9 research outputs found

    Possible cross-feeding pathway of facultative methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8

    Get PDF
    Non-methanotrophic bacteria such as methylotrophs often coexist with methane-oxidizing bacteria (methanotrophs) by cross-feeding on methane-derived carbon. Methanol has long been considered a major compound that mediates cross-feeding of methane-derived carbon. Despite the potential importance of cross-feeding in the global carbon cycle, only a few studies have actually explored metabolic responses of a bacteria when cross-feeding on a methanotroph. Recently, we isolated a novel facultative methylotroph, Methyloceanibacter caenitepidi Gela4, which grows syntrophically with the methanotroph, Methylocaldum marinum S8. To assess the potential metabolic pathways in M. caenitepidi Gela4 co-cultured with M. marinum S8, we conducted genomic analyses of the two strains, as well as RNA-Seq and chemical analyses of M. caenitepidi Gela4, both in pure culture with methanol and in co-culture with methanotrophs. Genes involved in the serine pathway were downregulated in M. caenitepidi Gela4 under co-culture conditions, and methanol was below the detection limit (< 310 nM) in both pure culture of M. marinum S8 and co-culture. In contrast, genes involved in the tricarboxylic acid cycle, as well as acetyl-CoA synthetase, were upregulated in M. caenitepidi Gela4 under co-culture conditions. Notably, a pure culture of M. marinum S8 produced acetate (< 16 μM) during growth. These results suggested that an organic compound other than methanol, possibly acetate, might be the major carbon source for M. caenitepidi Gela4 cross-fed by M. marinum S8. Co-culture of M. caenitepidi Gela4 and M. marinum S8 may represent a model system to further study methanol-independent cross-feeding from methanotrophs to non-methanotrophic bacteria

    Mitochondrial delivery of Coenzyme Q(10) via systemic administration using a MITO-Porter prevents ischemia/reperfusion injury in the mouse liver

    Get PDF
    We herein report on a mitochondrial therapeutic effect based on the delivery of coenzyme Q(10) (CoQ(10)), an anti-oxidant, to in vivo mitochondria using a MITO-Porter, a liposome-based mitochondrial delivery system that functions via membrane fusion. To evaluate the effects, we used a mouse liver ischemia/reperfusion injury (I/R injury) model, in which mitochondrial reactive oxygen species are overexpressed. We packaged CoQ(10) in the lipid phase of a MITO-Porter and optimized the mitochondrial fusogenic activities to produce the CoQ(10)-MITO-Porter. A histological observation of the carriers in the liver by confocal laser scanning microscopy was done and the accumulation of the carrier labeled with a radio isotope in the liver confirmed that the CoQ(10)-MITO-Porter was delivered to liver mitochondria via systemic injection. These analytical results permitted us to optimize the compositions of the CoQ(10)-MITO-Porter so as to permit it to efficiently accumulate in mouse liver mitochondria. Finally, we applied the optimized CoQ(10) -MITO-Porter to mice via tail vein injection, and hepatic I/R injury was then induced, followed by measuring serum alanine aminotransferase (ALT) levels, a marker of liver injury. We confirmed that the use of the CoQ(10)-MITO-Porter resulted in a significant decrease in serum ALT levels, indicating that in vivo mitochondrial delivery of the CoQ(10) via MITO-Porter prevents I/R injury in mice livers. This provides a demonstration of the potential use of such a delivery system in mitochondrial therapies. (C) 2015 Elsevier B.V. All rights reserved

    Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande

    No full text
    International audiencePreceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector is developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M_{\odot} star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance
    corecore