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ABSTRACT: Recent advances in synthetic biology have enabled
the construction of molecular circuits that operate across multiple
scales of cellular organization, such as gene regulation, signaling
pathways, and cellular metabolism. Computational optimization
can effectively aid the design process, but current methods are
generally unsuited for systems with multiple temporal or
concentration scales, as these are slow to simulate due to their
numerical stiffness. Here, we present a machine learning method
for the efficient optimization of biological circuits across scales.
The method relies on Bayesian optimization, a technique
commonly used to fine-tune deep neural networks, to learn the shape of a performance landscape and iteratively navigate the
design space toward an optimal circuit. This strategy allows the joint optimization of both circuit architecture and parameters, and
provides a feasible approach to solve a highly nonconvex optimization problem in a mixed-integer input space. We illustrate the
applicability of the method on several gene circuits for controlling biosynthetic pathways with strong nonlinearities, multiple
interacting scales, and using various performance objectives. The method efficiently handles large multiscale problems and enables
parametric sweeps to assess circuit robustness to perturbations, serving as an efficient in silico screening method prior to experimental
implementation.
KEYWORDS: Bayesian optimization, machine learning, dynamic pathway control, genetic circuit design, multiscale biological systems,
metabolic engineering

1. INTRODUCTION
The design of molecular circuits with prescribed functions is a
core task in synthetic biology.1 These circuits can include
components that operate across various scales of cellular
organization, such as gene expression, signaling pathways,2 or
metabolic processes.3 Computational methods are widely
employed to discover circuits with specific dynamics,4−6 and,
in particular, optimization-based strategies can be employed to
search over design space and single out circuits predicted to
fulfill a desired function.7−10 However, circuit design requires
the specification of circuit architecture, i.e., the circuit “wiring
diagram”, as well as the strength of interactions among
molecular components. Since circuit architectures are discrete
choices and molecular interactions depend on continuous
parameters such as binding rate constants, circuit design leads
to mixed-integer optimization problems that can be notori-
ously difficult to solve.11 Moreover, when circuits operate
across multiple scales, their computational models become
numerically stiff,12 resulting in extremely slow simulations that
make their mixed-integer optimization challenging or even
impossible to solve.
Previous work on computational circuit design has largely

focused on genetic circuits that operate in isolation from other
layers of the cellular machinery (Figure 1A). A range of

techniques have been employed to identify functional circuits,
including exhaustive search,4−6,13 computational optimiza-
tion,7,8 systems theoretic approaches,14−18 Bayesian de-
sign,19,20 and machine learning.9,21 While these methods differ
on their specific modeling strategies and assumptions, they all
require computational simulations at many locations, typically
thousands to millions, in the design space. But since multiscale
systems often cannot be simulated at such scale, the
computational costs limit the applicability of current
optimization methods.
A notable example of this challenge appears in genetic

circuits for dynamic control of metabolic pathways.22−26 These
systems are receiving substantial attention thanks to several
successful implementations that improved yields as compared
to classic techniques in metabolic engineering.27,28 The key
principle is to put enzymatic genes under the control of
metabolite-responsive mechanisms that couple heterologous
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expression to the concentration of a pathway intermediate.3

This creates feedback loops between enzyme expression and
pathway intermediates that allow the control of pathway
activity in response to upstream changes in growth conditions
or precursor availability. Such dual genetic-metabolic systems
are particularly challenging to simulate efficiently because
metabolites and enzymes vary in different time scales, from
milliseconds (enzyme kinetics) to minutes (enzyme expres-
sion), and they also appear in vastly different concentrations;
in bacteria enzymes are typically expressed in nanomolar
concentrations, while metabolites are found typically above the
millimolar range.29 Moreover, the implementation of these
systems is costly and requires substantial experimental fine-
tuning. As a result, a central task prior to implementation is the
choice of a suitable feedback control loop between metabolites
and enzymatic genes, and the strength of interactions between
metabolites and actuators of gene expression such as

transcription factors30 or riboregulators.31 The design of
control architectures is particularly important, because there
are many ways of building similar control loops,32 for example
by employing combinations of transcriptional activators and
repressors,33,34 that may differ in their performance and cost of
implementation.
Here, we present a fast and scalable machine learning

approach for optimization of multiscale circuit architectures
and parameters (Figure 1A). The method is based on Bayesian
optimization coupled with differential equation models, and we
highlight its utility in various models of metabolic pathways
under genetic feedback control.35 Using a toy example for a
simple pathway, we first show that the method converges
rapidly and outperforms other optimizers by a substantial
margin. We then consider real world models of metabolic
pathways in Escherichia coli for the production of several
relevant precursors: glucaric acid,36 fatty acids,33 and p-

