
�
XyXMX

2M2
u0

�
ðjð~�QÞ1j2þjð~�uÞ1j2Þð2 �ppþ �nnÞ

þ
�
XyX
2Mu0

�
ðð~�QÞ1ð~��

uÞ1þð~�QÞ1ð~��
uÞ1ÞfTuð2 �ppþ �nnÞ

þ
�
XyXMX

2M2
d0

�
ðjð�0

QÞ1j2þjð�0
dÞ1j2Þð �ppþ2 �nnÞ

þ
�
XyX
2Md0

�
ðð�0

QÞ1ð�0�
d Þ1þð�0

QÞ1ð�0�
d Þ1ÞfTdð �ppþ2 �nnÞ:

(33)

To get an order of magnitude estimate of the size of the
couplings involved, we represent the various Yukawa cou-
plings by � assuming they are all the same order of
magnitude. The cross section for DM scattering off of
nucleons will be small enough to evade the direct detection
bounds if the Yukawa couplings � are on the order of 10�1,
assuming the masses of the fourth-generation quarks are a
few hundred GeV. Similar constraints hold for Y1;2 in

model (1), where �0
I is the dark matter candidate.

IV. COSMOLOGICAL BARYON NUMBER

It may be difficult to generate the observed cosmological
baryon density since baryon and lepton number are gauge
symmetries in the model we are considering. Here, we
study this issue following closely the approach of Harvey
and Turner [23]. Assuming � � T, one can write the
excess of particle over antiparticle as

nþ � n�
s

¼ 15g

2�2g�

�

T
: (34)

For bosons and in the case of fermions one has
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nþ � n�
s

¼ 15g

4�2g�

�

T
; (35)

where � is the chemical potential of the particle species, g
counts the internal degrees of freedom, s ¼ 2�2g�T3=45 is
the entropy density, and g� counts the total number of
relativistic degree of freedom.

For each of the fields, we associate a chemical potential.
Since the chemical potential of the gluons vanishes,
all colors of quarks have the same chemical potential.
Furthermore, we assume mixing between the quarks and
amongst the leptons is efficient. This reduces the number
of chemical potentials to a chemical potential for each
chirality of usual leptons f�eL;�eR; ��L

;��Rg and quarks

f�uL;�uR; �dL; �dRg as well as the fourth-generation lep-

tons f�e0L ; �e0R ; ��0
L
; ��0

R
g and fourth-generation quarks

f�u0L ; �u0R ; �d0L ; �d0Rg. We also have a chemical potential

for each of the scalars SL and SB (denoted as �SL and �SB ,

respectively), a chemical potential for �� for the charged
field in the Higgs doublet,�0 for the neutral Higgs field. At
temperatures above the electroweak phase transition
(T * 300 GeV), we set the third component of the gauged
weak isospin to zero. This condition implies that the
chemical potential for the charged W bosons vanishes
and leads to the conditions

�uL ¼ �dL and �eL ¼ ��L; (36)

for the SM quark and lepton fields and

�u0
LðRÞ

¼ �d0
LðRÞ

and �e0
LðRÞ

¼ ��0
LðRÞ

(37)

in model 1 (2) for the fourth-generation quark and lepton
fields.

A. Model (1)

In model (1), we also need a chemical potential for the
scalar S, denoted �S, a chemical potential for the charged
field in the doublet �, denoted ��þ , and a chemical

potential for the neutral component of the � doublet,
denoted ��. Again, since the chemical potential for the

charged W bosons vanishes, �� ¼ ��þ .

