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A key goal in synthetic biology is the construction of molecular circuits that robustly adapt to perturbations.
Although many natural systems display perfect adaptation, whereby stationary molecular concentrations
are insensitive to perturbations, its de novo engineering has proven elusive. The discovery of the antithetic
control motif was a significant step toward a universal mechanism for engineering perfect adaptation. Anti-
thetic control provides perfect adaptation in a wide range of systems, but it can lead to oscillatory dynamics
due to loss of stability, and moreover, it can lose perfect adaptation in fast growing cultures. Here, we in-
troduce an extended antithetic control motif that resolves these limitations. We show that molecular buffer-
ing, a widely conserved mechanism for homeostatic control in nature, stabilises oscillations and allows for
near-perfect adaptation during rapid growth. We study multiple buffering topologies and compare their
performance in terms of their stability and adaptation properties. We illustrate the benefits of our proposed
strategy in exemplar models for biofuel production and growth rate control in bacterial cultures. Our results
provide an improved circuit for robust control of biomolecular systems.

I. INTRODUCTION

Synthetic biology promises to revolutionise many
sectors such as healthcare, chemical manufacture and
materials engineering’. A number of such appli-
cations require precise control of biomolecular pro-
cesses in face of environmental perturbations and
process variability??>. An important requirement in
such control systems is perfect adaptation, a property
whereby chemical concentrations remain insensitive to
perturbations?®?3. The molecular mechanisms that can
produce perfect adaptation has been extensively stud-
ied in natural systems®142023, In these systems, per-
fect adaptation can be produced by a range of feedfor-
ward and feedback mechanisms*?. Such natural sys-
tems have been shaped by evolutionary processes, but it
remains unclear if they are sufficiently robust and tune-
able for de novo engineering of perfect adaptation in syn-
thetic circuits.

One approach to engineer perfect adaptation relies
on the use of feedback control. As illustrated in Fig-
ure 1A, this strategy requires circuits that sense the out-
put and act upon the inputs of a biomolecular process.
The groundbreaking work by Briat and colleagues'*
identified antithetic feedback as a promising candidate
for engineering perfect adaptation in living systems.
Antithetic control involves a feedback mechanism with
two molecular components that sequester and annihi-
late each other (see Figure 1B). It enables a system out-
put to robustly follow an input signal and remain in-
sensitive to various types of perturbations, akin to what
integral feedback achieves in classic control engineering

strategies?.

The original antithetic control motif, however, has
two weaknesses that can limit its applicability: it is of-

ten not effective when cells are growing rapidly, and
the feedback mechanism can cause unwanted oscilla-
tions under a range of conditions?’. Specifically, dilu-
tion effects caused by cell growth cause “leaky integra-
tion” - so called because integration is a form of mem-
ory and dilution causes that memory to leak over time?’.
This prevents perfect adaptation from occurring dur-
ing rapid growth. Although in some motif configura-
tions, the loss of perfect adaptation can be partly miti-
gated with a stronger feedback?’, in general the use of
strong feedback results in the loss of stability and unde-
sirable oscillations?’. Such oscillations can be stabilised
in specific motifs!®, and in more general cases the com-
bination of antithetic control with classic Proportional-
Integral-Derivative (PID) control has been shown to im-
prove temporal regulation5'9. Yet to date, there is no
general strategy to avoid oscillations and prevent the
loss of adaptation during rapid growth.

Here we propose an extended antithetic control sys-
tem that resolves the above limitations. We show that
the addition of molecular buffers improves stability and
suppresses undesirable oscillations, and moreover it can
allow for near-perfect adaptation in fast growth regimes.
Molecular buffering is a widespread regulatory mecha-
nism in nature (e.g. ATP, calcium & pH buffers!”/?132)
that has received modest attention in the literature as
compared to other regulatory mechanisms. Recent work
found that the combination of buffering and feedback
is often critical for robust regulation'®!”. Buffering has
the ability to attenuate fast disturbances and stabilise
feedback control’”, and can also be essential for the con-
trol of multiple coupled outputs'®. Here, we first show
that a number of buffering topologies can stabilise the
original antithetic control system and preserve perfect
adaptation. We then show that buffering can allow in-
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creased feedback strength or ‘gain’ without producing
oscillations, which in turn reduces the steady state error
even in fast growth conditions. To illustrate the utility
of this new antithetic control strategy, we examine two
case studies that involve the control of biofuel produc-
tion and growth rate in microbes.

Il. BACKGROUND
A. Perfect adaptation and antithetic control

Antithetic control employs a feedback mechanism
with two molecular components that sequester and an-
nihilate each other (see Figure 1B). In its most basic for-
mulation, an antithetic system contains a two-species
molecular process to be controlled, and a two-species
antithetic controller. The two species of the controlled
process (x1 and x,) can represent a variety of molecular
systems, including e.g. mRNA and protein as in Figure
1A. The goal of the antithetic control system is to desen-
sitise the steady state concentration of x, with respect
to external perturbations. Such perturbations include,
for example, insults of molecular species coming from
upstream or downstream processes, changes in cellular
growth conditions, or alterations to binding affinities be-
tween species.

In the absence of stochastic effects, the feedback sys-
tem can be modelled by the ODEs:

X1 = 6121 — Ypx1,

Xo = kx1 — 7px2,

21 = W — 12122 — YcZ1,

Zy = Oy — Hz122 — Y22,

)

where z; and z; are the concentrations of species in the
antithetic controller, and 601, k, and 6, are positive pa-
rameters representing first-order kinetic rate constants.
The parameter p describes a zero-order influx of con-
troller species z;, while 7 is a second-order kinetic rate
constant. We further assume that molecular species are
diluted by cellular growth, degraded by other molecular
components, or consumed by downstream cellular pro-
cesses, all of which we model as a first-order clearance
with rate constant 7,. The controller species z; and zp,
on the other hand, are assumed to be diluted by cellular
growth with a rate constant 7.

In the absence of dilution effects (9, = 0), from the
model in (1) we can write:

21—y = p — O2xy,
which after integration becomes
e
Zl(t)—Zz(t) = 62/ ( — X2(tl)> at'.
0 \62

The above equation means that, if the system has a sta-
ble equilibrium, the steady state concentration of x; is
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FIG. 1. Perfect adaptation and feedback control. (A) Schematic
of a feedback system designed to achieve perfect adaptation
in protein expression. Based on readouts of protein concentra-
tion, the controller modifies the activity of a transcription fac-
tor (TF). If the controller achieves perfect adaptation, steady
state protein concentrations are robust to perturbations. (B)
Left: the antithetic feedback controller, first proposed Briat
et al in*, can achieve perfect adaptation. In the presence of
dilution (7. # 0), the antithetic controller does not achieve
perfect adaptation. Right: conditions for stability in the case
of a two-species system. The stability boundary is the condi-
tion in (2); the example was computed with fixed parameters
k =6, = v = 1. (O In the example, molecular buffer-
ing provides a general mechanism to stabilize feedback con-
trol systems!”. The buffer reversibly sequesters molecules of
species x into an inactive form w.

x2 = u/ 62, and hence independent of all model param-
eters except u and 6,. Therefore the antithetic control
system displays perfect adaptation because the steady
state of x, is robust to perturbations in parameters k, 6;,
6, and 7.

A caveat of antithetic feedback is that it can have a
destabilising effect. When the controller species are not
diluted (7. = 0), it can be shown that a parametric con-

dition for stability is*’:

k610
3 f%

Ty > 2

As shown by the stability diagram in Figure 1B, strong
antithetic feedback can cause the system to lose perfect
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adaptation and display oscillatory dynamics. Moreover,
in the presence of dilution of the controller species (7, >
0), the antithetic controller is unable to produce per-
fect adaptation?”. The adaptation error can be reduced
with stronger feedback, for example by increasing the
rate constants 61, k, or 6,. Yet as mentioned above,
stronger feedback can cause unwanted oscillations®’.
These caveats are particularly relevant in bioproduction

applications that require fast culture growth!%3%.

B. Molecular buffering

Buffering is the use of molecular reservoirs to main-
tain the concentration of chemical species'’. It is a
widespread regulatory mechanism found across all do-
mains of life, with common examples including pH,
ATP and calcium buffering?'*2. Molecular buffering can
have a number of regulatory roles!”!8, including acting
as a stabilising mechanism for other molecular feedback
systemsl7.

To provide a background on buffering models, we
consider the simple case of a chemical species (x) that
is subject to feedback regulation, as shown in Figure 1C.
A general model for such process is:

t= p(x) = X Fgu(w) —8x(x),
S~ ~— —
production removal buffering
with feedback 3)
W = gx(x) = gw(w) = Yow,
~—_——— N~
buffering removal

where w is a molecular buffer for the regulated species
x, and p(x) is a feedback-regulated production rate of x.
The parameters vy and <y, are first-order clearance rate
constants of x and w, respectively. The terms g, and
gx describe the reversible binding of species x and the
buffer w. The steady state (&, @) occurs when produc-
tion matches degradation (i.e. p(%) = yxX + Y,®@) and
conversion from x to w matches the reverse conversion
plus removal (i.e. g4 (@) = gx(X) + Y0 ®).

It can be shown that after linearisation and assum-
ing that the buffering reactions rapidly reach quasi-
equilibrium, the model (3) can be simplified to (see SI1):

1+ B)Ax = — hAx — B A
feedback removal

where Ax = x — X is the deviation of x from the steady
state ¥, h = —dp/dx is the linearised feedback gain and
B is the buffer equilibrium ratio:

Aw
B=—, 5
A @)
where Aw = w — @ is the deviation of w from the

steady state @. The parameter B is buffer-specific and
quantifies the change in the concentration of a regulated

3

species (x) to the change in the concentration of a buffer-
ing species (w) when the buffering reactions are at quasi-
equilibrium!7/18.