Figure 1. Bayesian optimization for the design of circuit architectures and parameters. (A) Previous optimization methods have focused on genetic
circuits in isolation from other cellular processes. For multiscale circuits, optimization approaches become infeasible due to the difficulty of
simulating stiff dynamical systems in many locations of the design space; a common example of such multiscale systems are gene circuits that
control metabolic production.3 We propose the use of Bayesian optimization (BayesOpt) for efficient optimization of architectures and parameters
in multiscale circuits. (B) Schematic of a mixed-integer Bayesian optimization loop; the objective function is regarded a random variable to be
optimized over an input space comprised of continuous parameters and a set of discrete circuit architectures. At each iteration, the algorithm
computes the value of the objective function from the solution of an ordinary differential equation (ODE) model at a single location in the input
space. The algorithm learns the shape of the objective landscape using a nonparametric statistical model,37 which is employed to propose a new
location in the input space through an acquisition function designed to balance exploration and exploitation of the input space; more details in the
Methods. The algorithm iteratively learns the shape of the performance landscape until convergence to a global optimum. (C) Example metabolic
pathway under gene regulation. We consider three negative feedback architectures plus open loop control; the architectures are named based on the
net effect of the metabolite on gene expression. The intermediate X1 binds a transcription factor (TF) that controls the expression of pathway
enzymes, either as an activator or repressor. Vin is the constant influx to the engineered pathway from native metabolism. The TF dose-response
curve (at right) is described by three parameters, ki, θi, and ni, where i = 1, 2. The aim is to find designs with optimal architecture and dose-response
parameters (ki, θi); for simplicity the Hill coefficient was fixed to ni = 2. (D) Performance landscapes of the four feasible circuit architectures. We
exclude architectures with positive feedback loops as these are prone to multistability.47 The shape of the performance landscape defined in eq 3
shows substantial variation across the four architectures. This leads to a highly nonconvex mixed-integer optimization problem. Heatmaps show the
value of the objective J computed on a regular grid of the indicated parameters. (E) Comparison of BayesOpt against other strategies using the toy
model as a benchmark; lower objective function values are better. Shown are the results for random sampling (N = 1,000 samples), grid search (N
= 40,000), a genetic algorithm55 (N = 100 individuals, N = 1,000 generations), and a gradient-based optimizer to find optimal continuous
parameter values for each architecture.48
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aminostyrene.34 We use these pathways to illustrate how the
speed of our method enables screening optimal designs in
realistic design tasks that would otherwise be infeasible to
compute, including the impact of uncertain enzyme kinetic
parameters, the use of layered architectures that combine
metabolic and genetic control, and the optimization of a
complex model with 23 differential equations, 27 candidate
control architectures, and 16 parameters to be optimized. The
method can help speed up the design of synthetic biological
circuits and presents a novel approach to explore the design
space ahead of implementation.

2. RESULTS
2.1. Bayesian Optimization for Joint Optimization of

Circuit Architecture and Parameters. In general, a circuit
design task can be stated as the following mixed-integer
optimization problem:

J x p p

x t h x

p p

min ( , , )

subject to:

d /d ( )

,

p p c d

c d

,d c

=

(1)

where J(x, pc, pd) is a performance objective to be optimized
over a space of continuous parameters pc and a discrete set of
circuit architectures pd. The ordinary differential equation
(ODE) in eq 1 describes the temporal dynamics of circuit
components and are typically built from mass balance relations
comprised in the nonlinear function h(x). Common examples
of continuous parameters in applications are binding affinities
between DNA and regulatory proteins, or the strength of
protein-protein interactions. Conversely, circuit architecture
would typically involve various combinations of positive and
negative feedback loops among molecular species. We have
stated the problem as minimization of J, but similar
formulations can be posed as a maximization problem.
In this paper, we propose to solve the design problem in eq

1 with Bayesian optimization (BayesOpt), a class of algorithms
designed for problems with objective functions that are
expensive to compute. BayesOpt is a global optimization
technique that treats the objective function as a random
variable with a prior distribution on it. The algorithm creates a
statistical model of the objective through subsequent
evaluations, which are employed to build a posterior
distribution and determine the next set of inputs to evaluate
(Figure 1B). A typical application of BayesOpt is in design of
experiments35 where the objective function requires measuring
data with costly and/or slow experimental work. In deep
learning, BayesOpt is widely employed for model selection, as
traditional grid search approaches require large compute
resources to train many architectures with combinations of
various layer sizes and other hyperparameters.37,38