Before studying the possibility to have a baryon asym-
metry, let us discuss the different conditions we must
satisfy. Using Eqs. (1), (4), (5), and (9), one obtains

�0 ¼ �u0R ��u0L ; �0 ¼ �d0L ��d0R ; (38)

�0 ¼ ��R
���L

; �0 ¼ ��0
R
���0L ; (39)

�SL ¼ 2��R
; �0 ¼ �e0L ��e0R ; (40)

�0 ¼ �� þ�S; �SB ¼ 2�S; (41)

and

�SL ¼ ���R
���0

R
: (42)

Yukawa interactions with the Higgs boson in the SM imply
the following relations:

�0 ¼ �uR ��uL; ��0 ¼ �dR ��dL; (43)

��0 ¼ �eR ��eL; �0 ¼ ��R
���L

: (44)

Now, we us these relations to write the baryon number
density (B), lepton number density (L), and electric charge
density (Q). We find the following expressions for these
comoving number densities:

Bð1Þ � nB �n �B

s

¼ 15

4�2g�T

�
12�uL � 12�u0L �

20

3
�SB þ

16

3
��

�
; (45)

Lð1Þ � nL � n �L

s

¼ 15

4�2g�T
ð20��L

� 12��0
L
þ 8�� þ 4�SB Þ; (46)

Qð1Þ � nQ � n �Q

s

¼ 15

4�2g�T
ð20�� þ 9�SB þ 6�uL þ 2�u0L

� 6��L
� 2��0

L
Þ: (47)

See Tables I and II for the leptonic and baryonic charges.
At high temperatures, each of the charge densities in
Eqs. (45)–(47) must vanish. These three conditions, along
with the sphaleron condition

3ð2�uL þ�dL þ�eLÞ þ ð2�u0L þ�d0L þ�e0LÞ
¼ 9�uL þ 3��L

þ 3�u0L þ��0
L
¼ 0; (48)

give us four equations. Unfortunately, in the general case,
we do not have a symmetry which guarantees the conser-
vation of a given number density. We analyze the small �b

limit.2 In this limit, we have the following approximate
global symmetries:

ðB� LÞ1: ðQL; uR; dR;�Þ ! ei	=3ðQL; uR; dR;�Þ;
ðlL; eR; �RÞ ! e�i	ðlL; eR; �RÞ;
SL ! e�2i	SL;

S ! e�i	=3S;

SB ! e�2i	=3SB;

and

2�b must be small enough so that the mixing between the
ordinary right-handed neutrinos and the fourth-generation right-
handed neutrino can be neglected in the early Universe but large
enough so that the fourth-generation right-handed neutrino can
decay.
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ðB� LÞ2: ðQ0
L; u

0
R; d

0
R; SÞ ! e�i	ðQ0

L; u
0
R; d

0
R; SÞ;

ðl0L; e0R; �0
RÞ ! ei3	ðl0L; e0R; �0

RÞ;
� ! ei	�;

SB ! e�2i	SB:

Both of these approximate global symmetries are
anomaly free and not gauged. The corresponding charge
densities are given by

ðB� LÞ1 ¼ 15

4�2g�T

�
12�uL þ

4

3
�� � 12��L

� 4�SL

� 2

3
�S � 4

3
�SB

�
; (49)

and

ðB� LÞ2 ¼ 15

4�2g�T
ð�12�u0L � 2�S þ 12��0

L

þ 2�� � 4�SBÞ: (50)

The baryon number density at late times will include the
contribution of the ordinary quarks and the contribution
from the decay of the fourth-generation quarks. In ordinary
quarks we have

1

3
ð3Þð3Þð�uL þ�uR þ�dL þ�dRÞ ¼ 12�uL: (51)

The contribution from the fourth-generation quarks
(Q0 ! �þ uR and d0R ! �þQL) gives

1

3
ð3Þð�u0L þ�d0L þ 2�d0RÞ ¼ 4�u0L � 2�� ��SB: (52)

Then,

Bð1Þ
f ¼ 15

4�2g�T
ð12�uL þ 4�u0L � 2�� ��SBÞ

¼ 269

1143
ðB� LÞ1 � 13

381
ðB� LÞ2: (53)

Depending on the initial charge densities, it is possible
to simultaneously explain the DM relic density and the
baryon asymmetry in this scenario. Notice that one can
have leptogenesis at the high-scale if the symmetry break-
ing scale for Uð1ÞL is much larger than the electroweak
scale.