From (4) we observe that buffering slows down the
rate of change of the output x by a factor of (1 + B).
It can be shown!” that this slowed rate generally helps
to attenuate fast disturbances and stabilise unwanted
oscillations (see SI1). More generally, the stabilisation
effect of buffering results from two properties. First,
the buffering reactions counteract changes to a target
molecular species by acting directly on the species and
not via indirect or complex feedback loops!'®!”. Second,
buffering can be shown to be mathematically equiva-
lent to popular feedback strategies known to have useful
stabilisation properties®. In particular, rapid buffering
without degradation (7, = 0) is equivalent to negative
derivative feedback!”:

Ax = —BAx — hAx —yxAx,
N——r N~
derivative ~ proportional
feedback feedback

where the buffer equilibrium ratio B corresponds to the
derivative feedback gain commonly employed in con-
trol engineering. Likewise, the general case of non-rapid
buffering with degradation is mathematically equiva-
lent to the so-called “lead” controller employed in con-
trol engineering'®. In the next section, we study the abil-
ity of buffering to stabilise oscillations in antithetic con-
trol systems.

11l. BUFFERING CAN STABILISE ANTITHETIC
INTEGRAL FEEDBACK

In this section we study a modified version of the an-
tithetic feedback controller that includes buffering of its
molecular components. We consider a number of archi-
tectures (Figure 2A) and identify those that suppress os-
cillations caused by the instability illustrated in Figure
1B. We show that rapid buffering without degradation
does not improve stability, while non-rapid buffering
and rapid buffering with degradation are highly effec-
tive stabilisers.

A. Rapid Buffering

To study the impact of buffering on the antithetic con-
troller, we consider mathematical models for the topolo-
gies in Figure 2A, in which species z1, zp, and x; are
buffered by molecules wj, wy, and wy, respectively. For
simplicity, we use linear buffering reaction rates in order
to focus on the nonlinearity due to the mutual annihila-
tion of controller species z; and z,°. Asin Eq. (4), we
assume that the buffers rapidly reach quasi-equilibrium
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FIG. 2. Buffering stabilizes antithetic feedback . (A) Schematics of three buffered antithetic systems, without dilution (. = 0);
each topology includes buffering a specific molecular species. (B) Stability diagram for buffered topologies 1 and 3. The stability
boundary on the left corresponds to the condition in (10) and the boundary on the right to (11). The time courses show simulations
of the output species (x) for different topologies. Parametersare p = 1,6, = 3,0, = 1,7, = 1,77 = 100 and k = 1. With topology
1, parameters are By = 5, ; = 18 and by, = 1 (non-rapid). With topology 3, parameters are By = 5, 6 = 3, byx = 1 (non-rapid)

and byy = 20 (rapid).

to obtain the following extended model (see SI2.1):

X1 = 01z1 — vpx1
(1+ By)do = kxy — ('Yp + Byyx)x2
(14 B1)z1 = —nz122
(14 By)zo = bpx2 — 2122,

(6)

where By, By and B, are the equilibrium ratios for each
buffer, and 7y, represents the degradation rate of buffer
wy. The extended model in (6) reduces to the original
antithetic system in (1) if By =0, By = 0 and By = 0.

In the extended antithetic controller with rapid buffer-
ing, the parameters (By, B, By, 7x) are additional tuning
knobs that can be used to shape the closed-loop dynam-
ics. In Figure 2A we show the three considered buffering
architectures.

We first show that buffered antithetic feedback pre-
serves perfect adaptation. From (6) we write

(1+ B1)z1 — (14 B2)Zp = p — 621,
which after integrating becomes:

(1+ B1)z1(t)—(1+ B2)z2(t)

92/;("

7_x2

5 (t’)) dat'.

The above integral ensures that if the system is stable
then the steady state of x is x; = /6, hence inde-
pendent of all parameters except y and 6,. The steady
state of x; is thus robust to perturbations in the origi-
nal parameters k, 61, 65, and 7, as well as the additional
parameters introduced by the buffering mechanism By,
By, By, and 7,. This means that the buffered antithetic
feedback displays perfect adaptation as in the original
formulation in Eq. (1).

Assuming strong integral binding (large #) then zp
is small and so with rapid buffering we have the anti-
thetic input in to the controlled system (see Figure 1B
and SI4.1)

016> ! (V / >
0z = ——=—~ / = —x(t') ) dt,
P17 1 +B) Jo \6, 2(f)
— @)
integral negative
feedback gain integral feedback

where 6;z; represents the control of x; production in (6)
and we can observe that the integral gain is dependent
upon Bj. This changes the gain because rapid buffers
tend to slow down the dynamics of z; in (6) and for in-
tegral feedback the gain is inversely proportional to the
time scale of zj.

As shown by the stability condition in (2), the origi-
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dation rate constant . (B) Stability diagram for increasing values of the degradation rate constant v, = {0.5,1,2}; the stability
boundary corresponds to the condition in (12). Time courses are simulations of the output species (xy) for two representative
cases. Parameter valuesare y = 1,0; = 2,6, = 1,9, = 1,77 = 100 and k = 1. For the case of buffering By = 20 and 7, = 1.

nal antithetic control system becomes oscillatory when
the feedback gain is too strong or the degradation of x4
and x; is too slow?’. To analyse the stabilising role of
buffering, we first consider the system in the absence
of degradation of the wy buffer (i. e. vy = 0). Assuming
rapid buffering and strong integral binding (large 77), we
find that the system is stable when (see SI2.1):

0.0,k 1+B
3 192 x
e Z T+ By) 2+ B

—

integral stabilisation

feedback effect
gain

®)

From the condition (8) we observe that increasing By re-
duces the lower bound for 7, and improves stability.
However, from (7) we also observe that such effect is
equivalent to a reduction in the feedback gain by a fac-
tor (1 + Byp). Therefore a similar effect can be obtained
simply by changing the gain 6,60, without the additional
complexity of buffering z;. Moreover, the condition in
(8) also shows that rapid buffering of z, has no impact
on stability, because the stability boundary is indepen-
dent of By, whereas rapid buffering of x; can destabilise
the system and produce oscillations, because the stabil-
ity boundary becomes more stringent for large By.

B. Non-Rapid Buffering in Topologies 1 and 3

We next sought to determine the stabilisation prop-
erties of non-rapid buffering, i. e. implemented with
buffers that do not satisfy the rapid equilibrium as-
sumption. We show that non-rapid buffering can be a
highly effective stabilisation strategy for Topologies 1
and 3, and this stabilisation effect is greater than the ef-
fect attributed to the change in feedback gain alone.

To model the effect of non-rapid buffering, we replace

the model for %, and Z; in (6) by

X2 = kx1 — ypx2 — bxxa + byywy
Wy = byxp — byxwy

Z1 = W —Nz122 — byz1 + byyw,
Wy = bzz1 — by, ws,

©)

and keep the models for x; and Z; identical as in (6).
Given that in the previous section we found that topol-
ogy 2 does not alter stability, from here onward we set
By = 0. For topologies 1 and 3, the buffer equilibrium
ratios (B1, By) determine the concentration of the buffer-
ing species at equilibrium and the reverse reaction rate
constants (by, bwyx) determine the speed at which the
buffers reach equilibrium. These four parameters can
be regarded as tuning knobs for modifying the closed-
loop dynamics, akin to the role of By and By in the rapid
buffering case of the previous section.

For Topology 1 (i.e. by = byxy = 0) and assuming
strong antithetic binding (large #), the stability condi-
tion is:

3 6162k 1
TP T+ B) 24 B1)
integral stabilisation

feedback effect
gain

whereas for Topology 3 (i.e. b, = by, = 0) the stability
condition becomes:
6162k
3 102
T = 2+ By’

(11)

To derive both conditions (10)-(11) we have assumed for
simplicity that by, = 7p and by = 7yp, respectively. The
general stability condition for other values of by, and
bwy can be found in SI2.2-2.3.

As shown by the stability diagrams in Figure 2, the
conditions in (10)—(11) reveal that increases to the buffer-
ing ratios By and By relax the upper bound for integral
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feedback gain and thus improve stability; this suggests
that non-rapid buffering of both z; and x, provide an ef-
fective route to suppress oscillations. As shown in S12.2—-
2.3, this stabilisation effect is stronger for by, > 7, in
Topology 1 and by < 7 in Topology 3.

C. Rapid Buffering with Degradation

So far we have assumed that the buffers are not
subject to degradation. To establish the impact of
buffer degradation on stability, here we show that buffer
degradation in Topology 3 can suppress oscillations and
preserve perfect adaptation; this new topology is shown
in Figure 3A. Under the same assumptions as condition
(8) (rapid buffering and strong binding rate constant 7),
the stability conditions are (see SI2.1):

73> 016,k 1+ By
p . TR
24 (1+1—p) B, 1+ 7:Bx

(12)

Condition (12) reduces to the one in (8) if 7, = 0 and
there is no buffering of z;, i.e. By = 0.

As shown by the stability diagram in Figure 3B, topol-
ogy 3 with degradation provides an effective solution to
stabilise the closed-loop. The condition in (12) suggests
that the ratio 7y /) has a key role in stability. Buffers
with shorter half-lives (larger ) tend to almost com-
pletely remove the instability, even for low buffer equi-
librium ratios By. As we show in SI2.4, under the con-
dition 7x/7vp > 1/3, increases in By tend to stabilise
the closed-loop. This includes the important case where
both x; and its buffer are degraded at the same rate,
ie. vx = 7p. For large values of By, the stabilisation
effect is even stronger and becomes independent of the
half-life of w,. We found a similar stabilisation effect in
systems with xq buffering that include degradation of
the buffer (see SI2.5).

IV. ACHIEVING NEAR PERFECT ADAPTATION IN
FAST GROWTH

It is well-known that dilution by cell growth can dis-
rupt perfect adaptation in the original antithetic control
system!. Thus here we explore the impact of dilution
in the proposed topologies with molecular buffering. To
study the effect of dilution, we modify (9) to include di-
lution terms for the control species z; and z, as well as
the buffer for zq:

X1 = bhz1 — Ypx1

Xo = kx1 — Ypx2 — byXp + byyxwy

Wy = byXp — byxWy — yxWy

21 = —1Nz122 — Yez1 — bzz1 + bwzw;
W, = bzz1 — by, w; — YW,

2y = bhX2 — 112122 — YcZ2-

(13)

6

where 7. represents the dilution rate constant of the con-
trol species z1, zp and buffer species at z;. We assume
that dilution of x; and x; and the buffer at x; can be
lumped into their first-order degradation rates. As in
the previous section, the model (13) can be further sim-
plified for the rapid buffering case (see SI3.1).