For the circuit design task in eq 1, when the biological
system has multiple scales the computation of objective J
requires solving a stiff ODE at many locations of the mixed-
integer search space, which can rapidly become infeasible. To
illustrate the utility of BayesOpt in a range of design problems,
we focus on genetic control circuits for metabolic pathways
that synthesize high-value products. In this case, the ODE in eq
1 contains two sets of equations:

s t f s e s

e t u s p p e

d /d ( , )

d /d ( , , )c d

=

= (2)

where s and e are vectors of metabolite and enzyme
concentrations, respectively. The term f(s, e) describes the
biochemical reactions between pathway intermediates, while
the parameter λ models the dilution effect by cell growth. The
vector u(s, pc, pd) describes the enzyme expression rates
controlled by some pathway intermediates, and typically take
the form of sigmoidal dose-response curves that lump together
processes such as metabolite-TF or metabolite-riboregulator
interactions.30 The continuous parameters pc model the dose-
response curves of the feedback mechanisms, whereas the
discrete parameters pd specify the gene control architecture.
The number of heterologous enzymes determines the number
of genes in the control circuit. In pathways under dynamic
control as in eq 2, both sets of species change in different time
scales; metabolic reactions operate in the millisecond range or
faster,39 while enzyme expression changes in the scale of
minutes or longer. Moreover, metabolites and enzymes are also
present in different ranges of concentrations, from nM for
enzymes to mM and higher for metabolites.29 As a result,
simulation of the ODE in eq 2 is computationally expensive,
particularly when this has to be done many times as part of an
optimization-based search.
The performance objective J can be flexibly used to model

common design goals such as production flux, yield or titer, as
well as cost-benefit tasks that balance production with the
deleterious impact of the pathway on the physiology of the
host. To first establish a baseline for the performance of our
method, we employed a simple toy pathway model that
displays common features found in real metabolic pathway
(Figure 1C). The model includes a metabolic branch point
through a heterologous pathway with two enzymatic steps. As
a performance objective we considered the minimization of

J J J1 prod 2 cost= + (3)

where Jprod was designed so that its minimization is equivalent
to maximization of the production flux, and Jcost penalizes total
amount of enzyme expressed during the culture. The
parameters α1 and α2 are positive weights used to control
the balance between the costs and benefits of expressing the
heterologous pathway. Details on the objective function can be
found in the Supporting Information.
We considered the four control architectures shown in

Figure 1C, which include open loop control as well as three
different implementations of negative feedback control using a
metabolite-responsive transcription factor. Negative feedback
is widely employed in gene circuits as it has substantial benefits
in terms of robustness and performance, and their properties
have been extensively studied in the literature.40−42 To
illustrate the challenge of jointly optimizing circuit architecture
and parameters, in Figure 1D we show a schematic of the
design space. The four control architectures under consid-
eration reside at different discrete points in the architecture
space. Within each architecture, we observe substantial
variations in the shape of the performance landscape J as a
function of the dose-response parameters pc. There are cases
with convex landscapes with a clear optimum (e.g. dual
control) and landscapes with flat basins where most
optimization algorithms would struggle to find the optimum
(e.g. downstream activation). When searching over the space
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of architectures and parameters simultaneously, the problem
becomes a mixed-integer, nonconvex optimization that is
extremely challenging to solve with traditional approaches.
We implemented a BayesOpt routine to jointly compute the

architecture (pd) and dose-response parameters (pc) that
minimize the performance objective in eq 3. We benchmarked
its performance against several other methods, including a
random search, an exhaustive grid search, a gradient based
method, and a genetic algorithm (Figure 1E). The algorithm
was able to compute optimal solutions rapidly (average 27
seconds per run across 100 runs) and robustly (standard
deviation less than 2.5% of the mean optimal objective
function value). BayesOpt runs significantly faster than the
other methods, and provides a 30-fold improvement over a
genetic algorithm. The accuracy of the optimum, quantified by
the minimal value of the objective function, is on average
11.4% worse than the genetic algorithm, but this falls within
the variation of the latter across several runs. We also note that
the traditional gradient-based optimizer proved unreliable and
failed to converge on 14.5% of runs.
A key advantage of Bayesian methods is that they are not

gradient-based, and therefore are not constrained to navigate
the space smoothly in the direction of steepest descent.
Gradient-based methods can get trapped in local minima and

struggle to find the global optimum, especially in highly
nonconvex landscapes like the ones presented here. In
contrast, BayesOpt does not converge by chasing minima
directly but rather by modeling the entire objective function
landscape, which results in rapid and reliable results. The
method can perform multiple “jumps” between distant
locations in the discrete-continuous search space, where each
subsequent sample is selected to maximize the expected
improvement on the best sample found so far.
The speed of our approach enables the computation of large

solution ensembles under model perturbations such as sweeps
of key model parameters. In addition, our method can search
high-dimensional mixed-integer design spaces. We next
illustrate the versatility of the approach in a range of relevant
real world pathways that require solving the optimization
problem for large samples of parameter values.
2.2. Robustness of Control Circuits to Uncertainty in

