56 research outputs found

    Broad white matter impairment in multiple system atrophy.

    Full text link
    Multiple system atrophy (MSA) is a rare neurodegenerative disorder characterized by the widespread aberrant accumulation of α-synuclein (α-syn). MSA differs from other synucleinopathies such as Parkinson's disease (PD) in that α-syn accumulates primarily in oligodendrocytes, the only source of white matter myelination in the brain. Previous MSA imaging studies have uncovered focal differences in white matter. Here, we sought to build on this work by taking a global perspective on whole brain white matter. In order to do this, in vivo structural imaging and diffusion magnetic resonance imaging were acquired on 26 MSA patients, 26 healthy controls, and 23 PD patients. A refined whole brain approach encompassing the major fiber tracts and the superficial white matter located at the boundary of the cortical mantle was applied. The primary observation was that MSA but not PD patients had whole brain deep and superficial white matter diffusivity abnormalities (p < .001). In addition, in MSA patients, these abnormalities were associated with motor (Unified MSA Rating Scale, Part II) and cognitive functions (Mini-Mental State Examination). The pervasive whole brain abnormalities we observe suggest that there is widespread white matter damage in MSA patients which mirrors the widespread aggregation of α-syn in oligodendrocytes. Importantly, whole brain white matter abnormalities were associated with clinical symptoms, suggesting that white matter impairment may be more central to MSA than previously thought

    Shorter sleep duration and better sleep quality are associated with greater tissue density in the brain

    Get PDF
    Poor sleep quality is associated with unfavorable psychological measurements, whereas sleep duration has complex relationships with such measurements. The aim of this study was to identify the associations between microstructural properties of the brain and sleep duration/sleep quality in a young adult. The associations between mean diffusivity (MD), a measure of diffusion tensor imaging (DTI), and sleep duration/sleep quality were investigated in a study cohort of 1201 normal young adults. Positive correlations between sleep duration and MD of widespread areas of the brain, including the prefrontal cortex (PFC) and the dopaminergic systems, were identified. Negative correlations between sleep quality and MD of the widespread areas of the brain, including the PFC and the right hippocampus, were also detected. Lower MD has been previously associated with more neural tissues in the brain. Further, shorter sleep duration was associated with greater persistence and executive functioning (lower Stroop interference), whereas good sleep quality was associated with states and traits relevant to positive affects. These results suggest that bad sleep quality and longer sleep duration were associated with aberrant neurocognitive measurements in the brain in healthy young adults

    Assessment of Translocator Protein Density, as Marker of Neuroinflammation, in Major Depressive Disorder: A Pilot, Multicenter, Comparative, Controlled, Brain PET Study (INFLADEP Study)

    Get PDF
    Background: Major depressive disorder (MDD) is a serious public health problem with high lifetime prevalence (4.4–20%) in the general population. The monoamine hypothesis is the most widespread etiological theory of MDD. Also, recent scientific data has emphasized the importance of immuno-inflammatory pathways in the pathophysiology of MDD. The lack of data on the magnitude of brain neuroinflammation in MDD is the main limitation of this inflammatory hypothesis. Our team has previously demonstrated the relevance of [18F] DPA-714 as a neuroinflammation biomarker in humans. We formulated the following hypotheses for the current study: (i) Neuroinflammation in MDD can be measured by [18F] DPA-714; (ii) its levels are associated with clinical severity; (iii) it is accompanied by anatomical and functional alterations within the frontal-subcortical circuits; (iv) it is a marker of treatment resistance.Methods: Depressed patients will be recruited throughout 4 centers (Bordeaux, Montpellier, Tours, and Toulouse) of the French network from 13 expert centers for resistant depression. The patient population will be divided into 3 groups: (i) experimental group—patients with current MDD (n = 20), (ii) remitted depressed group—patients in remission but still being treated (n = 20); and, (iii) control group without any history of MDD (n = 20). The primary objective will be to compare PET data (i.e., distribution pattern of neuroinflammation) between the currently depressed group and the control group. Secondary objectives will be to: (i) compare neuroinflammation across groups (currently depressed group vs. remitted depressed group vs. control group); (ii) correlate neuroinflammation with clinical severity across groups; (iii) correlate neuroinflammation with MRI parameters for structural and functional integrity across groups; (iv) correlate neuroinflammation and peripheral markers of inflammation across groups.Discussion: This study will assess the effects of antidepressants on neuroinflammation as well as its role in the treatment response. It will contribute to clarify the putative relationships between neuroinflammation quantified by brain neuroimaging techniques and peripheral markers of inflammation. Lastly, it is expected to open innovative and promising therapeutic perspectives based on anti-inflammatory strategies for the management of treatment-resistant forms of MDD commonly seen in clinical practice.Clinical trial registration (reference: NCT03314155): https://www.clinicaltrials.gov/ct2/show/NCT03314155?term=neuroinflammation&amp;cond=depression&amp;cntry=FR&amp;rank=