A. Topology 3 with dilution

We found that buffering at x, can reduce steady state
error by enabling an increase to the feedback gain with-
out causing oscillations. For the case of dilution with a
single buffer at xp, we set b, = by, = 0in (13). The
resulting steady state is (see SI3.1):

() ()

o

where

O=———= (15)
7o (1+B:2)

and &« = 6,0,k/ 'y%,. The second term on the right hand

side of (14) is always smaller than unity. Therefore the

steady state of the output is x; < u/6, and the system

loses perfect adaptation. Moreover, the deviation of the

steady state of x, from the reference point u/0, is (see
SI3.1):

X2y — X2 1
= 16
Xon 1+Qy (16)

where xp, = /6, is the reference input. Increases to
By, v or vy in (16) thus amplify the steady state error,
while increases to the feedback strength k)6, brings the
system closer to perfect adaptation.

We first obtained conditions for stability in Topology
3 with dilution and non-rapid buffering (see SI3.2). Set-
ting vx = 7. in (13) we get:

2+B 2
0 < T 25 P <1+%) 2B ), an
’)/C1+Bx7p ’)/P ’)/P

where for simplicity we have set by = 7, — .. The sta-
bility conditions for general choices of b, can be found
in SI3.2.

Taken together, the relations in (16)—(17) define an up-
per bound for the best possible steady state error. Specif-
ically, in (16) we see that stronger feedback gain can in-
crease () and so reduce the steady state error. Buffer-
ing of x, tends to stabilise the oscillations and, at the
same time, allows the steady state error to be reduced
by stronger feedback gain, without the risk of instabil-
ity observed in the original antithetic mechanism. This
phenomenon is illustrated in Figure 4A, which shows
the stability condition (17).
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FIG. 4. Adaptation in Topology 3 with dilution. (A) Stability condition in (17) for non-rapid buffering with rate constants
Ye/vp = 0.2. (B) Simulation with varying feedback gain 6; = {2,15,400} (from top) and buffer constant (B, = {0,2.5}). In all
simulations the model parameters are k = 1,6, = 1, and 7p = 1, 7. = 1 and 7, = 10. (C) Stability condition in (18) for rapid

buffering with rate constants 7. = 1 and v, = 1.

In the case of rapid buffering, the condition for stabil-
ity becomes (see SI3.1):

O, < <1+7") (1+ A) <W+A‘1)
Yp c

1+Bx7;

14+ B,

(18)
A=

As in the non-rapid case, the relations in (16) and
(18) define an upper bound for the best possible steady
state error. This phenomenon is illustrated in Figure
4C, which shows the stability condition (18). Notably,
we observe that increasing B, improves stability only
in regions for low and high values of 7, and not in-
termediate values. Figure 4B shows simulations of the
stabilising effect of molecular buffering for the case of
Yx = 10, which enables a decrease of steady state er-
ror by means of stronger feedback gain. We also found
that topology 3 improves stability even without buffer
degradation (7 = 0), which can be observed in Figure
4B. This improvement differs from the case when there
is no dilution in (8).

B. Topology 1 with dilution

We found that non-rapid buffering at z; can similarly
reduce steady state error via increases to the feedback
gain. To examine this result in detail, we set By = 0 in
(13) and compute the resulting steady state (see SI3.4):

_(r 1
2= (92> 8 <1+Qll> (19)

_ 14
Ye(1+ By)

and « = 6162k/ ’y}%. As in the previous case, the steady
state satisfies xp < p /6, and thus the system loses per-

where

M (20)

fect adaptation (see Figure 5). Moreover, in this case the
steady state error is (see SI3.4):
Xop — X2 1
= 21

Xon 1+ Ql ( )
where xp, = /6, is the reference input. Increasing B4
or 7. in (21) increases the steady state error, while in-
creasing the feedback strength k6160, brings the system
closer to perfect adaptation. If for simplicity we assume
that by, = p — 7., the condition for stability is (see
SI13.5):

7?(2+B1)( %)( %)
< —+-— < (14+B1+— 1+— ). 22
' e (14 By) "y, Tp 2

The general case for other choices of by, can be found in
SI3.5. Non-rapid buffering thus enables a reduction of
the steady state error via increased feedback gain with-
out unwanted oscillations. This phenomenon is illus-
trated in Figure 5A, which shows simulations and the
stability condition (22) that describes the upper bound
on the steady state error. In contrast, rapid buffering
does not improve the stability condition and so does not
enable a decrease in the adaptation error (see SI3.4); we
have illustrated this phenomenon in Figure 5B via nu-
merical simulations.

While the benefit of buffering described here are for
a simple network and a steady state error (adaptation)
tradeoff, control theory can be use to mathematically
quantify this benefit for more general networks and
more general tradeoffs involving both steady state and
temporal dynamics (see SI4.3).

V. CASE STUDIES
A. Model for biofuel production
To illustrate the potential of the proposed control

topologies, here we employ an existing model for bio-
fuel production that incorporates antithetic control® (see
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FIG. 5. Adaptation in Topology 1 with dilution. (A) Non-rapid buffering with stronger feedback reduces the adaptation error.
(Left) In simulations the model parameters are 6, = 1, v, = 1,17 = 100, 4 = 1, 7. = 0.2, and k = 1 changes to k = 0.7 at t = 100.
(Right) The stability condition in (22) for non-rapid buffering with dilution rate constant in the ratio 7./, = 0.2. (B) Rapid
buffering increases the adaptation error while rapid buffering with stronger feedback is identical to no buffering with weaker
feedback. Parameter values for the non-rapid case are 6; = {1,15}, B; = {0,5} and b,; = {0, 0.8}; parameters for the rapid case

are 01 = {1,5} and B; = {0,5}.

also'?), shown in Figure 6A. The synthetic system pro-

duces biofuel from sugars through a metabolic pathway.
The biofuel product can be toxic to the cell and so ef-
flux pump proteins are expressed to remove the toxic
metabolic product. However, at large concentrations
the efflux protein pump can also be toxic. A feedback
mechanism can help robustly regulate these two com-
peting toxic products. The antithetic feedback mecha-
nism senses the biofuel concentration to control the ex-
pression of efflux pump protein. An increase in the
pump protein then reduces the biofuel concentration,
completing the loop. Stability is known to be a major
issue for the system, as it susceptible to oscillation for
large 7, which is the typical design case®.

The extended model of the biofuel circuit with anti-
thetic feedback and the addition of a protein buffer is:

. aynp
n=an(l—n)—3d,bn -
ZJZ‘ = &pn — (Shpbi

p = kzo — Bpp
be = Véypbin

Z1 = P —Nz2122
Zy = 0b; — nz1zp — Irpp + ryyw
w = Irpzy — rpyw

where 7 is the normalized cell density, which is assumed
to follow logistic growth with additional death rates
due to toxicity of intracellular biofuel concentration b;
and efflux protein pump p. The variables z; and z,
are the controller species, while the production of the
protein pump p is assumed to be proportional to con-
troller species z. The variable w is the buffering species
which buffers z; through a reversible reaction via chem-
ical species I that inhibits z, sequestering when bound
to zp. The variable b, is the extracellular concentration

of biofuel.

Buffering of z, can be seen to stabilise the process in
the simulations of the model (see Figure 6A). These sim-
ulations show that the oscillations, which occur when
1 is too large, quickly settle to the steady state when
buffering is introduced. This stabilising effect is equiva-
lent to the impact of buffering in Topology 1 in Section
III. Buffering removes the stability limit on # and so a
large antithetic binding rate # is possible without oscil-
lations. This example thus illustrates that the stabilising
effect of buffering also occurs in more complex systems
than for the simple case presented above.

B. Model for growth control

For the synthetic growth control case study, we use an
existing model of the synthetic growth control circuit,

which includes the new addition of buffering®” (see Fig-
ure 6B). The variable N represents the population size
and is assumed to follow logistic growth, with an ad-
ditional death rate due to toxicity that is proportional
to the concentration of CcdB per cell. Ccdb is a protein
that is toxic to the cell. mRN A is messenger RNA while
asRN A is a short antisense RNA that has a complemen-
tary sequence to the mRNA, which enables sequestra-
tion between the two. mRNA and asRNA form the an-
tithetic integral controller. The transcription of mRNA
is induced by a quorum-sensing ligand. The term G,
represents the gain between N and mRNA induction
resulting from the quorum-sensing molecule AHL. W
represents a buffer of Ccdb, which consists of an inac-
tivated form of Ccdb that can reversibly bind to an in-
hibitor molecule I. The adapted model of the genetic
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FIG. 6. Case studies of molecular buffering coupled with antithetic control showing improved stabilisation and adaptation. (A)
Biofuel production system adapted from® to include buffering of species z,. Simulations show the stabilising effect of buffering.
Model parameters for simulations are &, = 0.66, 6, = 0.5, vp = 0.14, 4, = 0.1, 6, = 0.5, B, = 0.66, V =1, 7 = 100, u = 0.1762,
0=1,1=17r, =0,1251r, = 0,025 k = 0.5,3. kis increased with buffering to compensate for the reduced integral feedback

gain from buffering (B) Synthetic growth control circuit?’

adapted to include buffering of CcdB. Simulations show the ability of

buffering to decrease the steady state error via stronger feedback without oscillations. Model parameters for simulations with
and without buffering are v, =3,r =1, 71 =4x1073,kg =101, G =107%, 7 = 20, 7 = 0.1, p = 10, Ny, = 10%, 7, = 1072,

kp = {20,200}, be = {0,7} and by, = {0,7 x 1072}.

circuit with the new addition of a protein buffer is

%[Cch] —ky [MRNA] — (7, + beT)[CedB] + by [ W]

%[mRNA] =krGaN — (n[asRNA] — yr) [mRNA]

%[asRNA] =y — n[asRNA][mRNA] — yr[asRNA]

d N

%[w] —beI[CedB] - b [W] — 720 [ W]

where [-] represents intracellular concentrations for each
species and the last line indicating the rate of change of
W is new to the model.