Enzyme Kinetic Parameters. A challenge in building
pathway models is the substantial uncertainty on the enzyme
kinetic parameters; this is particularly critical for pathways that
include regulatory mechanisms such allostery or product
inhibition, which are often poorly characterized. Databases
such as BRENDA43 often have insufficient data on enzyme
kinetics for a particular host strain or substrate of interest.

Figure 2. Robustness of optimal circuits to parameter uncertainty. (A) Schematic of a dynamic pathway for production of glucaric acid in
Escherichia coli.26 The pathway includes allosteric inhibition and export of an intermediate to the extracellular space. The core pathway components
myoinositol (MI) and glucaric acid (GA) are modeled explicitly, as are the enzymes Ino1 and MIOX. The enzyme SuhB is not rate-limiting and is
not modeled explicitly. Vin is the constant influx to the engineered pathway from native metabolism. As in Figure 1C, the architectures are named
based on the net effect of the metabolite on gene expression. (B) Sample run of the BayesOpt algorithm for 1,000 iterations of the loop in Figure
1B. Black line shows the descent on the value of the objective function. Dots show all samples colored by architecture; pie charts show the fraction
of architectures explored by the algorithm, and the fraction of samples taken from the majority architecture (dual control). The first quarter of the
run had the most exploration of architectures other than dual control, with 38.6% of samples coming from nonmajority architectures. This
percentage steadily decreased over the iterations but did not drop below 20%, illustrating the global nature of the optimization routine. (C) To
examine the robustness of the optimal solutions to parameter uncertainty, we computed optimal solutions for many perturbed parameters of the
allosteric activation of MIOX by its substrate myoinositol (MI). Strip plot shows the best objective function values achieved for background and
perturbed kinetic parameters (Vm,MIOX, aMIOX, ka,MIOX) in eq 4. Kinetic parameters were perturbed using Latin Hypercube sampling56 in the range
(−100%, +100%) of the nominal values (Supporting Information). We observed little difference between background and perturbed values; dashed
line denotes the mean value of the objective function. Only one of the N = 100 runs for perturbed parameters failed to converge the optimum. (D)
Optimal architectures across runs with background and perturbed parameter values. Both background and perturbed systems resulted in over 80%
of runs selecting dual control as the optimal architecture. (E) Average dose-response curves and distribution of optimal parameters for the dual
control architecture with perturbed allosteric parameters. The repressive and activatory loops have substantially different dose-response curves on
average. The distributions of the dose-response parameters (right) show important variations in their mean and dispersion. The parameter ki and θi
determine the maximal enzyme expression rate and regulatory threshold, respectively.
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Since pathway dynamics can strongly depend on enzyme
kinetics, the parametric uncertainty requires extensive sweeps
of kinetic parameters to determine the robustness of a specific
control architecture deemed to be optimal.
We focused on a pathway for synthesis of glucaric acid in

E. coli (Figure 2A), a key precursor for many downstream
products.36 The pathway branches from glucose-6-phosphate
(g6p) in upper glycolysis and contains three enzymatic steps
(Ino1, SuhB, and MIOX). Doong and colleagues implemented
a dynamic control circuit using the dual transcriptional
regulator IpsA which responds to the intermediate myoinositol
(MI).26 The pathway enzyme MIOX is allosterically activated
by its own precursor, and one intermediate (MI) can be
exported to the extracellular space. We employed a previously
developed ODE model10 that was parametrized using a
combination of enzyme kinetic data and omics measurements,
and considered the same four control architectures as in the
previous example, including various alternative implementa-
tions of negative feedback control.
The results in Figure 2B show a typical run of the optimizer

when using the cost-benefit objective in eq 3 (details in
Supporting Information), together with the fraction of samples
in which the algorithm explored each control architecture
across the successive iterations. The optimal architecture (dual
control in this case) was found quickly and the algorithm was
able to further decrease the value of the objective function by
exploring the space of dose-response parameters of IpsA. We
observe that as the iterations progress, the algorithm shows a
remarkable ability to explore other architectures despite their
larger objective function values, thus highlighting the global
nature of the algorithm.
To explore the impact of uncertain enzyme kinetics, we

perturbed the parameters of the rate-limiting MIOX allosteric
reaction:

V
V

k

V V
a

k

MI

MI

given
1 MI

MI

MIOX
m,eff

m,MIOX

m,eff m,MIOX
MIOX

a,MIOX

=
+

= +
+ (4)

where Vm,MIOX is the maximum rate of reaction, km,MIOX is the
Michaelis-Menten constant, and ka,MIOX and aMIOX are

allosteric activation constants. We solved the optimization
problem for 1,000 combinations of these three parameters,
which took under 16 hours on a Macbook Air with Apple M1
processor and 8 GB of RAM running MacOS Monterey.
Perturbing the kinetic parameters of the glucaric acid pathway
did not significantly affect the minimum objective function
value achieved, indicating that the optimum is robust to
uncertainty in the kinetic parameters (Figure 2C). However,
the mean optimal objective function value was not significantly
higher among the perturbed samples. We found that the dual
control architecture was chosen as optimal in more than 85%
of samples (Figure 2D). We thus sought to examine the
optimal dose-response parameters of this architecture in more
detail.
The maximal enzyme expression rates (k) and regulatory

thresholds (θ) control the shape of the dose-response curves.
As shown in Figure 2E, we found that the upstream repressive
loop and downstream activatory loop had different optimal
dose-response curves, corresponding to different optimal
values of the continuous parameters. Optimal values of the
upstream repression threshold θ1 are low (mean value 0.64)
and compressed into a narrow range as compared to the larger
standard deviation of the downstream repression threshold θ2
(mean value 7.24). This is reflected on a larger variation in the
shape of the dose response curve for the downstream loop.
Experimental fine-tuning of a dual control circuit might target
parameters with optimal values with a wide range, such as k1, as
varying these parameters is less likely to impair circuit function.
Overall, these results show the robustness of the glucaric acid
dual control system to kinetic parameter uncertainty and
demonstrate the possibilities enabled by the speed of
BayesOpt.
2.3. Exploration of Alternative Objective Functions.

In the previous case studies we employed a cost-benefit
objective designed to account for the trade-off between
heterologous production and the cost of expressing pathway
enzymes, as in eq 3. To demonstrate the flexibility of the
method with other objective functions, here we consider the
optimization of the temporal trajectories of pathway
metabolites.
We focused on the joint optimization of the rise time and

overshoot in a model of a fatty acid production pathway
considered previously in the literature.33 Fatty acids are an

Figure 3. Optimization of metabolite dynamics in a fatty acid synthesis pathway. (A) Pathway diagrams with various control architectures
implemented in Escherichia coli.33 The metabolic loop employs a metabolite-responsive transcription factor, whereas the gene loop includes only a
repressor expressed on the same promoter as the enzyme. (B) Representative run of BayesOpt with cost-benefit objective showing the best
objective function value (black line). All samples are colored by their architecture. Pie charts of each quarter of the run show continued exploration
of all architectures despite clear stratification in losses. (C) Optimal trade-off curve between overshoot and rise time. The objective weight α was
swept from α = 0.01 to α = 10,000 and BayesOpt was run for 100 iterations at each α value. The optimal parameter values were used to compute
the rise time and overshoot for visualization. The inset shows three sample trajectories illustrating how different optimal architectures navigate the
trade-off between overshoot and rise time.
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essential energy source and cellular membrane component. In
addition, hydrocarbons derived from fatty acids have attracted
attention as a potential biofuel source.24,44 Recent work
engineering metabolic and genetic control loops showed that
negative feedback control could speed up the rise to steady-
state conditions.33 The pathway built in literature expressed a
thioesterase under transcriptional control, shown as the
negative metabolic loop (NML) architecture in Figure 3A. In
addition to transcription-factor mediated negative feedback
loops, this model also includes individually implemented direct
genetic loops where a repressor is expressed on the same
promoter as the enzyme. These two different scales of loops
interface with different levels of cellular organization. We
explore several control architectures previously proposed in the
literature33 (Figure 3A).
We first considered a similar objective function as in eq 3 so

