65 research outputs found

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens

    No full text
    In this study, we designed aptamer-gated nanocapsules for the specific targeting of cargo to bacteria with controlled release of antibiotics based on aptamer-receptor interactions. Aptamer-gates caused a specific decrease in minimum inhibitory concentration (MIC) values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery

    Identification of 13 novel NLRP7 mutations in 20 families with recurrent hydatidiform mole; missense mutations cluster in the leucine-rich region

    No full text
    Background: NLRP7 (NALP7) has recently been identified as the causative gene for familial recurrent hydatidiform mole (FRHM), a rare autosomal recessive condition in which affected women have recurrent molar pregnancies of diploid biparental origin. To date only a small number of affected families have been described. Our objectives were to investigate the diversity of mutations and their localisation to one or both isoforms of NLRP7, by screening a large series of women with FRHM and to examine the normal expression of NLRP7 in ovarian tissue.Methods: Fluorescent microsatellite genotyping of molar tissue was used to establish a diagnosis of FRHM. Twenty families were subsequently screened for mutations in NLRP7 using DNA sequencing. Expression of NLRP7 in the ovary was examined by immunohistochemical staining.Results: 16 different mutations were identified in the study, 13 of which were novel. Missense mutations were found to be present in transcript variant 2 of NLRP7 and cluster in the leucine-rich region (LRR). A man with two affected sisters and homozygous for the p.R693P mutation had normal reproductive outcomes. In the normal human ovary, NLRP7 expression is confined to the oocytes and present at all stages from primordial to tertiary follicles.Conclusion: 13 novel mutations in NLRP7 were identified. We confirm that mutations in NLRP7 affect female but not male reproduction, and provide evidence that transcript variant 2 of NLRP7 is the important isoform in this condition. The mutation clustering seen confirms that the LRR is critical for normal functioning of NLRP7

    A new regulatory principle for in vivo biochemistry:Pleiotropic low affinity regulation by the adenine nucleotides - Illustrated for the glycolytic enzymes of Saccharomyces cerevisiae

    Get PDF
    <p>Enzymology tends to focus on highly specific effects of substrates, allosteric modifiers, and products occurring at low concentrations, because these are most informative about the enzyme's catalytic mechanism. We hypothesized that at relatively high in vivo concentrations, important molecular monitors of the state of living cells, such as ATP, affect multiple enzymes of the former and that these interactions have gone unnoticed in enzymology.</p><p>We test this hypothesis in terms of the effect that ATP, ADP, and AMP might have on the major free-energy delivering pathway of the yeast Saccharomyces cerevisiae. Assaying cell-free extracts, we collected a comprehensive set of quantitative kinetic data concerning the enzymes of the glycolytic and the ethanol fermentation pathways. We determined systematically the extent to which the enzyme activities depend on the concentrations of the adenine nucleotides. We found that the effects of the adenine nucleotides on enzymes catalysing reactions in which they are not directly involved as substrate or product, are substantial. This includes effects on the Michaelis-Menten constants, adding new perspective on these, 100 years after their introduction. (C) 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.</p>
    • 

    corecore