The buffering of CcdB as shown above is equivalent

to x1 buffering in the model (6) and Figure 2, as N is the
output and equivalent to x;. Buffering at x; provides a
similar benefit as buffering at x, and so can also enable
near-perfect adaptation.

Buffering of CcdB in conjuction with increased feed-
back gain can be shown to reduce steady state error in
the simulations in Figure 6. Increased feedback gain
is implemented in these simulations by increasing the
translation rate of CcdB.

VI. DISCUSSION

Perfect adaptation has been subject of intense study
in the synthetic biology community. Although perfectly
adapting systems are ubiquituous in nature, their im-
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plementation has proven particularly elusive. The anti-
thetic control motif, first discovered by Briat et al* and
implemented by Aoki et al', provides a new molecu-
lar mechanism to build perfect adaptation into a wide
range of synthetic gene circuits. A number of works
have sought to find alternative circuits that provide
adaptation properties similar to antithetic control. For
example, several authors have shown that ultrasensi-
tive feedback can display some of the features of perfect
adaptation?>?8, and the idea was recently extended in
great detail for synthetic gene circuits®®. Other works
have sought to devise molecular implementations of
Proportional-Integral-Derivative control’, as this is a
widely adopted strategy for perfect adaptation in engi-
neered control systems.

Here we have addressed caveats of the original anti-
thetic control system with an extended architecture that
has improved stability properties. The proposed circuit
combines an antithetic motif with a molecular buffering
mechanism. Molecular buffering is widely conserved
in natural systems, and common examples include the
ATP buffering by creatine phosphate, pH buffering and
calcium buffering. In all these examples, a molecu-
lar buffer sequesters a target molecule into an inactive
form, resulting in a system with improved ability to mit-
igate fast perturbations. In the case of antithetic con-
trol, the addition of buffering results in the stabilisa-
tion of unwanted oscillations and, moreover, provides
near-perfect adaptation even in rapid growth conditions
where the performance of antithetic control is known to
be particularly poor.

After detailed examination of mathematical models
for various circuit architectures (Fig. 2) with rapid and
non-rapid buffers, we found two candidate systems
with improved stability properties, either by buffering
species of the antithetic motif itself, or by buffering a
target species to be controlled. The first circuit, called
Topology 1 in Fig. 2, under non-rapid buffering pro-
vides stability over a larger range of parameters values
than classic antithetic control and can generally stabilise
unwanted oscillations. Moreover, Topology 1 requires
buffering of a molecular species of the antithetic motif
itself, and therefore it provides a promising strategy to
stabilise variables that are not easily buffered directly,
such as population size or metabolite species as illus-
trated by the example in Fig 6A.

The second circuit, termed Topology 3 in Fig. 2, re-
quires buffering the molecular output of the process to
be controlled. We found that when x; buffering is ei-
ther non-rapid or rapid and coupled with degradation,
it mitigates oscillations in fast growth regimes. Interest-
ingly, there is a similar effect when applied to interme-
diate species instead of the output species in the con-
trolled process, such as x; in the original circuit shown
in Fig. 2 or CcdB in the growth control case study in
Fig. 6. Buffering an intermediate species also provides
additional design flexibility when the output species
cannot be easily buffered.
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Although our results indicate that both buffering and
degradation can act as stabilisers of antithetic control,
designs with increased buffering and reduced degrada-
tion can provide substantial benefits. Increased degra-
dation requires a higher production rate to achieve a
particular steady state concentration. If the degradation
mechanism requires expression of heterologous pro-
teins, an increase in their production rate imposes a
heavier genetic burden on the host cell®?°. Moreover,
in applications, protein production rates are subject to
upper limits depending on the genetic machinery of the
host®®, and so increasing degradation can also limit the
maximum set point concentration. Tuning of degrada-
tion can also be difficult to implement given the limited
number of degradation tags available.

The effect of buffering on adaptation is strikingly sim-
ilar to a strategy employed in industrial process con-
trol, where buffer tanks are employed to regulate and
smooth out the impact of disturbances'®. In our case,
the specific implementation of the molecular buffers is
a subject of future study, as this will largely depend
on the type of biomolecular process to be controlled
(see'® for quantification of different buffering reaction
forms). For example, buffers for gene expression may
require gene products to be sequestered, which can
be achieved through several mechanisms such as re-
versible protein-protein binding?*, phosphorylation!?,
small molecule inhibitors!!, or DNA decoy sites*. In
metabolism and signalling systems, ubiquitous exam-
ples are the interconversion between a target species and
a buffer (e. g. reversible catalysis between ATP and cre-
atine phosphate!”*2) or sequestering by dedicated pro-
teins (e. g. Ca?* or H* ions!72132),

Our main goal in this paper was to show that molecu-
lar buffering can improve perfect adaptation in the anti-
thetic control motif. Since buffering is known to stabilise
a much wider range of molecular networks!®, it also
has the potential to improve other circuits implement-
ing perfect adaptation, e. g. those that rely on ultrasen-
sitive behaviour®. Further, its properties may be used
to instead improve transient response or disturbance re-
jection of a circuit, rather than only adaptation!®17. A
key future step is the study of design rules for buffer-
ing and antithetic feedback. A useful starting point in
this direction are the rules from lead-lag and PID con-
troller tuning from control engineering!® (see SI4.2). Un-
like technological controllers, however, the stabilisation
properties of buffering are tied to its synergy with feed-
back regulation'®!” and the location of the buffer in a
network is important, which introduces new challenges
for controller design.

For simplicity, here we have focused exclusively on
deterministic dynamics, but the analysis of stochastic
effects emerging from the interplay between molecu-
lar buffering and antithetic control are particularly at-
tractive, as it is known that buffering does not am-
plify stochastic fluctuations!'” yet some phenomena are
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known to emerge only in the presence of molecular
noise*3133,

As synthetic gene circuits grow in size and complex-
ity, there is a growing need for mechanisms that can en-
hance their robustness in a range of operational condi-
tions. In the longer term, this will require the availability
of a catalogue of gene circuits that can produce perfect
adaptation in response to perturbations. In this work we
have presented one such architecture, and thus laid the-
oretical groundwork for the discovery of biomolecular
systems with improved functionality.

METHODS

All mathematical models are based on systems of or-
dinary differential equations. The stability conditions
in Egs. (8), (12), (18) and (22) were obtained using fre-
quency domain transformations (Laplace and Fourier)
of the linearised models, along with detailed examina-
tion of the magnitude and phase equations of the re-
sulting characteristic polynomials for the closed-loop
systems?’. Simulations were carried out using standard
ODE solvers in MATLAB. All calculations and model
descriptions can be found in the Supplementary Mate-
rial.
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SI1. BUFFERING BACKGROUND

In this section, we provide a background on buffering?, including methods for analysing models with buffering. We
start with the simple model in the main section of a single regulated species that is being buffered, such that

t= opl) = ek +gw(w) —gx(x)
—~— ~— —\
production removal buffering
with feedback (S1)

W = gx(x) — gw(w) — YW
—_—— ~——

buffering removal

where x is the output species being regulated, w is the buffering species, p is the production rate of x, 7y is the
removal kinetic rate of x, g, is the forward buffering reaction rate and gy is the reverse buffering reaction rate.
Incorporation of feedback is represented by the x dependence of production. The steady state occurs when
production matches degradation (p(%) = x¥ + 7, ®@) and the buffer is at steady state (g, (@) = gx(X) + Yo ®).

To analyse (51), we reduce the two state model to one state by assuming that the buffering reactions rapidly reach
equilibrium (see* for more mathematically rigorous derivation). To carry this out, we first linearise (S1), which
results in

Ax = —hAx — yxAx + byAw — byAx
N—— —_—— ———
feedback  removal buffering

AW = —by Aw + byAx — yyAw
N—— — N’
buffering removal

where h = —g—ﬁ is the linearised feedback gain, and by, = aa%: and b, = aa% are the linearised kinetic rates for the
forward and reverse buffering reaction.

We introduce the variable Axt = Aw + Ax to carry out a quasi-steady state approximation®*, where we have the
transformed model

Axr = —hAx — yxAx — ypAw
At = —byAw + byAx — vy Aw.

We assume that the buffering species Aw rapidly reaches quasi-steady state due to large b;, and thus assume
At = —(by + Yyw)Aw + byAx = 0, where x7 is a ‘slow’ variable as it is not a direct function of the buffering
reactions. The quasi-steady state can be rewritten

by
Aw=BAx, B= ———. S2
by + Yw 52)

From this quasi-steady state, we have Axt = (1 + B)Ax and Axt = (1 + B)Ax, resulting in

| (14 B)Ax = —hAx — (< + Byw)Ax|



https://doi.org/10.1101/2021.04.18.440372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440372; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. ’

which is a reduced one state model, where the second state can be determined from Aw = BAx.

In technology, integral feedback is often paired with proportional and derivative feedback (PID control)!. In
biology, rapid buffering without degradation is equivalent to negative derivative feedback and rapid buffering with
degradation is equivalent to PD feedback with degradation. These equivalences can be observed in*

Ax = —BAX — yyBAx —  hAx  —y Ax
Yw X Y
proportional + proportional
derivative feedback
feedback

where the buffer equilibrium ratio B corresponds to the derivative feedback ‘gain’.

To study the effect of buffering on stability, we can also modify the model in (S1) to include a delay of the
production feedback term

t=p(x(t—1)) = Yex +gw(w) — gx(x)
— S~~~ —

production removal buffering
with feedback (S3)

W= gx(x) — gw(w) — YW
—_— ~—~—

buffering removal

where p(x(t — 7)) represents the production feedback with a delay of time 7. The reduced model is

| (1+B)Ax = —hdxc — (75 + Bya)Ax |

where Ax; = Ax(t — 7).