as to compare convergence against the previous case studies.
We implemented a modified production flux objective which
takes the reciprocal of the product flux to convert the
optimization to a minimization problem. The pathway cost Jcost
is measured by summing the expression of all heterologous
enzymes and varies across the different architectures. Details
on the objective function can be found in the Supporting
Information. A representative optimization run for this
objective (Figure 3B) shows that the negative gene loop
(NGL, green) and negative metabolic loop (NML, orange)
architectures perform, on average, better than the other two
architectures. BayesOpt samples taken from the open-loop
architecture were, on average, 2 orders of magnitude worse
than samples taken from NML and NGL architectures. Despite
such hierarchy of loss values across the four architectures, the
method effectively explores all architectures throughout the
optimization run.
We next considered the optimization of percent overshoot

and rise time presented in the literature.33 The percent
overshoot objective, Jos, measures the maximal deviation of
product from its steady state concentration and is defined as
the percent difference between the maximum fatty acid
concentration and the steady state fatty acid concentration.
The rise time, Jrt, is a measure of how fast fatty acid production
rises to steady state and is defined as the first time point where
the fatty acid concentration reaches 50% of the steady state
value, normalized by the total integration time. We minimized
the sum of the overshoot and rise time with a scaling weight α:

J J Jrt os= + (5)

Adjusting α balances the relative importance of the two
optimization criteria; details on the calculation of rise time and
overshoot are in the Supporting Information. Higher values of
α correspond to optimal circuits with low rise times, while
lower values of α prioritize circuits with low overshoot. Rise
time is a measure of circuit speed, while overshoot is a measure
of circuit accuracy. We found that when α is varied across
several orders of magnitude, the optimal circuits form a
optimal trade-off curve (Figure 3C). Different architectures
occupy different parts of the optimal trade-off curve and
display markedly different dynamics. The NML optima
occupies a single point in the loss space, indicating that
multiple continuous parameter values give the same loss
function value for multiple values of α. The NML also has the
lowest absolute loss function value of all the architectures
considered. The NGL and layered negative metabolic loop
(LNML) architectures occupy larger ranges on the curve, with

NGL giving a low overshoot and LNML a low rise time. The
optimal NML circuit has no overshoot but the slowest rise
time, while the LNML has a rapid rise time but overshoots the
steady-state value by more than double. These opposing trade-
offs demonstrate the importance of balancing multiple circuit
design objectives.
2.4. Scalability to Large Pathway Models. Our previous

case studies have been limited to circuits with a single
metabolite controlling gene expression and a relatively small
number of control architectures. We now study a large model
for the synthesis of p-aminostyrene (p-AS), an industrially
relevant vinyl aromatic monomer, in E. coli (Figure 4A)45 using
a cost-benefit objective similar to eq 3 tailored to the specific
pathway (details in Supporting Information). This model has
two possible metabolites that can regulate gene expression,
namely p-amminocinnamic acid (p-ACA) and p-amino-
phenylalanine (p-AF), both of which can act as ligands for
aptazyme-regulated expression device (aRED) transcription
factors,46 and three genes to be controlled. The aRED
transcription factors can also act as dual regulators (activators
or repressors) on any of the three promoters involved in the
pathway. For simplicity, we limit the design space to control
architectures without positive feedback loops, as these are
prone to bistability.47 This results in 27 possible control
architectures and 16 continuous parameters to be optimized.
The model also has a number of additional complexities. It
contains operon-based gene expression commonly found in
bacterial systems (genes papA, papB, and papC are expressed
on the papABC operon), it includes a detailed description of
mRNA dynamics and protein folding, which results in a large
model with 23 differential equations, and it can also display
oscillatory dynamics.
In addition to expression of heterologous enzymes, the

accumulation of toxic intermediates is another major source of
genetic burden to host organisms. The p-AS model has several
sources of toxicity present in the pathway.34,45 The
intermediate p-ACA and the efflux pump used to remove p-
ACA from cells are both cytotoxic, while another intermediate,
p-AF, leaks from cells.34 The pathway enzyme L-Amino Acid
Oxidase (LAAO) depletes key aromatic amino acid metabo-
lites and creates toxic hydrogen peroxide as a byproduct. The
model incorporates these various types of toxicity in the form
of a toxicity factor τ. This toxicity factor is of the form

k

k
i

i t t t
pACA P LAAO

a p l

efflux
=

+ + +
(6)

where tl, ta, and tp are chemical-specific toxicity factors.
Enzyme-induced toxicity tl scales the key metabolite depletion
rate driven by the enzyme LAAO. Metabolite-induced toxicity
ta scales the impact of toxic intermediate p-ACA concentration.
Finally, protein-induced toxicity tp reflects the toxicity caused
by efflux pump expression. The toxicity factor acts as a scaling
coefficient on the pathway synthesis, degradation, and folding
reaction rates.
Despite the complexity and size of the p-AS model, we

