300 research outputs found
Recommended from our members
Radiation exposure awareness from patients undergoing nuclear medicine diagnostic 99mTc-MDP bone scans and 2-deoxy-2-(18F) fluoro-D-glucose PET/computed tomography scans
INTRODUCTION: Medical imaging is on average the largest source of artificial radiation exposure worldwide. This study seeks to understand patient's awareness of radiation exposure derived from nuclear medicine diagnostic scans and assess if current information provided by leaflets is adequate.
METHODS: Single-centre cross-sectional questionnaire study applied to bone scan and FDG PET/computed tomography patients, at a nuclear medicine and PET/computed tomography department over a 15-week period in 2018. Questionnaires on dose comparators were designed in collaboration with patients, public, and experts in radiation exposure. Qualitative data were analysed using thematic analysis and quantitative data using SPSS (V. 24).
RESULTS: A total of 102 questionnaires were completed (bone scan = 50; FDG PET/computed tomography = 52). Across both groups, 33/102 (32.4%) patients reported having a reasonable understanding of nuclear medicine and 21/102 (20.6%) reported a reasonable knowledge of ionising radiations. When asked to compare the exposure dose of respective scans with common comparators 8/50 (16%) of bone scan patients and 11/52 (21.2%) FDG PET/computed tomography answered correctly. On leaflet information, 15/85 (17.6%) patients reported the leaflets do not provide enough information on radiation exposure and of these 10/15 (66.7%) commented the leaflets should incorporate more information on radiation exposure dose.
CONCLUSION: More observational and qualitative studies in collaboration with patients are warranted to evaluate patients' understanding and preferences in communication of radiation exposure from nuclear medicine imaging. This will ensure communication tools and guidelines developed to comply with ionising radiation (medical exposure) regulation 2017 are according to patients needs and preferences
Targeted therapy in nuclear medicineācurrent status and future prospects
In recent years, a number of new developments in targeted therapies using radiolabeled compounds have emerged. New developments and insights in radioiodine treatment of thyroid cancer, treatment of lymphoma and solid tumors with radiolabeled monoclonal antibodies (mAbs), the developments in the application of radiolabeled small receptor-specific molecules such as meta-iodobenzylguanidine and peptides and the position of locoregional treatment in malignant involvement of the liver are reviewed. The introduction of recombinant human thyroid-stimulating hormone and the possibility to enhance iodine uptake with retinoids has changed the radioiodine treatment protocol of patients with thyroid cancer. Introduction of radiolabeled mAbs has provided additional treatment options in patients with malignant lymphoma, while a similar approach proves to be cumbersome in patients with solid tumors. With radiolabeled small molecules that target specific receptors on tumor cells, high radiation doses can be directed to tumors in patients with disseminated disease. Radiolabeled somatostatin derivatives for the treatment of neuroendocrine tumors are the role model for this approach. Locoregional treatment with radiopharmaceuticals of patients with hepatocellular carcinoma or metastases to the liver may be used in inoperable cases, but may also be of benefit in a neo-adjuvant or adjuvant setting. Significant developments in the application of targeted radionuclide therapy have taken place. New treatment modalities have been introduced in the clinic. The concept of combining therapeutic radiopharmaceuticals with other treatment modalities is more extensively explore
99mTc-labelled StealthĀ® liposomal doxorubicin (CaelyxĀ®) in glioblastomas and metastatic brain tumours
British Journal of Cancer (2002) 86, 659ā660. DOI: 10.1038/sj/bjc/6600093 www.bjcancer.co
[89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: a phase 2 trial
Introduction: Immune-mediated interstitial pneumonitis may be treated with anti-CD20 therapy after failure of conventional therapies. However, clinical response is variable. It was hypothesized that autoreactive CD20-positive cells may play an important role in this variability. This prospective study aims to elucidate if imaging of CD20-positive cells in the lungs allows prediction of the response to anti-CD20 treatment. Methods: Twenty-one patients with immune-mediated interstitial lung disease (ILD) with deteriorated pulmonary function received a dose of 1000 mg rituximab on day 1 and day 14 spiked with a tracer dose of radiolabeled [89Zr]-rituximab. PET/CT was performed on days 3 and 6. Standardized uptake values (SUV) were calculated as a measure for pulmonary CD20 expression. Based on pulmonary function tests (PFT), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), prior to and 6 months after treatment, patients were classified as responder (stable disease or improvement) or non-responder. Results: Fifteen patients (71%) were classified as responder. Pulmonary [89Zr]-rituximab PET SUVmean was significantly correlated with the change in FVC and DLCO (K = 0.49 and 0.56, respectively) when using target-to-background ratios, but not when using SUVmean alone. [89Zr]-rituximab SUVmean was significantly higher in responders than in non-responders (0.35 SD 0.09 vs. 0.23 SD 0.06; P = 0.02). Conclusion: Rituximab treatment was effective in the majority of patients. As a higher pulmonary uptake of [89Zr]-rituximab correlated with improvement of PFT and treatment outcome, [89Zr]-rituximab PET imaging may serve as a potential predictive biomarker for anti-CD20 therapy. Trial registration: Clinicaltrials.go
[89Zr]-immuno-PET prediction of response to rituximab treatment in patients with therapy refractory interstitial pneumonitis: a phase 2 trial
Introduction: Immune-mediated interstitial pneumonitis may be treated with anti-CD20 therapy after failure of conventional therapies. However, clinical response is variable. It was hypothesized that autoreactive CD20-positive cells may play an important role in this variability. This prospective study aims to elucidate if imaging of CD20-positive cells in the lungs allows prediction of the response to anti-CD20 treatment. Methods: Twenty-one patients with immune-mediated interstitial lung disease (ILD) with deteriorated pulmonary function received a dose of 1000 mg rituximab on day 1 and day 14 spiked with a tracer dose of radiolabeled [89Zr]-rituximab. PET/CT was performed on days 3 and 6. Standardized uptake values (SUV) were calculated as a measure for pulmonary CD20 expression. Based on pulmonary function tests (PFT), forced vital capacity (FVC), and diffusing capacity for carbon monoxide (DLCO), prior to and 6 months after treatment, patients were classified as responder (stable disease or improvement) or non-responder. Results: Fifteen patients (71%) were classified as responder. Pulmonary [89Zr]-rituximab PET SUVmean was significantly correlated with the change in FVC and DLCO (K = 0.49 and 0.56, respectively) when using target-to-background ratios, but not when using SUVmean alone. [89Zr]-rituximab SUVmean was significantly higher in responders than in non-responders (0.35 SD 0.09 vs. 0.23 SD 0.06; P = 0.02). Conclusion: Rituximab treatment was effective in the majority of patients. As a higher pulmonary uptake of [89Zr]-rituximab correlated with improvement of PFT and treatment outcome, [89Zr]-rituximab PET imaging may serve as a potential predictive biomarker for anti-CD20 therapy. Trial registration: Clinicaltrials.go
A model for the compressible, viscoelastic behavior of human amnion addressing tissue variability through a single parameter
A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time- dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition
- ā¦