It can be observed in Figure S2 that buffering can stabilise the oscillations that result from feedback delay. This
stabilisation is a result of (a) the buffering reactions acting directly on the target molecular species (i.e. not being
subject to delays) and (b) buffering having a ‘derivative feedback’ effect - known for its stabilising effects in control
engineering!.
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FIG. S1. The parameters are By = 0 and 5, T = 1 (delay), 7p = 1, 75 = 0and h = 2.7.
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3
SI12. STABILITY OF ANTITHETIC INTEGRAL FEEDBACK WITH BUFFERING
S12.1. Stability of Antithetic Integral Feedback with Rapid Buffering: All Species
In this section, we analyse the stabilising effect of buffering (without degradation) on antithetic integral feedback.
We base our studies on a simple model involving the antithetic integral feedback (without buffering)®. Consider
X1 = bhz1 — Ypx1
Xp = kx1 — ypx2 59)

21 = p =121z

Zy = boxy — 12122
where x; is the output concentration being controlled, x; is another concentration in the process being controlled,
and z; and zp represent the molecular species involved in the perfect adaptation mechanism.
We next introduce buffering to (54). We show how the model reduction method described in SI1 can be used to
simplify the model for one case. We then use the same method for all buffers.

As a first case, we introduce buffering at the controlled variable x; and simplify the model by assuming that the
buffering reactions rapidly reach equilibrium. With buffering at x,, we have

X1 = bhz1 — Ypx1
Xo = kx1 — ypX — ypxo — byx + byw
Z1 = p— 12122 (S5)
Zy = Oxp — 12122
Wy = byXo — bywy
where wy is the buffering species at x; and by, by, are the kinetic rate constants for the buffering reactions.
Although the buffering equilibrium ratio is defined in terms of the linearised model and deviations from steady

state, we can use the same notation here for the nonlinear model as the buffering reactions are linear. If the
buffering reaction is at equilibrium then

byxy = bywy.
If we assume that the buffer rapidly reaches equilibrium then w is at quasi-steady state and so
by
by
We note that although the buffer equilibrium ratio is defined in (S2) in terms deviations from steady state, we can

use the buffer equilibrium ratios in the nonlinear model as the reaction rates are linear.
We set x7 = wy + x as the slow variable and so x7 = (1 + By)xp. Thus %1 = (1 4 By )%, and so

wy = Byxy By =

(14 By)xp = kxy — YpX2-

If we include buffering on z1, z5, x, and apply a similar model reduction by assuming rapid buffering, then we have
X1 = b61z1 — 7p11

(1 + Bx)J'Cz = kx1 - ’)/pr

(1+B1)z1 = p— 2122
(14 By)zp = brxp — 2122

(S6)

where By, By are the buffer equilibrium ratios of the buffers at z; and z, respectively.

Si12.1.a. Steady State

We first determine the steady states of the system, which is useful both for determining perfect adaptation and as a
prerequisite for stability analysis. Using

(1 + 31)21 — (1 + Bz)iz =u—bxy =0
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we can see that the steady state for the output is

fzze‘%.

The correspondence of this steady state with perfect adaptation is discussed further in Section 2 & 3 of the paper.
The species x1, z1 and zp have the corresponding steady states

2
w66k
X1 = sz/ z1 = 9]92](’ 22 = ;7,)/;27 .

S12.1.b. Linearised Model

We next determine the effect of buffering on the stability of the model. We follow the methodology used by Olsman
and colleagues® to study the stability of antithetic integral feedback with the addition of buffering. Linearising the
system (S6) about the steady states, we have
Axl = 91A21 — ’)’prl
(1 + BX)A)Q = kAX1 — "}/pAXZ

(1 + Bl)AZl = —DCAZ'l — SAZZ (87)
(14 Ba)Azy = 0Axp — aNzy — SAZZ
where Az = z1 — 21, Azp = 2y — Zp, Axq = x1 — X1, Axy = xp — X are the deviations from steady state and
016k

n = , = nu.
7 B=nu

Taking the Laplace transform of (57), we have
(s +7p) X1 =612
(14 By)s +7p) X2 = kX4

(1+By)s+a)Z; = —gzz (S8)

((1 + Bz)S + i) Zo =0 Xy —aZy

where Z; = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Axy} are the Laplace transforms of the time-domain
concentration deviations. Substituting, we have

(s +7p) (1 + By)s +7p) Xa = 01kZy

<(1 + By)s+ fi) (1+By)s+a)Zy = —5(62){2 —aZq).

(89

Simplifying, we have

(1+ By)(1+ By) <52+ (a(lfiBz) + 1fBl) s) 7, = —gezxz.

Substituting from (59), we have

(1+B1)(1+ B2)s((14 Bx)s +7p)(s + 7p) (s + a(1f32) + 3 fBl) + 591924 X = 0.

The characteristic equation used to analyse stability is thus

B « B B
s+ Bo)s+7p) (s +7p) <S+ a1+ B, " 1+B1) T ATE 1Ty - (510)
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S12.1.c. Characterisation of roots
Following the methodology used by Olsman and colleagues®, we first characterise the roots of (510). If we
substitute s = 7,0 then
o(1+0)(1+ (14 By)o) <U+ P + a > =- P : (S11)
Tpa(1+ Bz2) — 7p(1+ By) Y3(1+B1)(1+Ba)

Taking the limit of strong binding for the sequestration process in antithetic integral feedback
1+B
([3 > max {az EliBig,wyp(l + By) }) then

c(1+0) (14 (14 By)o) (1+07”“(1+BZ)) = 4
4

[3 1+B1)‘

It can be observed that there is a large, real root at o ~ — B We next examine the region |o| < 5 (ﬁ

Tp(14B2) o (1+B2)”
where we have

«
c(1+0) A+ (14 By)o) = ———————~.
The magnitude and phase constraints are
«
ol[1+c||1+ (14 By)o| = ————~
|of[1+ |1+ (1 + Bxy)o| 7,01 By)

argo +arg(l+ o) +arg (1+ (14 Bx)o) = (1 + 2k)m.
If we assume that ¢ is real and positive, then the LHS of the phase constraint is
argo +arg(l+o0)+arg(1+ (1+Byx)o) =0

which contradicts. Thus unstable roots are not purely real.
If we assume that o is real and —1/(1 + By) < ¢ < 0 then the LHS of the phase constraint is

argo +arg(l+o0)+arg(1+(1+Byx)o) =7

and so it is possible to have stable real roots. If we set f = |o||1 + ¢||1 + (1 + By)c| from the magnitude constraint,
then there is a local maxim of f at

—(2+By)++/1+By+B2

3(1+ By)

Thus there are two stable real roots between —1/(1+ By) < ¢ < 0 if

Omax =

_r
’Yp(l + By)

as f(Omax) is larger than the RHS of the magnitude constraint. There is a bifurcation at the boundary
f(Omax) = ﬁ resulting in a pair of complex conjugate roots if
P

f(Omax) >

o
f(Omax) < m.
For —1 < 0 < —1/(1+ By) then

argo +arg(l+ o) +arg(1+ (1+ Bx)o) =271
which violates the phase constraints. For ¢ < —1 then

argo +arg(l+ o) +arg(1+ (1+ Bx)o) =371
which meets the phase constraints. Thus for the stability boundary with strong binding there is a negative real root

and a complex pair of roots in the region |o| < ﬁ, as well as one large negative root.
r
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6
Si12.1.d. Stability Conditions
We next determine the stability boundary, where roots of the characteristic equation have zero real parts.
Substituting s = iw7y,, we have
2
4. . . . ‘B (44 .B’Yp
iw(l+iw)(1+ (1+ By)iw (zw—f—( + )):— .
ettt A B (@ (s sy) 50 8)) ) T T B B
From these equations, the magnitude and phase constraint are
0.5 B
W1+ w3 (1 4+ (1+ By)2w?)05 (w2 + ¢2) ~ =
(146030 (1 B (4 9) T = g S
tan~!(w) + tan "1 ((1 + By)w) + tan ! <:) = g + 2kt
B o
= -
= (B By
for some integer k. Using the strong binding assumption (ﬁ > max {txz E}igf; ,0yp(1+ By) }) then from above
B(1+By)
‘L(J| < m and so
o
W1+ w03 (1 + (1 + By)2w?)05 =
tan~!(w) 4+ tan "1 ((1 + By)w) = g + 2k7t.
Rewriting the phase constraint, we have
tan ! (w) — T_T tan~!((1+ By)w).
4 4
Applying tan(-) and trigonometric identities to both sides, we have
w—-1_ 1-(14By)w
w+1 1+ (1+Byw’
Solving, we have
B 1
Vv1+ By
Thus the stability boundary occurs at
_ o 1+ By
T A B2+ B
From above, we know that all roots are real and stable if a/ (7, (1 + By)) is sufficiently small, and so the stability
condition is
- o 1+ B,
= 1+B)2+B,
or
6162k 1+ B
3 1V2 X
> —— . S12
Tv~ A+By)2+ By 512

Thus increasing Bj improves stability and increasing B, has no effect on stability. Further, increasing B, worsens
stability, although this effect saturates as B increases.
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SI12.2. Stability of Antithetic Feedback with Non-Rapid Buffering at z;

In this section, we analyse the ability of non-rapid buffering at z; to stabilise antithetic integral feedback. We use
the model

X1 = b1z1 — vp11

Xo = kx1 — TpX2

21 = p —nz1zp — bzz1 + byw (S13)
Zp = Ox2 — 2122

w = byz1 — byw.

where the buffer w is not assumed to rapidly reach equilbrium. As a result, the model cannot be reduced in a
similar manner to SI2.1. The steady state for (S13) is identical to the rapid case in SI2.1. The linearisation is

Axy = 010z1 — ypAxq
Axy = kAx1 — vpAxp
Azy = —nZpAz1 — nZ1Azy — b Az + byAw
Ay = 0rAxy — nZpAz1 — §Z1 Az
Aw = b, Az — by Aw.
This system can be rewritten
Ax1 = 01821 — ypAxq
Axy = kAx1 — vpAxy

: B
Az = —alAz1 — &AZZ —b;Az1 + by Aw (S14)
ANzy = 6 Axy — aAz1 — SAZZ
A = b;Az1 — byAw
where
016>k
v=——— p=1u
Tp
Taking the Laplace transform of Aw = b,Azq — byAw, we have
b,
W= Z
s+ by !

where W and Z; are the Laplace transforms of w and z;. We have

b
—b,Z1 + bW = —b,Z, + bwﬁz1

where

Taking the Laplace transform of (514), we have
(s+7p)X1 =021

(s+a+Cp)Zi = —gzz

(S + i) Zo = 0,Xy —aZy.
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Combining, we have
(54 7p)° X2 = 61kZ4

(s+a+Cy) <S+ i) Z = —5(92?(2 —aZy).