observe that BayesOpt explores many of the 27 possible
architectures and converges to a low value of the objective
function (Figure 4B); this was also achieved at a reasonable
computational cost (mean run time under 2 min). The best
architecture selected in the sample run was a double upstream
repression, single downstream activation loop controlled by p-
AF (Figure 4B, inset), but there is no clear best architecture
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when the optimization is run many times. No architecture is
optimal for more than 15% of test runs, demonstrating that

there are combinations of architectures and parameter values
that achieve a similar optimal loss. We also found that several
architectures can display oscillatory solutions, which we chose
to exclude from the search by applying a peak detection
algorithm48 and adding a large regularization term to the loss.
To investigate the robustness to chemical toxicity, we

perturbed the metabolite-induced toxicity ta and protein-
induced toxicity tp in eq 6. The optimal loss values were found
to be comparable between perturbed and background systems
(Figure 4C). Additionally, when projected onto a 2-dimen-
sional space using principal component analysis, the distribu-
tion of background parameter values was similar to the
distribution of perturbed solutions, indicating that the
perturbation did not significantly affect the optimal parameters
selected (Figure 4D).49 The p-AS pathway lies at the far end of
what is currently possible to build experimentally and thus
illustrates the broad applicability of BayesOpt to realistic
design tasks in metabolic engineering.

3. DISCUSSION
Progress in synthetic biology allows the construction of circuits
of increased complexity across various levels of biological
organization. However, large design spaces and multiple scales
can become substantial challenges for the design of functional
systems. In this paper, we presented the use of Bayesian
optimization for the design of biological circuits. The method
can rapidly find circuit architectures and parameters that
optimize a performance objective that captures the target
circuit functionality.
The method is particularly well suited for cases in which the

multiple scales prevent efficient simulation of ODE models.
Gene circuits designed to control metabolic pathways are an
excellent example of such multiscale systems, as they combine
fast metabolic time scales with the much slower dynamics of
gene expression. Moreover, the choice of regulators, control
points, and control architectures adds multiple degrees of
freedom that are infeasible to explore experimentally.
Previously implemented metabolic control systems have been
built primarily based on application-specific knowledge of
pathway features.27,50 We have shown that Bayesian
optimization can aid the design of such systems prior to
implementation and serve as tools for in silico screening of
competing designs that may have similar performance but
entail different cost of wetlab implementation. We showed the
efficiency and scalability of the method in several real world
case studies from metabolic engineering. In particular, the p-
aminostyrene pathway is more complex than systems typically
implemented in literature so far, which suggests that the
method is applicable across a range of relevant design tasks.
We anticipate several novel applications of this work to other

problem areas where discovery or tuning of multiscale circuits
has been previously infeasible. For instance, this method could
be employed to fit temporal circuit dynamics to data or discern
which of several discrete circuit mechanisms most closely
matches observed behavior. As with other design strategies
based on ODE models, a challenge of our approach is the
significant domain knowledge required to construct models for
a target pathway, both in terms of the enzyme kinetics and the
downstream metabolic processes that affect pathway activity.
Machine learning has already proved useful in a range of
metabolic engineering tasks51 and is gaining substantial interest
in other areas of synthetic biology.52,53 In this paper we have
shown how such methods can also benefit dynamic pathway

Figure 4. Bayesian optimization in a complex pathway. (A) Schematic
of pathway for production of p-aminostyrene.34 Two intermediates
can act as ligands for metabolite-dependent riboregulators, and three
promoter sites of control. The optimization problem has 16
continuous decision variables and 27 circuit architectures. The
substrate S is converted by enzymes A, B, and C to X1, which is then
converted by E to X2. The toxic substrate X2 is then pumped out of
the cell via an efflux pump to form the product P. Both X1 and X2 can
act on the transcription factors TF1 and TF2. Vin is the constant influx
to the engineered pathway from native metabolism. (B) Representa-
tive run of the BayesOpt algorithm; the method samples many
architectures before settling on the optimal one. Pie charts show
continued exploration of a large number of architectures. The winning
architecture is shown in the inset. (C) The p-aminostyrene pathway
has several forms of substrate, protein, and enzyme toxicity expressed
via a toxicity factor τ (see eq 6). To explore the effects of protein and
metabolite toxicity, we perturbed the toxicity factor. Metabolite-
induced toxicity was perturbed on the nominal range (1 × 10−3, 1 ×
10−4) and protein-induced toxicity on the range (1 × 10−4, 1 × 101)
respectively. Both ranges were selected to match the ranges provided
in the literature.34 Latin Hypercube sampling was used to generate N
= 100 perturbed parameter values, and the optimal solutions were
compared to an equal number of background solutions using the
nominal parameter values. (D) Visualization of the optimal solutions;
scatter plot of principal components of the optimal parameter values
for the model with perturbed toxicity parameters (N = 100). Contour
plots show the background distribution of parameter values.
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engineering by using optimization as a means to navigate the
design space prior to system prototyping.

