115 research outputs found
Neural Degeneration in the Retina of the Streptozotocin-Induced Type 1 Diabetes Model
Diabetic retinopathy, a vision-threatening disease, has been regarded as a vascular disorder. However, impaired oscillatory potentials (OPs) in the electroretinogram (ERG) and visual dysfunction are recorded before severe vascular lesions appear. Here, we review the molecular mechanisms underlying the retinal neural degeneration observed in the streptozotocin-(STZ-) induced type 1 diabetes model. The renin-angiotensin system (RAS) and reactive oxygen species (ROS) both cause OP impairment and reduced levels of synaptophysin, a synaptic vesicle protein for neurotransmitter release, most likely through excessive protein degradation by the ubiquitin-proteasome system. ROS also decrease brain-derived neurotrophic factor (BDNF) and inner retinal neuronal cells. The influence of both RAS and ROS on synaptophysin suggests that RAS-ROS crosstalk occurs in the diabetic retina. Therefore, suppressors of RAS or ROS, such as angiotensin II type 1 receptor blockers or the antioxidant lutein, respectively, are potential candidates for neuroprotective and preventive therapies to improve the visual prognosis
Neuroprotective response after photodynamic therapy: Role of vascular endothelial growth factor
Background: Anti-vascular endothelial growth factor (VEGF) drugs and/or photodynamic therapy (PDT) constitute current treatments targeting pathological vascular tissues in tumors and age-related macular degeneration. Concern that PDT might induce VEGF and exacerbate the disease has led us to current practice of using anti-VEGF drugs with PDT simultaneously. However, the underlying molecular mechanisms of these therapies are not well understood. Methods: We assessed VEGF levels after PDT of normal mouse retinal tissue, using a laser duration that did not cause obvious tissue damage. To determine the role of PDT-induced VEGF and its downstream signaling, we intravitreally injected a VEGF inhibitor, VEGFR1 Fc, or a PI3K/Akt inhibitor, LY294002, immediately after PDT. Then, histological and biochemical changes of the retinal tissue were analyzed by immunohistochemistry and immunoblot analyses, respectively. Results: At both the mRNA and protein levels, VEGF was upregulated immediately and transiently after PDT. VEGF suppression after PDT resulted in apoptotic destruction of the photoreceptor cell layer in only the irradiated area during PDT. Under these conditions, activation of the anti-apoptotic molecule Akt was suppressed in the irradiated area, and levels of the pro-apoptotic protein BAX were increased. Intravitreal injection of a PI3K/Akt inhibitor immediately after PDT increased BAX levels and photoreceptor cell apoptosis. Conclusion: Cytotoxic stress caused by PDT, at levels that do not cause overt tissue damage, induces VEGF and activates Akt to rescue the neural tissue, suppressing BAX. Thus, the immediate and transient induction of VEGF after PDT is neuroprotective
Structural basis of L-glucose oxidation by scyllo-inositol dehydrogenase: Implications for a novel enzyme subfamily classification
For about 70 years, L-glucose had been considered non-metabolizable by either mammalian or bacterial cells. Recently, however, an L-glucose catabolic pathway has been discovered in Paracoccus laeviglucosivorans, and the genes responsible cloned. Scyllo-inositol dehydrogenase is involved in the first step in the pathway that oxidizes L-glucose to produce L-glucono-1,5-lactone with concomitant reduction of NAD+ dependent manner. Here, we report the crystal structure of the ternary complex of scyllo-inositol dehydrogenase with NAD+ and L-glucono-1,5-lactone at 1.8 Å resolution. The enzyme adopts a homo-tetrameric structure, similar to those of the inositol dehydrogenase family, and the electron densities of the bound sugar was clearly observed, allowing identification of the residues responsible for interaction with the substrate in the catalytic site. In addition to the conserved catalytic residues (Lys106, Asp191, and His195), another residue, His318, located in the loop region of the adjacent subunit, is involved in substrate recognition. Site-directed mutagenesis confirmed the role of these residues in catalytic activity. We also report the complex structures of the enzyme with myo-inositol and scyllo-inosose. The Arg178 residue located in the flexible loop at the entrance of the catalytic site is also involved in substrate recognition, and plays an important role in accepting both L-glucose and inositols as substrates. On the basis of these structural features, which have not been identified in the known inositol dehydrogenases, and a phylogenetic analysis of IDH family enzymes, we suggest a novel subfamily of the GFO/IDH/MocA family. Since many enzymes in this family have not biochemically characterized, our results could promote to find their activities with various substrates