{S<s+zx+§>+(ﬁb(s+i>}zl 'BGZXZ

Taking the strong antithetic binding limit of the sequestration mechanism (8 > max {az, vp}), we have

Simplifying, we have

(s +Cp) <s+ f) 7, = —gep(z
and so
(s +7p)? [(5+Cb) <s + iﬂ X, = — 12X,

Rewriting C,, we have

=0

and so the characteristic equation is

confrrne ) (o) orifie ) -

Substituting s = iw7y,, we have

(1+B1+zw>(1+1w) (iw—i—‘B)%—‘Bz(l—i-zw >:O.
bw ')/;70‘ 7p bw

Taking the strong antithetic binding limit where |zw| < T “, we have
<1+Bl+1w7 >(1—|—zw) <1+zw7p>
by ')/p by

The magnitude constraint is

oo ¥ « 7L\
1+B) (1+2—— 1+ wH)w=— 1+ Lw?
(1+ 1)( +b§](1+B1)2> 1+ w)w %)( —i—bzw

and the phase constraint is

—1(T w ~1 T —1({7p
tan~! [ -2 +2tan” (w) + — = tan (w) + 7t + 2k7.
(bw 1+ Bl> () 2 buw

for some integer k. Using trigonometric identities, we have

Bl 'YP

2w 7T 7, W e
tan~! 5)— 5= tan ! M + — + 2kmt.
1-—w 4 1 1 %, 2 4
T TR

w

8

(S15)
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9
This can be simplified to
B
18] hz;,z“’ +1
13(212 —-1_ 1+Wéw2
T+ 1— w2 1— 157131%&}
T4 gy i @?
or
1 7 2 By 7
2w—1+w? 1+ 1+81éw + 1+1Blﬁw
1—w?+2w 17 Bi ..
T @’ — T W
We have
1 7 By 7
200 —1 2) 1 ) Ir,
(014w ( T B Y 1B b
2
T 7 o, B 2
=1+ —w”+ —w (1—w +2w).
( 1+ By b2, 14 By by
Setting
Bl '7p
P
0 — 1 ’Yp
271 + By b%u
we have
(2w -1+ w2> (1 + a2w2 - alw) = (1 + a2w2 + alw) (1 — w4 Zw) .
Matching coefficients, we have
2010% + (1 — w?)(1 + aw?) = 0.
and thus
aywt + (1 —2ay —ap)w? —1=0 (S16)
Solving for w?, we have the stability constraint
0.5
'Y
1+ Lw?
o 1 2
vy > . o (S17)
(1+Bl)(1—|—w )(U 1+ w?
(1+B )2
where
1 o 1)\* 1 1 a1
2 _ I S (2 _f"_Z
@ \/(2&2 an 2) + an (2612 ar 2)
which can be rewritten as
'YZ ) 0.5
3 010k 1 1+ éw
(1+B) A+w | 1, 17 w2 (518)
b2 (1+B)2

F
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Stabilisation by Non-Rapid z; Buffering
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FIG. S2. Stabilisation effect F in (S18) where smaller implies improved stability.

2
b2 by 1 b2 b3 by 1
2 w w w w w
w* = (1+B)=% —-B——=)] +(1+B1)—5—|(1+B1)=% —Bj— — =
( 273 T 2 V3 293 T 2
where F, which is the stabilisation effect independent of the integral gain, can be seen as a function of By and ,% in

Figure S2.
For the special case that b, = ) then we have

wz =1 +B1
and so

s BBk 1
T U +B) 2+By)

S12.3. Stability of Antithetic Feedback with Non-Rapid Buffering at x,

In this section, we analyse the ability of non-rapid buffering at x, to stabilise antithetic integral feedback. We use
the model
X1 = 6121 — 7p11
Xo = kx1 — YpX2 — bxxo + byw
W = byxy — byw (519)
21 = p— 12122
Zp = 923(2 — NZ123.
where the buffer w is not assumed to rapidly reach equilbrium. As a result, the model cannot be reduced in a
similar manner to SI2.1. The steady state for (S19) is identical to the rapid case in SI2.1. The linearisation is
Axl = 91A21 — ’yprl
Axy = kAx1 — ypAxy — byAxy + by Aw
At = byAxy; — byAw
Az = —nz2pAz1 — 1210z
Azy = 0 Axy — 2Nz — Z1Az).
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This system can be rewritten
AX] = 91A21 - ’)/prl
A = byAxy — byAw
(520)

AZy = —aAz1 — gAzz

ANzy = O Axy — aAz1 — gAZQ
where
016>k
= —= B =1np.
Tp

Taking the Laplace transform of Aw = b,Azy — byAw, we have

b,
W= V4
s+ by !

where W and Z; are the Laplace transforms of w and z;. We have

S
— Xy = —Cy(s)X
1+i2 b(8)X2

—byXp + byW = —B,

where

Taking the Laplace transform of (520), we have

(s+7p)X1 = 0171
(s+7p +Cp)Xo = kXy

(s+wa)Z) = —§Z2
(S + 5) Z2 = 92X2 — DCZl.
Combining, we have
(S + ’Yp)(S + Tr + Cb)Xz = Hlkzl
(s+a) (S + 5) Zy = —5(92}(2 —aZq).
Simplifying, we have
S (S + o+ 5) Z1 = —éez}(z.
« o
Taking the strong antithetic binding limit of the sequestration mechanism (B >> max {a?, vpa}), we have
S <S+ ﬁ) Z1 = *E92X2
« o

and so

(s+7p)(s+7p+Cp)s (s + f) Xy = —B7;Xa.
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Rewriting C;, we have
(s+7p) | s+ —i—Bx; s s+é Xy = — B2 Xa.
P P 1+ bt P
and so the characteristic equation is
s BY_ g2(14 5
(s+ap) ((s+7p) [ 1+ +Bys|s|s+ =—p7, 1+ .
Substituting s = iw7y,, we have
(1+iw) ((1 +iw) (1 +iww> +inx) iw (iw + ‘B> = —ﬁz (1 +iww) .
by Ypa 5 bw
Taking the strong antithetic binding limit where |iw| < £ we have
T
(1 =P 4 (1+Bx+ 7”)) (1+ iw)iw = —— (1+iw7’7) .
The magnitude constraint is
2 2\ 05 42 0.5
<(1 - sz) + w? <1 + By + 7”) 1+w?)5w="(1+ Lw? (521)
bw w ,)/P bw

and the phase constraint is

tan—
1-— T2
bw

+ tan~H(w) + 7 _ tan! <’pr> + 7T + 2k7t.

for some integer k. Using trigonometric identities and rearranging, we have

w(1+Bx+ZTZ) T tan-l M + X 4 okm

tan
1— ZTZ“’Z 4 1+ ZTZWZ 4

Taking the tangent of both sides, we have

w<1+BI+Z—”) B (%—1) N

17%402 _ 1+Z—£w2
w(1+B+32) (2-1)w
17% 2 l+pr2

Multiplying out fractions, we have

w<1+Bx+%>—(l—%w2) (Z—i—l)w—kl—i—%wz

Simplifying, we have
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Stabilisation by Non-Rapid x5 Buffering

Buffer Equilibrium Ratio B,

1r i

‘ 0.05
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Buffer speed by, /7,

FIG. S3. Stabilisation effect F in (S22) where smaller implies improved stability.

Solving for w? and using the same approach as in previous sections, the magnitude constraint leads to the stability

2 0.5
Y
Y3 > 016:k ! 1+éw2
p 1v2 2105 2 2
(14 @*)Pw ((1-32e?)" +w? (14 B +32)

(522)

b2 ,)/ 2 ,)/ 2 /)/2 'Y ’Y

2 w p p p p p
= o Tr ST g (g 2 (1o
“ = \/(”B”bw) ( bw> T (+ "*bw)< bw>

where F, which is the stabilisation effect independent of the integral gain, can be seen as a function of By and % in
Figure S3.
For the special case where we set by, = 7, then we have w? = 1 and so the stability constraint is

6162k
3. Y192

. 2
P~ 24 B, (523)

SI12.4. Stability of Antithetic Feedback: Rapid x, Buffering with Degradation

In this section, we analyse the stabilising effect of buffering at the output species x; on antithetic integral feedback,
where the buffering can be degraded. Consider the model (S5) with buffering at x that is degraded

X1 = b1z1 — vpx1

Xp = kx1 — Ypxo — bxxp + bywy
Wy = byXp — byWy — YxWy

Z1 =W — 12122

Zy = Opxp — 2122

where wy is the buffering species of x,, and by, by, are the kinetic rates for the buffering reactions. If we assume
rapid buffering such that w, + x; is the slow variable, wy = Byxp and By = bwaX%{, and use the methodology from
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SI1 and SI2.1 then we have the reduced model

X1 = 01z1 — 7px1

(14 By)xp = kxy — (r)/p + Byyx)x2
21 =p—1Nnz2
Zn = Opxp — 1z122.