    Finding my own way: an fMRI single case study of a subject with developmental topographical disorientation

    No full text
    Developmental topographical disorientation (DTD) causes impaired spatial orientation and navigation from early childhood with no evidence of cerebral damage. Using fMRI and a landmark sequencing task, we investigated the hypothesis that Dr Wai's abnormal cerebral activation pattern was related to his peculiar behavioral profile. Although Dr Wai was able to correctly perform landmark sequencing, he showed a lack of activity in regions activated in all control subjects and activity in areas that were not activated in any control subject. These results are discussed in light of cognitive and functional model of navigation, with relevant implications for DTD physiology

    The connectivity of functional cores reveals different degrees of segregation and integration in the brain at rest

    No full text
    The principles of functional specialization and integration in the resting brain are implemented in a complex system of specialized networks that share some degree of interaction. Recent studies have identified wider functional modules compared to previously defined networks and reported a small-world architecture of brain activity in which central nodes balance the pressure to evolve segregated pathways with the integration of local systems. The accurate identification of such central nodes is crucial but might be challenging for several reasons, e.g. inter-subject variability and physiological/pathological network plasticity, and recent works reported partially inconsistent results concerning the properties of these cortical hubs. Here, we applied a whole-brain data-driven approach to extract cortical functional cores and examined their connectivity from a resting state fMRI experiment on healthy subjects. Two main statistically significant cores, centered on the posterior cingulate cortex and the supplementary motor area, were extracted and their functional connectivity maps, thresholded at three statistical levels, revealed the presence of two complex systems. One system is consistent with the default mode network (DMN) and gradually connects to visual regions, the other centered on motor regions and gradually connects to more sensory-specific portions of cortex. These two large scale networks eventually converged to regions belonging to the medial aspect of the DMN, potentially allowing inter-network interactions

    Imaging delle vie nervose mediante trattografia RM

    No full text

    Effect of levodopa on both verbal and motor representations of action in Parkinson's disease: a fMRI study.

    No full text
    Previous studies have demonstrated that non-demented Parkinson's disease (PD) patients have a specific impairment of verb production compared with noun generation. One interpretation of this deficit suggested the influence of striato-frontal dysfunction on action-related verb processing. The aim of our study was to investigate cerebral changes after motor improvement due to dopaminergic medication on the neural circuitry supporting action representation in the brain as mediated by verb generation and motor imagery in PD patients. Functional magnetic resonance imaging on 8 PD patients in "ON" dopaminergic treatment state (DTS) and in "OFF" DTS was used to explore the brain activity during three different tasks: Object Naming (ObjN), Generation of Action Verbs (GenA) in which patients were asked to overtly say an action associated with a picture and mental simulation of action (MSoA) was investigated by asking subjects to mentally simulate an action related to a depicted object. The distribution of brain activities associated with these tasks whatever DTS was very similar to results of previous studies. The results showed that brain activity related to semantics of action is modified by dopaminergic treatment in PD patients. This cerebral reorganisation concerns mainly motor and premotor cortex suggesting an involvement of the putaminal motor loop according to the "motor" theory of verb processing
    • 

    corecore