Recent global movement on mental health
The Mental Health Gap Action Programme (mhGAP) proposed by the World Health Organization (WHO) is a planned action that aims at providing uniform medical care, especially mental health care and services, to all people worldwide, regardless of economic status. Because not only the levels of medical care, but also the political and economic situations vary among countries, it is extremely difficult for a plan to be successfully implemented in every country with standardized methodology, even if the directionality is ethically correct and ideal. Against this background, authorized personnel provide mental health care activities across the globe, and they report on activities and promote mutual understanding at the WHO mhGAP Forum, an informal meeting convened yearly in Geneva. The 5th mhGAP meeting was attended by 48 member states and 58 partner organizations. From Japan, 5 professionals attended the meeting and presented different viewpoints. Among various policies proposed at the Forum, one in particular about training and recruiting health professionals for low-income countries has gained a special consensus. In addition, the importance of training medical professionals who are not specialized in psychiatry and the importance of developing educational programs for educators were emphasized. It is important for Japan to proactively participate in mhGAP to contribute to global mental health initiative
Radiation dose during relativistic electron precipitation events at the International Space Station
AbstractWe provide a quantitative estimate of the radiation dose during relativistic electron precipitation (REP) events at the International Space Station (ISS). To this goal, we take advantage of the data collected by the CALorimetric Electron Telescope, the Monitor of All‐sky X‐ray Image, and the Space Environment Data Acquisition equipment‐Attached Payload. The three ISS detectors offer complementary REP observations, including energy spectra and flux directional information, during a period of approximately 2.5 years, from November 2015 to March 2018. We have identified 762 REP events during this period from which we obtain the distribution of radiation dose, relevant to extravehicular activities outside the ISS
Detection of the thermal component in GRB 160107A
We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ∼45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0 +0.3-0.2 keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism
Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study)
Ossification of the posterior longitudinal ligament (OPLL) can cause severe and irreversible paralysis in not only the cervical spine but also the thoracolumbar spine. To date, however, the prevalence and distribution of OPLL in the whole spine has not been precisely evaluated in patients with cervical OPLL. Therefore, we conducted a multi-center study to comprehensively evaluate the prevalence and distribution of OPLL using multi-detector computed tomography (CT) images in the whole spine and to analyze what factors predict the presence of ossified lesions in the thoracolumbar spine in patients who were diagnosed with cervical OPLL by plain X-ray. Three hundred and twenty-two patients with a diagnosis of cervical OPLL underwent CT imaging of the whole spine. The sum of the levels in which OPLL was present in the whole spine was defined as the OP-index and used to evaluate the extent of ossification. The distribution of OPLL in the whole spine was compared between male and female subjects. In addition, a multiple regression model was used to ascertain related factors that affected the OP-index. Among patients with cervical OPLL, women tended to have more ossified lesions in the thoracolumbar spine than did men. A multiple regression model revealed that the OP-index was significantly correlated with the cervical OP-index, sex (female), and body mass index. Furthermore, the prevalence of thoracolumbar OPLL in patients with a cervical OP-index ≥ 10 was 7.8 times greater than that in patients with a cervical OP-index ≤ 5. The results of this study reveal that the extent of OPLL in the whole spine is significantly associated with the extent of cervical OPLL, female sex, and obesity
- …