4. METHODS
4.1. Bayesian Optimization. We employed the Bayesian

optimization routine implemented in the Python HyperOpt
package.37 Bayesian optimization is commonly employed for
hyperparameter tuning in deep neural networks. We employed
Expected Improvement as an acquisition function and a tree-
structured Parzen estimator (TPE) as a nonparametric
statistical model for the loss landscape. We performed a grid
search over the TPE hyperparameter γ which controls the
balance between exploration and exploitation but found little
impact on the algorithm performance; we thus used the default
value of γ = 15 (Supplementary Figure S1).
Constraints on the continuous and discrete decision

variables were incorporated directly into the HyperOpt
search space. At each run of the Bayesian optimization routine,
the initial guess for the continuous decision variables were
sampled from uniform distributions, with upper and lower
bounds were taken from literature.10,34,44 Architectures were
chosen uniformly from the set of architectures without positive
feedback loops.
4.2. Model Pathways. We considered four exemplar

pathways modeled via ordinary differential equations (ODEs):
the toy system in Figure 1C, the glucaric acid pathway in
Figure 2A, the fatty acid pathway in Figure 3A, and the p-
aminostyrene pathway in Figure 4A. Table 1 contains a
summary of the four considered models. In all cases, pathway
models include ODEs for both metabolites and pathway
enzymes. In each case, we define the various control
architectures and incorporate them as discrete decision
variables in the optimization problem, i.e., pd in eq 1; the
continuous decision variables, i.e., pc in eq 1, appear in the
expression rates of the pathway enzymes. For the toy model
and the glucaric acid pathway, enzyme expression was
parametrized using a lumped Hill equation model to describe
the interaction between a regulatory metabolite and a
transcription factor. For the fatty acid and p-aminostyrene
pathways, expression rates were parametrized with bespoke
nonlinear functions describing specific biochemical processes.
The discrete control architectures were defined in two different
ways. For the toy, glucaric acid, and p-aminostyrene models,
the architectures were defined using a binary matrix to encode
the mode of transcriptional control. For the fatty acid model
we instead defined each architecture as a categorical choice and
switched between model functions correspondingly. We note
that the p-aminostyrene pathway also contains ODEs for
mRNA abundance and folded/unfolded proteins. All models
and their parameters are described in the Supporting
Information.
The ODE models were solved with scikit-odes, a Python

wrapper for the SUNDIALS suite of solvers.54 In all cases, the
initial concentrations of heterologous pathway enzymes were

assumed to be zero. Initial concentrations for native
metabolites were determined by first solving a model without
the heterologous enzymes up to steady state. Simulation times
and initial conditions are detailed in the Supporting
Information for each model.
4.3. Loss Function. In all cases the loss function J in eq 3

was instanced to each pathway. Generally, the loss is defined as
a linear combination of costs and benefits of pathway activity
so as to balance opposing design goals commonly found in
applications. Since both components of the loss function have
different magnitudes, for each model we first swept the weights
α1 and α2 across many model simulations, and chose values
that led to similar values for both components; this prevents
the optimizer from biasing the search towards low loss values
caused by the scaling effects alone. For the fatty acid model in
Figure 3 we also optimized the circuit rise time and overshoot
% defined in eq 5. Details on all objective functions can found
in the Supporting Information.
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Dynamic metabolic control: towards precision engineering of
metabolism. Journal of Industrial Microbiology and Biotechnology
2018, 45, 535−543.
(51) Radivojevic,́ T.; Costello, Z.; Workman, K.; García Martín, H.
A machine learning Automated Recommendation Tool for synthetic
biology. Nat. Commun. 2020, 11, 1−14.
(52) Carbonell, P.; Radivojevic, T.; García Martín, H. Opportunities
at the Intersection of Synthetic Biology, Machine Learning, and
Automation. ACS Synth. Biol. 2019, 8, 1474−1477.
(53) Nikolados, E.-M.; Wongprommoon, A.; Aodha, O. M.;
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