Si12.4.a. Steady State Analysis

We next analyse the steady state. We have
Z1 - =p—bx

and so the steady state of the output is

’
Xp = 92 .
We also have corresponding steady states
Tp T\ M
P (14B,Ix) L
" k ( " x'Yp) 02
_ e T\ _# T
A1 6, ' 01k6, + By v a 1+Bx'yp
1u o

where & = w.

Tp

S12.4.b. Linearised Model

We next analyse the stability of the system. If we linearise about the steady states, we have
Axy = 010z — vpAxq
(14 By)Aty = kAx; — v, (1 + sz;> Axy
Az = —NZ2Az1 — 121022
AZy = 0pAxy — NZaAz1 — 121 Az5.

This system can be rewritten as
Axl = 91A21 — ’)/prl

(14 By)A%y = kAxy — 7, (1 + sz") Axa

P
A,’Zl = — “ AZl—‘B(1+Bx,Y:;) AZZ
(1 + By 7")
. . B(1+B.1)
Nig = OAxy — ——— Az — ———— A2y,

(1+B:) "
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where o = GI;L}]( and B = nu. Taking the Laplace transforms, we have
Z

(s+7p)X1 =61Z4

Tp + Bxyx .
(14 By) <S+1+Bx X = kX
B(1+ B2

sy 7, = _(sz)ZZ

(1+B:)

B(1+5.2) .
S+7p 22:92){2—721

: e

where Z1 = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Ax,} are the Laplace transforms of the time-domain
concentration deviations. Substituting, we have

Tp + Bxyx
(1 + Bx)(S + ')/p) (S + 1<|>Bx> Xz = 61kZ1
B 14+ Byix
(1+ B 22)
B (1+Bx§—;‘) "
= 0hXy— ———=2Z
(1+8:%)
Rewriting and substituting, we have
+B B 1+ Bxys
(1+By)(s+7p) (S—i—M)s s+ x + ( W) X,
1+Bx (1+Bx7;) 14

_ _PUAES) <1 ZB’C%) 8,60,k X,.

Simplifying and taking the limit of strong binding for the sequestration process in the antithetic integral feedback

2 oy
> & , £ then
P> o) Tong)
1+ By x B(1+ By
Tp + Bxvx ’B( x%) _ ( x%))
(14 Bx)(s+7p) <s+ 1B, )s s+ " X, = " 610:kX5.
Thus we have the characteristic equation
1+B, 1
')’p‘|‘Bx"}’x ﬁ( x’Yp) 2 Y\ _
(1+Bx)(s+’yp)<s+1+Bx s{s+——F—" + By 1+Bx7p =0.
Substituting s = 7,0, we have
1+ B, L B(1+B.1)
Tp Tp B Yx
1+B)(1+o0) |0+ —F—|0o|lo+ —F | =—F (1+Bx— .
oo (oo 1) (- M)

Using the same argument as that in SI2.1, for the stability boundary with strong binding there is a negative real and

/3(1+Bx%>

complex pair of roots in the region || < o

, as well as one large negative root.


https://doi.org/10.1101/2021.04.18.440372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440372; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license. 16

To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.
Substituting s = iw7y,, we have

1+ By Lx B(1+B:1)
. . Tp . . Tp ﬁ ()/.7(
1+ By)(1+iw) | iw+ ——— | iw | iw+ ——= ——<1+B >
14-B, Ix
Taking the strong antithetic binding limit where |iw| < u, we have
Tp
. . Y\ - o
1tiw) (iwt —— |iw=——"F——--.
( )< 1+ By > Yp(1+ By)
The phase and magnitude constraints are
14 B2\ 2\ *
Xy o
1+ | ?+ [ —=2 W= ——
( ) 1+ By Yp(1+ By)

1 1 [ 1+ By T
tan” " (w) + tan <1+Bx;’;w> =5 +2km
for some integer k. Solving the phase constraint, we have
w—1 1-Cw
I+w 1+Cw

C— %,
+ By,
For this constraint we require
Cw? =1
which reduces to
1+ Bx,Tx
w* = —F,
1+ By

Substituting into the magnitude equation, we have
o

vp(1+ By)

=([1+C)C.

Rearranging, we have the stability condition

= (1+0)* (c+ c:*z)o'5 c0°

oL 0ok 1+ B,
p Jx ’
24 (14 2) B, 1+ 5B

We can differentiate the right hand side with respect to By to determine whether increasing By has a stabilising
effect. If we set

14 By

R (FER PR (Y

then
o _ 1= 22 (14 5) B (4 )R
0By (2+ (1+%> Bx)2 (1—|—%Bx)2

Thus for small By then buffering stabilises antithetic integral feedback if 7y, > %'yp. For large By then increasing B
improves stability if y, > 0.
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SI12.5. Stability of Antithetic Feedback: Rapid x; Buffering with Degradation

In this section, we analyse the stabilising effect of buffering at the intermediate species x; on antithetic integral
feedback, where the buffering can be degraded. This section uses identical methodology and obtains equivalent
results to SI2.4.

Consider the model (S4) with buffering at x; that is degraded

X1 = 0121 — Ypx1 — bix1 + byw;
Xo = kx1 — TpX2

W; = bixy — byw; — yiwy

i1 =}U—Nz2122

2y = Orxp — 12122

where w; is the buffering species of x1, and b;, by, are the kinetic rates for the buffering reactions. If we assume rapid
buffering such that w; + x; is the slow variable, w; = B;x1 and B; = %i%_, and use the methodology from SI2.4 then

(14 B;)x1 = 6121 — (7p + Bxvi)x1
Xo = kx1 — 7px2
Z1 = U —1NZ122
2y = bhxy — nz12.

SI12.5.a. Steady State Analysis

We next analyse the steady state. We have
L1 - =p—bx

and so the steady state of the output is

n=l
The corresponding steady states of the other species are
Z1 = ( —ngi%)m = 6?%; (1 +Bi:)):;) = % (1 + Bi:;)
2y = 1u «

e 7 (1+Bi)

where o = w.

P

S12.5.b. Stability Analysis
We next study the stability of the system. If we linearise about the steady states, we have

(14 B))A%; = 0142 — 7, (1 4 Bizi) Ax;
p

Axy = kAx1 — ypAxa
Az = —nz2Az1 — 1Z1Az2
Azy = 0pAxy — 2Nz — 21 Az).
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This system can be rewritten as

(14 B)A%; = 014z — 7, (1 + Blg’) Ax
14
Axy = kAx1 — vpAxy

o
+ 1'7;

Azy = 02Axy —

Az = —

o)

where a = glﬂ;# and B = nu. Taking the Laplace transforms, we have
Z

Tp + Bivi
1+ B; — 1 Xy =06,Z
(1+ z)<5+ 1+ B; ) 1="0272;
B(1+B;L
S+7a . Zl__< " l’)/p>22
(1+8:3:)
B(1+B;L
5+M Zy=0Xg— ———— 7
: o)

where Z1 = L{Az1}, Zy = L{Az}, X1 = L{Ax1}, Xo = L{Ax,} are the Laplace transforms of the time-domain
concentration deviations. Substituting, we have

. Tp + Bivi _
(1 + Bz)(S + "Yp) (S + 11B T B; X, = 01kZ,
B(1+BL B(1+B;1L
) U o\
Rewriting and substituting, we have
By B(1+ B B(1+BL
(1 + Bl‘)(S + ’)/P) (S + W) s|s+ & + ( ’7;7) X5 = _<Z’Yp)9192kx2-
1+ B; (1+Bi%) o o
P

The above equation is equivalent to x, buffering (see SI2.5), and so for strong integral binding we have the stability
condition

3 010,k 1+ B;
7P> : 1+ XiB.
2+(1+%)Bi + LB

which is equivalent to the case of x; buffering.
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SI13. BUFFERING CAN ENABLE NEAR-PERFECT ADAPTATION DESPITE LEAKY INTEGRATION

S13.1. Rapid x; Buffering with Degradation can Enable Near-Perfect Adaptation

In this section, we analyse the ability of buffering at x, to enable near perfect adaptation by stabilising antithetic
integral feedback. Consider the model (S5) with buffering at x, that is degraded

X1 = b1z1 — vpx1

Xp = kx1 — ypx2 — bxxp + bywy
Wy = byXp — bWy — YWy

Z1 = W —1N2122 — YcZ1

Zy = bpXxa — 12122 — YcZ2

where wy is the buffering species of x, and by, by, are the kinetic rates for the buffering reactions. Assuming that the
buffer rapidly reaches equilibrium then using the methodology from SI1 and SI2.1, we have the reduced model

X1 = 6121 — Ypx1

(1+ By)xp = kxy — (')’p + ByYx)X2
21 = p{—N21Zp — Y21
Zy = bhxp — 112122 — YcZ2.

(S524)

where
b
By= —>—
bw + Ye
wy = Byxp.

SI13.1.a. Steady State Analysis

We next analyse the steady state. We have
21—z = g — 02X — Yez1 + Y22

and so the steady state of the output is

We also have the steady state

and so

The other species have the steady states

xlz% <1—0—Bx:;:>x

W M

Tx 02 Yx
= = 1+ By— =—=(14+B,—
“ 61 & 61k ( * x'Yp) 2 & ( * x’Yp) 2
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where a« = szzk. Substituting, we have

p
2
Ye Vx 2 H e Yepa
l+<1+B>>x2:(—)x2—|—. 2
( o x’)’p 0, 9217 9%1’] (1 + Bx%) (S 5)

We assume strong binding of the sequestration mechanism in antithetic integral feedback (y large), which for
steady state is the condition

po i
n g2 (1 + Bx%)
With this assumption, we have
<1 G (1 + Bx%(>) 2=y,
& Ty 62

We ignore the zero solution, which corresponds to a negative solution in (525), and so the steady state
concentrations are

Xy = ﬁ L
0214 2 (14 B 1)
k02142 (14B,2) atye (1+B:2) 7 (1+B:2)
The steady state error of x; is
Xop—Xp 1 _ bt
7;2’1 Rt hes Ve <1+Bx7;)

S13.1.b. Stability Analysis

We next study the stability of the system. If we linearise (S24) about the steady state, we have
Axy = 01821 — vpAxy
(14 By)At = kAx; — 1, (1 + sz’;) Axy
Azy = —nZaAz1 — n1Z1Azy — Y Azq
Azy = O0pAxy — nZaAzy — Z1Az) — Y Az).

