65 research outputs found

    Dynamic optimization of metabolic networks coupled with gene expression

    Get PDF
    The regulation of metabolic activity by tuning enzyme expression levels is crucial to sustain cellular growth in changing environments. Metabolic networks are often studied at steady state using constraint-based models and optimization techniques. However, metabolic adaptations driven by changes in gene expression cannot be analyzed by steady state models, as these do not account for temporal changes in biomass composition. Here we present a dynamic optimization framework that integrates the metabolic network with the dynamics of biomass production and composition, explicitly taking into account enzyme production costs and enzymatic capacity. In contrast to the established dynamic flux balance analysis, our approach allows predicting dynamic changes in both the metabolic fluxes and the biomass composition during metabolic adaptations. We applied our algorithm in two case studies: a minimal nutrient uptake network, and an abstraction of core metabolic processes in bacteria. In the minimal model, we show that the optimized uptake rates reproduce the empirical Monod growth for bacterial cultures. For the network of core metabolic processes, the dynamic optimization algorithm predicted commonly observed metabolic adaptations, such as a diauxic switch with a preference ranking for different nutrients, re-utilization of waste products after depletion of the original substrate, and metabolic adaptation to an impending nutrient depletion. These examples illustrate how dynamic adaptations of enzyme expression can be predicted solely from an optimization principle

    Suboptimal triangular controller design methodology for full MIMO stable systems

    Get PDF
    This paper proposes a design methodology of triangular controllers for full MIMO stable plants. The procedure is based on an optimal design for a triangular model of the plant. Stability and appropriate performance can be achieved by adjusting a set of design parameters involved in a weighting function. The resulting controller provides integration and can be computed analytically

    Cascaded multilevel inverter with regeneration capability and reduced number of switches

    Get PDF
    Abstract—multilevel converters are a very interesting alternative for medium and high power drives. One of the more flexible topologies of this type is the cascaded multicell converter. This paper proposes the use of a single-phase reduced cell suitable for cascaded multilevel converters. This cell uses a reduced singlephase active rectifier at the input and an H-bridge inverter at the output side. This topology presents a very good performance, effectively controlling the waveform of the input current and of the output voltage and allowing operation in the motoring and regenerative mode. The results presented in this paper confirm that this medium voltage inverter effectively eliminates low frequency input current harmonics at the primary side of the transformer and operates without problems in regenerative mod

    Prediction of gene essentiality using machine learning and genome-scale metabolic models

    Get PDF
    The identification of essential genes, i.e. those that impair cell survival when deleted, requires large growth assays of knock-out strains. The complexity and cost of such experiments has triggered a growing interest in computational methods for prediction of gene essentiality. In the case of metabolic genes, Flux Balance Analysis (FBA) is widely employed to predict essentiality under the assumption that cells maximize their growth rate. However, this approach assumes that knock-out strains optimize the same objectives as the wild-type, which excludes cases in which deletions cause large physiological changes to meet other objectives for survival. Here, we resolve this limitation with a novel machine learning approach that predicts essentiality directly from wild-type flux distributions. We first project the wild-type FBA solution onto a mass flow graph, a digraph with reactions as nodes and edge weights proportional to the mass transfer between reactions, and then train binary classifiers on the connectivity of graph nodes. We demonstrate the efficacy of this approach using the most complete metabolic model of Escherichia coli, achieving near state-of-the art prediction accuracy for essential genes. Our approach suggests that wild-type FBA solutions contain enough information to predict essentiality, without the need to assume optimality of deletion strains

    Control structure and limitations of biochemical networks

    Get PDF
    Biochemical networks typically exhibit intricate topologies that hinder their analysis with control-theoretic tools. In this work we present a systematic methodology for the identification of the control structure of a reaction network. The method is based on a bandwidth reduction technique applied to the incidence matrix of the network’s graph. In addition, in the case of mass-action and stable networks we show that it is possible to identify linear algebraic dependencies between the time-domain integrals of some species’ concentrations. We consider the extrinsic apoptosis pathway and an activation– inhibition mechanism to illustrate the application of our result

    Computation of Single-Cell Metabolite Distributions Using Mixture Models

    Get PDF
    Metabolic heterogeneity is widely recognised as the next challenge in our understanding of non-genetic variation. A growing body of evidence suggests that metabolic heterogeneity may result from the inherent stochasticity of intracellular events. However, metabolism has been traditionally viewed as a purely deterministic process, on the basis that highly abundant metabolites tend to filter out stochastic phenomena. Here we bridge this gap with a general method for prediction of metabolite distributions across single cells. By exploiting the separation of time scales between enzyme expression and enzyme kinetics, our method produces estimates for metabolite distributions without the lengthy stochastic simulations that would be typically required for large metabolic models. The metabolite distributions take the form of Gaussian mixture models that are directly computable from single-cell expression data and standard deterministic models for metabolic pathways. The proposed mixture models provide a systematic method to predict the impact of biochemical parameters on metabolite distributions. Our method lays the groundwork for identifying the molecular processes that shape metabolic heterogeneity and its functional implications in disease.Comment: 5 Figures, 3 Table

    Opportunities at the interface of network science and metabolic modeling

    Get PDF
    Metabolism plays a central role in cell physiology because it provides the molecular machinery for growth. At the genome-scale, metabolism is made up of thousands of reactions interacting with one another. Untangling this complexity is key to understand how cells respond to genetic, environmental, or therapeutic perturbations. Here we discuss the roles of two complementary strategies for the analysis of genome-scale metabolic models: Flux Balance Analysis (FBA) and network science. While FBA estimates metabolic flux on the basis of an optimization principle, network approaches reveal emergent properties of the global metabolic connectivity. We highlight how the integration of both approaches promises to deliver insights on the structure and function of metabolic systems with wide-ranging implications in discovery science, precision medicine and industrial biotechnology
    • 

    corecore