184 research outputs found

    The emerging role of the endocannabinoid system in cardiovascular disease

    Get PDF
    Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorder

    The Endocannabinoid System and Plant-Derived Cannabinoids in Diabetes and Diabetic Complications

    Get PDF
    Oxidative stress and inflammation play critical roles in the development of diabetes and its complications. Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions. The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications. This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system. The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed

    Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    Get PDF
    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin alphavbeta6 signaling, as judged by its ability to inhibit these pathways in cnr1-/- but not in nos2-/- mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis

    Role of A2A adenosine receptors in regulation of opsonized E. coli-induced macrophage function

    Get PDF
    Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis

    CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes

    Get PDF
    Aims Here we investigated the mechanisms by which cardiovascular CB1 cannabinoid receptors may modulate the cardiac dysfunction, oxidative stress, and interrelated cell death pathways associated with acute/chronic cardiomyopathy induced by the widely used anti-tumour compound doxorubicin (DOX). Methods and results Both load-dependent and -independent indices of left-ventricular function were measured by the Millar pressure-volume conductance system. Mitogen-activated protein kinase (MAPK) activation, cell-death markers, and oxidative/nitrosative stress were measured by molecular biology/biochemical methods and flow cytometry. DOX induced left-ventricular dysfunction, oxidative/nitrosative stress coupled with impaired antioxidant defense, activation of MAPK (p38 and JNK), and cell death and/or fibrosis in hearts of wide-type mice (CB1+/+), and these effects were markedly attenuated in CB1 knockouts (CB1−/−). In human primary cardiomyocytes expressing CB1 receptors (demonstrated by RT-PCR, western immunoblot, and flow cytometry) DOX, likewise the CB1 receptor agonist HU210 and the endocannabinoid anandamide (AEA), induced MAPK activation and cell death. The DOX-induced MAPK activation and cell death were significantly enhanced when DOX was co-administered with CB1 agonists AEA or HU210. Remarkably, cell death and MAPK activation induced by AEA, HU210, and DOX ± AEA/HU210 were largely attenuated by either CB1 antagonists (rimonabant and AM281) or by inhibitors of p38 and JNK MAPKs. Furthermore, AEA or HU210 in primary human cardiomyocytes triggered increased reactive oxygen species generation. Conclusion CB1 activation in cardiomyocytes may amplify the reactive oxygen/nitrogen species-MAPK activation-cell death pathway in pathological conditions when the endocannabinoid synthetic or metabolic pathways are dysregulated by excessive inflammation and/or oxidative/nitrosative stress, which may contribute to the pathophysiology of various cardiovascular disease

    Definition of hidden drug cardiotoxicity

    Get PDF
    Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market. Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as ageing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways. Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death and/or pro-arrhythmic effects. This led to a novel concept of 'hidden cardiotoxicity', defined as cardiotoxity of a drug that manifests only in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mechanism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic conditioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments

    Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor

    Get PDF
    CB1 cannabinoid receptor (CB1R) undergoes both constitutive and agonist-induced internalization, but the underlying mechanisms of these processes and the role of beta-arrestins in the regulation of CB1R function are not completely understood. In this study, we followed CB1R internalization using confocal microscopy and bioluminescence resonance energy transfer measurements in HeLa and Neuro-2a cells. We found that upon activation CB1R binds beta-arrestin2 (beta-arr2), but not beta-arrestin1. Furthermore, both the expression of dominant-negative beta-arr2 (beta-arr2-V54D) and siRNA-mediated knock-down of beta-arr2 impaired the agonist-induced internalization of CB1R. In contrast, neither beta-arr2-V54D nor beta-arr2-specific siRNA had a significant effect on the constitutive internalization of CB1R. However, both constitutive and agonist-induced internalization of CB1R were impaired by siRNA-mediated depletion of clathrin heavy chain. We conclude that although clathrin is required for both constitutive and agonist-stimulated internalization of CB1R, beta-arr2 binding is only required for agonist-induced internalization of the receptor suggesting that the molecular mechanisms underlying constitutive and agonist-induced internalization of CB1R are different

    Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.

    Get PDF
    The role of the highly-conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by introducing single, double and triple alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (~85% of wild-type CB1R (CB1R-WT)). Moreover, this mutant showed impaired beta-arrestin binding in response to agonist stimulus, although its basal beta-arrestin binding was enhanced. More strikingly, the double mutant CB1R-D3.49A/R3.50A was biased toward beta-arrestins, as it gained a robustly increased beta-arrestin1 and beta-arrestin2 binding ability compared to the wild-type receptor, while its G protein activation was decreased. In contrast, the double mutant CB1R-R3.50A/Y3.51A proved to be G protein-biased, as it was practically unable to recruit beta-arrestin2 in response to agonist stimulus, while still activating G proteins, although at a reduced level (~75% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed good correlation with their beta-arrestin binding ability but not with their G protein activation or inhibition of cAMP accumulation. Our results suggest that G protein-activation and beta-arrestin-binding of the CB1R are mediated by distinct receptor conformations and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G protein- and beta-arrestin2-mediated functions of CB1R
    • …
    corecore