332 research outputs found
Recommended from our members
Comparing the Use of Research Resource Identifiers and Natural Language Processing for Citation of Databases, Software, and Other Digital Artifacts
Submarine and coastal karstic groundwater discharges along the Southwestern Mediterranean coast of Turkey
A 120 km-long part of the southwestern coast of Turkey, with well-developed karst terrain in contact with the sea, has been investigated by systematic diving surveys to determine the submarine groundwater discharges (SGDs). The physical, chemical and isotopic data have been used to determine the rate of the fresh groundwater end member (FEM) and its temporal dynamics. About 150 SGDs have been detected by diving surveys employed mostly up to a depth of 30 m below sea level (bsl). Among those, 15 SGDs are in the form of coastal or submarine caves with entrances ranging between sea surface and 40 m bsl. The FEM contribution in SGDs ranges from a few percent to more than 80%. Stable isotope data suggest a range of mean recharge area elevations extending from the coast to more than 1,000 m inland. In many of the SGDs, the FEMs are characterized by tritium-based residence times ranging from recent to several decades. Hypothetical geochemical calculations of mixing between freshwater and seawater end members reveal that more than 45% of freshwater contribution is required for karst development in the SGDs. Models suggest a threshold pH of 7.6 or lower for the carbonate rock dissolution. © 2010 Springer-Verlag
Derived Data Storage and Exchange Workflow for Large-Scale Neuroimaging Analyses on the BIRN Grid
Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an ever increasing rate. The need to store and exchange data in meaningful ways in support of data analysis, hypothesis testing and future collaborative use is pervasive. Because trans-disciplinary projects rely on effective use of data from many domains, there is a genuine interest in informatics community on how best to store and combine this data while maintaining a high level of data quality and documentation. The difficulties in sharing and combining raw data become amplified after post-processing and/or data analysis in which the new dataset of interest is a function of the original data and may have been collected by multiple collaborating sites. Simple meta-data, documenting which subject and version of data were used for a particular analysis, becomes complicated by the heterogeneity of the collecting sites yet is critically important to the interpretation and reuse of derived results. This manuscript will present a case study of using the XML-Based Clinical Experiment Data Exchange (XCEDE) schema and the Human Imaging Database (HID) in the Biomedical Informatics Research Network's (BIRN) distributed environment to document and exchange derived data. The discussion includes an overview of the data structures used in both the XML and the database representations, insight into the design considerations, and the extensibility of the design to support additional analysis streams
The Function Biomedical Informatics Research Network Data Repository
The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRNâs multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data
On the distribution of spinal premotor interneurons
The activity of flexor and extensor motor neurons is tightly regulated by a network of interneurons in the spinal cord. The introduction of rabies retrograde monosynaptic tracing has provided a powerful method to map interneurons directly connected to motor neurons so as to visualize premotor circuits. Previous strategies have used AAV for complementing rabies glycoprotein expression in motor neurons to obtain selectivity in transsynaptic transfer to identify premotor interneurons innervating specific motor neuron pools These studies revealed differences in the location of flexor and extensor premotor interneurons. Here, we report that by using a genetic approach to complement rabies glycoprotein expression in motor neurons, we did not observe any differences in the distribution of flexor and extensor premotor interneurons. In order to identify possible causes for these paradoxical findings, we discuss advantages and caveats of the experimental designs and suggest ways forward to resolve possible ambiguities. Furthermore, to obtain a complete picture of existing approaches and results we ask for contributions from the scientific community describing the use of additional mouse models, viral constructs, and complementation methods. The aim is to generate an open, comprehensive database to understand the specific organisation of premotor circuits
Does type of hospital ownership influence physicians' daily work schedules? An observational real-time study in German hospital departments
Background: During the last two decades the German hospital sector has been engaged in a constant process of transformation. One obvious sign of this is the growing amount of hospital privatization. To date, most research studies have focused on the effects of privatization regarding financial outcomes and quality of care, leaving important organizational issues unexplored. Yet little attention has been devoted to the effects of privatization on physicians' working routines. The aim of this observational real-time study is to deliver exact data about physicians' work at hospitals of different ownership. By analysing working hours, further impacts of hospital privatization can be assessed and areas of improvement identified.
Methods: Observations were made by shadowing 100 physicians working in private, for-profit or non-profit as well as public hospital departments individually during whole weekday shifts in urban German settings. A total of 300 days of observations were conducted. All working activities were recorded, accurate to the second, by using a mobile personal computer.
Results: Results have shown significant differences in physicians' working activities, depending on hospital ownership, concerning working hours and time spent on direct and indirect patient care.