B. Model (2)

In model (2), we must introduce a chemical potential for
the scalar S0L, denoted�S0L , and a chemical potential for the

dark matter candidate X, denoted �X.
The action is invariant under the transformations SB !

ei	BSB and S0L ! ei	LS0L. These automatic Uð1Þ symme-
tries are anomaly free since no fermions transform under
them. The symmetries are spontaneously broken by the
vacuum expectation values of SB and S0L, respectively;

however, at high temperatures the symmetry is restored.
We begin by assuming that in the early Universe a nonzero
SB and S0L asymmetry is generated. This could occur, for
example, from the decay of the inflaton after inflation. We
examine if this can lead to the observed baryon excess.
We assume that lepton number and baryon number are

spontaneously broken at the weak scale. In this case, we
have the following relations, assuming that the coupling
constants f�a; �b; �l; �eg are large enough to preserve ther-
mal equilibrium when T * 300 GeV,

�SL ¼ 2��R
; (54)

�SL ¼ ��0
L
���R

; (55)

�SL ¼ �e0R ��eL; (56)

�SL ¼ �e0L ��eR: (57)

Interactions with the Higgs boson imply the following
relations:

�0 ¼ �u0L ��u0R ; ��0 ¼ �d0L ��d0R ; (58)

��0 ¼ �e0L ��e0R ; �0 ¼ ��0
L
���0

R
: (59)

We also have the following equations relating the chemical
potentials of the fourth-generation quarks, ordinary quarks,
and the dark matter:

�X ¼ �uL ��u0R ; �X ¼ �uR ��u0L ; (60)

�X ¼ �dL ��d0R ; �X ¼ �dR ��d0L ; (61)

assuming the couplings in Eq. (12) are large enough that
these interactions are in thermal equilibrium at high
temperatures.
We use these relations to write the baryon number

density (B), lepton number density (L), and electric charge
density (Q) in terms of f�uL;�0; �SL ;�S0L ; �SB; �Xg. We

find the following expressions for these comoving number
densities:

Bð2Þ ¼ 15

4�2g�T

�
24�uL þ 2nB�SB �

40

3
�X

�
; (62)

Lð2Þ ¼ 15

4�2g�T
ð28�SL � 24�0 þ 2nL�S0LÞ; (63)

Qð2Þ ¼ 15

4�2g�T
ð8�uL þ 26�0 � 6�SL � 2�XÞ; (64)

see Tables I and III for the leptonic and baryonic charges.
At high temperatures, each of these charge densities in
Eqs. (62)–(64) must vanish. These three conditions, along
with the sphaleron condition
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3ð2�uL þ�dL þ�eLÞ � ð2�u0R þ�d0R þ�e0RÞ
¼ 6�uL � 2�0 þ 3�X ¼ 0; (65)

give us four equations and six unknowns. We solve this
system of equations in terms of the chemical potentials�SB

and �S0L since these are the chemical potentials corre-

sponding to the conserved charges in the transformation
laws SB ! ei	BSB and S0L ! ei	LS0L.

We find that in thermal equilibrium the following rela-
tions amongst the chemical potentials

�0 ¼ 9

8630
ð21nB�SB � 19nL�S0LÞ;

�SL ¼ 1

8630
ð162nB�SB � 763nL�S0LÞ;

�X ¼ 3

8630
ð247nB�SB � 18nL�S0LÞ;

�uL ¼ � 3

3452
ð41nB�SB þ 4nL�S0LÞ:

(66)

Using these equilibrium relations, we find what is called
the baryon number density at late times. The baryon num-
ber density at late times will include the contribution of the
ordinary quarks and the contribution from the decay of
the fourth-generation quarks. In ordinary quarks we have

1

3
ð3Þð3Þð�uL þ�uR þ�dL þ�dRÞ ¼ 12�uL: (67)

The contribution from the fourth-generation quarks
(Q0 ! Xy þ q) gives

1

3
ð3Þð�u0L þ�u0R þ�d0L þ�d0RÞ ¼ 4ð�uL ��XÞ: (68)

The observed baryon excess is the sum of these two con-
tributions and is given by

Bð2Þ
f ¼ 15

4�2g�T
ð12�uL þ 4ð�uL ��XÞÞ (69)

¼ 15

4�2g�T
ð4ð4�uL ��XÞÞ

¼�1971

4315

�
15nB
2�2g�

�
�SB

T

��
� 66

4315

�
15nL
2�2g�

��S0L
T

��

’�0:46

�
15nB
2�2g�

�
�SB

T

��
�0:02

�
15nL
2�2g�

��S0L
T

��
: (70)

Since X is the cold dark matter candidate in the theory, one
has to check the prediction for the ratio between the DM
density and the baryon asymmetry. The DM asymmetry is
given by

nX �n �X

s
¼ 15

2�2g�T

�
�X � 3

2
ð�u0L þ�d0L þ�u0R þ�d0RÞ

�

¼ 15

2�2g�T
ð7�X � 6�uL Þ: (71)

Therefore, in this case using Eq. (66), one finds

nX � n �X

s
¼ 15

2�2g�T

�
3516

4315
nB�SB �

99

4315
nL�S0L

�
: (72)

One can find an upper bound on MX using the constraint
jnX � n �Xj 	 nDM. This gives the constraint

�DM=MX

�B=Mp

 j3516�SB � 99�S0Lj

1971�SB þ 66�S0L
; (73)

where Mp ’ 1 GeV is the proton mass and the observed

ratio�DM ’ 5�b. So in this scenario the dark matter mass
must be in the range

MX 	 Mp

�
�DM

�B

�
1971�SB þ 66�S0L
j3516�SB � 99�S0Lj

: (74)

The work in Sec. III shows that the dark matter mass must
be at least 50 GeV to obtain the correct dark matter relic
density while evading direct detection limits. Depending
on the initial charge densities, it is possible to simulta-
neously explain the DM relic density and the baryon
asymmetry in this scenario. Equation (74) shows that this
requires a somewhat awkward fine-tuning between the
initial charge densities of the global symmetries SB !
ei	BSB and S0L ! ei	LS0L.
In model (2), one can have a nonzero baryon asymmetry

(even if B and L are broken at the low scale) if there is a
primordial asymmetry in the scalar sector; however, we
need physics beyond what is in model (2) to explain how
this primordial asymmetry is generated.

V. SUMMARY

We have investigated the cosmological aspects of two
simple models, denoted (1) and (2), in which baryon
number (B) and lepton number (L) are local gauge sym-
metries that are spontaneously broken around the weak
scale. In these models, the stability of our scalar dark
matter candidate is a consequence of the gauge symmetry.
In model (2), we studied the possible dark matter anni-

hilation channels and found what values of the masses and
couplings lead to the observed relic abundance of dark
matter. In the case where the s-wave annihilation through
an intermediate Higgs dominates, we find that, for MH ¼
120 GeV, in order to evade the direct detection bounds the
coupling between the Higgs and the dark matter must be
less than 10�1:5 and 51 GeV & MX & 63 GeV. In the case
where the p-wave annihilation through an intermediate
leptophobic gauge boson dominates, we find that the cou-
pling between the leptophobic ZB and the dark matter must
be less than 0.1 and 235 GeV & MX & 250 GeV when
MZB

¼ 500 GeV. In this case, the leptophobic gauge bo-

son has to be below the TeV scale and one finds a lower
bound on the elastic cross section �B

SI * 5� 10�46 cm2.

In both cases, direct detection experiments constrain the
annihilation to proceed close to resonance in order to evade
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direct detection and to produce the observed relic abun-
dance of dark matter. We have shown that even though
baryon number is gauged and spontaneously broken at the
weak scale, it is possible to generate a cosmological baryon
excess. A modest fine-tuning is needed to achieve both the
measured dark matter relic abundance and baryon excess.

In model (1), we introduced a simple mechanism to split
the masses of the real of the imaginary part of the neutral
component of the new scalar doublet to evade direct de-
tection limits. We showed that one can simultaneously
achieve both the observed baryon asymmetry of the
Universe and the dark matter relic abundance. In particular,
when L is broken at the high scale but B is spontaneously

broken at the weak scale, standard leptogenesis can be
applied.
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