Conclusion: This is the first real-time analysis on differences in work activities depending on hospital ownership. The study provides an objective insight into physicians' daily work routines at hospitals of different ownership, with additional information on effects of hospital privatization
The origin of the fluids circulating over the Amik Basin (Turkey) and their relationships with the Dead Sea Fault
The Amik Basin is an asymmetrical composite transtensional basin developed between the seismically active left-lateral Dead Sea Fault (DSF) splays and the left-lateral oblique-slip Karasu Fault segment during neotectonic period. The relationship between the DSF and the East Anatolian Fault Zone is important as it represents a triple junction between Arabian Plate, African Plate and Anatolian Block in which the Amik Basin developed. The basin was formed on a pre-Miocene basement consisting of two rock series: Paleozoic crustal units with a Mesozoic allochthonous ophiolitic complex and ~1300 m thick Upper Miocene-Lower Pliocene sedimentary sequence. Plio-Quaternary sediments and Quaternary volcanics unconformably overlie the deformed and folded Miocene beds. Quaternary alkali-basaltic volcanism, derived from a metasomatized asthenospheric or lithospheric mantle, is most probably related to the syn-collisional transtensional strike-slip deformation in the area. Active faults in the region have the potential to generate catastrophic earthquakes (M>7).
Nineteen samples of cold and thermal groundwaters have been collected over the Amik Basin area for dissolved gas analyses as well as two samples from the gas seeps, and one bubbling gas from a thermal spring Samples were analysed for their chemical and isotopic (He, C) composition.
On the basis of their chemical composition, three main groups can be recognized. Most of the dissolved gases (16; Group I) collected from springs or shallow wells (< 150 m depth), contain mainly atmospheric gasses with very limited H2 (< 80 ppm) and CH4 (1â 2700 ppm) contents and minor concentrations of CO2 (0.5â11.2 %). The isotopic composition of Total Dissolved Carbon evidences a prevailing organic contribution with possible dissolution of carbonate rocks. However the CO2-richest sample shows a small but significant deep (probably mantle) contribution which is also evidenced by its He isotopic composition. Further three samples, taken from the northern part of the basin close to Quaternary volcanic outcrops and main tectonic structures, also exhibit a small mantle He contribution (Fig. 1).
The two dissolved gases (Group II) collected from deep boreholes (> 1200 m depth) are typical of hydrocarbon reservoirs being very rich in CH4 (> 78 %) and N2 (> 13%). The water composition of these samples is also distinctive of saline connate waters (Cl- and B-rich, SO4-poor). Isotopic composition of methane (ÎŽ13C ~ -65â°) indicates a biogenic origin while He-isotopic composition points to a prevailing crustal signature for one (R/Ra 0.16) of the sites and a small mantle contribution for the other (R/Ra 0.98) (Fig. 1).
The three free gas samples (Group III), taken at two sites within the ophiolitic basement west of the basin, have the typical composition of gas generated by low temperature serpentinisation processes with high hydrogen (37â50 %) and methane (10â61 %) concentrations. While all three gases show an almost identical ÎŽD-H2 of ~ -750â°, two of them display an isotopic composition of methane (ÎŽ13C ~ -5â°; ÎŽD ~ -105â°) and a C1/[C2+C3] ratio (~100) typical of abiogenic hydrocarbons and a significant contribution of mantle-type helium (R/Ra: 1.33). The composition of these two gasses is comparable to that of the gasses issuing in similar geologic conditions (Chimera-Turkey, Zambales-Philippine and Oman ophiolites). The gas composition of the other site evidences a contribution of a crustal (thermogenic) component (ÎŽ13C-CH4 ~ -30â°; ÎŽD-CH4 ~ -325â°; C1/[C2+C3] ~ 3000). Such crustal contribution is also supported by higher N2 contents (40% instead of 2%) and lower He-isotopic composition (R/Ra 0.07) (Fig. 1).
These first results highlight contributions of mantle-derived volatiles possibly drained towards shallow levels by the DSF and other parallel structures crossing the basin showing a tectonic control of the fluids circulating within the Basin
Using Weighted Goal Programming Model for Planning Regional Sustainable Development to Optimal Workforce Allocation:An Application for Provinces of Iran
Due to the urbanization and economic growth, planning of regional sustainable development has become one of the major challenges in the world. The key indicators such as gross domestic product (GDP), electricity and energy consumption and greenhouse gas emission (GHG) are considered in sustainable development planning. This paper determines number of required workforce in diferent sectors of each province in Iran considering targets/goals for sustainable development indicators in the 2030 macroeconomic and regional planning. First, the relative goals are designed for GDP, electricity, energy and GHG emission and then, two weighted goal programming models are applied to allocate the optimal workforce among four sectors: agriculture, industry, services and transportation. The frst model minimizes recruitment of new workforce and allows current workforce exchange among the four sectors in each province in order to achieve the goals, while the second model indicates equitable distribution of new workforce recruitment in diferent sectors within each province. In both models, the workforce changes have been investigated based on achieving the desirable growth rates of GDP, GHG, electricity and energy consumption as planned by the government. Based on the results of this paper, policy makers can manage workforce and the government can make optimized decisions to macroeconomic and regional planning
- âŠ