This system can be rewritten as
AfCl = 91A21 — ’)’prl

(1 + BX)A)Q = kAxq1 — Yp (1 + Bx;Y/x) Axy

p
A= | —% g Az p(1+5:3) Az
(1+Bx7;) &+ e (1+Bx7;)
Aty = OrAxy — —5 Ay — p(1+8:3) F e | Az

(1+Bx7:) &+ ve (1+Bxﬁ>
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where o = GI;L}]( and B = nu. Taking the Laplace transforms, we have
Z

(s+7p)X1 =02y

(1+Bx)(s+m>xzzkxl
" (1)
S+(1+Bx7;)+% “= zx+%(1+B;;>
s+ ﬁ(1+8x7:) tr |l Za=0x - —% 7
atye (1+B:22) (1+B.2)

where X, X1, Z; andZ; are the Laplace transforms of Axj, Axp, Az; andAz;. Substituting, we have

Tp + Bxyx
1+ By

. ﬁ(1+3x7;)
(1+wa;)+% S+a+%(1+BM’;)
GRS o

a+%(1+BZ,,;) e (1+ B 22)

(1 + Bx)(S + ’)/p) (S + ) X, = lezl

Zq

Rewriting and substituting, we have

Tp+ Brre « ., P+EE)

(1+Bx)(s+7p)<s+ ) (s+7) | s+
1+ B, (14+B:2) ety (14 B2

) +Ye X

_ ﬁ(HBx%) 6,0,k X,.
®+ e (1+Bx7;)

Simplifying and taking the limit of strong binding of the sequestration mechanism in antithetic integral feedback

(zx + 7e (1 + Bx,T;))z (@ +7e(1+ B 3%))7p

(1+Bx7;>2 ' (1+Bx%;>

B>

then

+B B(1+ By
(14 Bx)(s+7p) (s+ m> (s+7) | s+ ( 'y”) X5
: wot e (1483

) 5(1+Bx77;)
®~+ v (1+Bx7;)

010,k Xo.

Thus we have the characteristic equation

B (1 + Bx,?';)

+ By @ (1 T Bx%)
a+ e (14 B.2)

Tt e (14 B.2)

Yp T Byvx

1+ B, =0.

1+ B+ ) (5+ )40 5+
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Substituting s = ,0, we have

B (o pObd) ) p_ x(rpd)
(1+Bx)(1+‘7)<0+ 1+Bxp>(a+v;> U+w<"‘+%<l+;x;}f)) ) y’z’“%(HBZWXJ).

Using the same argument as that used in SI2.1, for the stability boundary with strong binding there is a negative
.
p(8:5;)
)
To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.
Substituting s = iwvy),, we have

real and complex pair of roots in the region |o| < , as well as one large negative root.

(s (o p(nE) N a(iend)
(1+By)(1+iw) <’“’+ 1+Bxp>(w+7:) WJFW(H%(H;J?D ! 7’2’“+%<1+B’;”;)'
p(1+8:3;)

Taking the strong antithetic binding limit where |iw| <

Tp (H% (1+Bx %)) ,we have

1+B,1x
. . . Ye 4
1+1w lw+7’)’p <zw—|—> = -
( ) ( 1+ By > Yp ¥p(14 By)

The phase and magnitude constraints are

2\ 0.5 0.5
1+ By1x 2\ N
14+ (@24 [ —T w?+ e =
( ) 1+ B, e Tp(1+ By)

tan~!(w) + tan~? ﬂw +tan ! (Ww> = 1+ 2km
1+ Bx,T; Ye

for some integer k. Solving the phase constraint, we have
1+A Hw+ %‘Zw(l — A7 1w?)
_ 1\
1- (A4 (+ah)l) w2
14 Bx,T;
1+B,

-1

tan =+ 2k

A pr—
For this we require

1+ A o+ 2wl — A 1w?) =0

c

which reduces to

w? =15 (1+ A) + A
Tp

Substituting into the magnitude equation, we have

((1+2) aem) (2w a) o) (0] ()

- (1+z;> (1+ A) (z;+A>

DL
Yp(1+ Bx)
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Simplifying, we have

ﬁ: (1+z;> (1+A) (3:)+A).

slvi -17
Multiplying by A 7‘;, we have

& a1l (1+%) (1+A) <%+A)
Ye (1+ Bxl—;) Ve Tp Tp
1+ Bxﬁ
A=—"
1+ By

and so the stability condition is

O, < <1+%) (1+ A) <7”+A—1)
Tp c

1+Bxﬁ

A=—"1
1+ B,

where

114

Q= oy (o)

From earlier, we know that the steady state error of x; is

X2y — X2 . 1

X2n 1+0,

S13.2. Non-Rapid x, Buffering can enable Near Perfect Adaptation

In this section, we analyse the ability of non-rapid buffering at z; to enable near perfect adaptation by stabilising
antithetic integral feedback. We use the model

X1 = 0121 — Ypx1

Xo = kx1 — Ypx2 — byx + byw

21 = P —1N2122 = Yz (S26)
Zy = bXxa — 12122 — YcZ2

W = byxy — byw — yew.

where the buffer w is not assumed to rapidly reach equilbrium. The steady state for (526) is identical to the rapid
case in SI3.1 if we replace vy by .. The linearisation is

Axl = 91AZ1 — ’)/prl

Ay = kAxy — ypAxy — byAxy + by Aw
AZ) = —NZoAz1 — 121029 — Y AZq

Azy = 0pAxy — §ZoAzy — §Z1Az) — Y Azp
At = byAxy — (by + 7e) Aw.
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From SI3.1, the steady states are

2
71 = ﬁx _ T (1—|—Bx%> Xy = 9—2 <1+Bx%) X
61 61k T u Tp
Liw
a1
U 1
Xy = —
% Ye Ye
2142 (1 + BWP)
where
0162k by
- 7 == 7 B = *
’)/;27 p=mr * by + e
This system can be rewritten
AJ'Cl = 61Azl — ’)/prl
Axy = kAx1 — vpAxz — byAxs + by Aw
A = byAxy — (by + ve)Aw
. x p(1+8:%)
Az = — 7y+% Az — ” Az
(1+Bx7p) &+ e <1+Bx%>
. . B(1+B.L)
ANy = OAxyg — ——Az] — + v | Azp.
(1+B:2) at e (1+B:2)
Taking the Laplace transform of Aw = byAx; — (by + 7v.)Aw, we have
by
=— X
s+ by + ¢ 2
where W and Z; are the Laplace transforms of w and x,. We have
—by Xy + byW = —by Xo + b L S
X2 w = xN2 ws T bw T 7e 2
= —Bx 1 ° + ');C X2
+ bow+c
= —Cp(s)X2
where
S+
Cb:Bx1 756/ bw = by + e
* b
Taking the Laplace transforms, we have
(s +7p)X1 = 0124
(S +7p + Cb)Xz = kX;
1+ By
44 ,B x
S PRSI Gt
(1+Bx7p) X+ (1+Bx7p)
B(1+B,Le
s+ ( 7?’) a Zl

a4+ e <1+Bx7—;

) +7c | Z2=02Xo — (

1+ Bxﬁ)
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where X1, X1, Z1 andZ, are the Laplace transforms of Axj, Axp, Az; andAz;. Substituting, we have
(s+p)(s+7p + Cp) Xa = 01kZy

. B (1+Bxﬁ>

S+(1+Bx7;>+% S+a+%(1+3x7;)+% “
(B A S
atye (1+B:2) (1+B:2)
Rewriting and substituting, we have
. [3(1+Bx%) a(1+3x%)

(s+7p)(s+7p+Cp)(s+7c) [ s+ >+% Xy = =P,

_'_
<1+Bxﬁ) &+ e (1+B’f7; &+ e (1+Bx7;)

Simplifying and taking the limit of strong binding of the sequestration mechanism in antithetic integral feedback

(a7 (14 Bx,,—;))z (& +7e(1+ B %))y,

b (1+Bx%j)2 © (14B)
then
(s+7p)(s+7p+Co)(s+7¢) [ s+ 'B<1+Bx7;) Xy = —/37;27 “(1+Bx%) Xo.

ot (14 B ) ot e (14 B )

Rewriting C;, we have

s+
(s+7p) <S+'Yp+Bx%> (s+7) s+

s88) |, a(emm)

1+ = a+%(l+Bxﬁ) - p"‘+%(1+3"7;)

by
and so we have the characteristic equation
B(1+B.2)
atye (14 B2

(s+7p) ((s+7p) (1+ I:) +Bx(s+%)> (s+7) [ s+

w

¥ s
= —IB’)/%] P (1+,\ ) .
o+ (1+Bx7—;) b

Substituting s = iw7y,, we have

14 (1 + Bxﬁ>

Bl1+ Bxlc,
(1+iw)(1+Bx%—:pr2+iw<1+Bx+Yp>) (iw—i—%) iw + ( 7’>
Ty w b Tr Ty ((x+')/c (1+BX,T;>)
Je

__h N (1 i Bx%ﬂ) 14i i
=—-- +iw=|.

b (w+7e (14 B:Z)) w

. N . B(1+8:3¢)
Taking the strong antithetic binding limit where |iw| < £ , we have
Tp <9C+'Yc (1+Bx%>>

<1+Bx% W 4w <1+Bx+7”)> (1 + iw) (iw—l—%) —— (1+iw7”) :
Yo by by Yp Yp w
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The magnitude constraint is

2 2 0.5 5 0.5 0.5
((1 1B Le 7%2) +W? (1 Byt Y’”) 1+ (24 2X) =2 (147 7% W2 (S27)
Yp by by (Yp Tp bzzo

and the phase constraint is

w(l—i—Bx—Fgl)

w

Je P52
1+Bx'Yp ECU

w

tan

+ tan"!(w) 4 tan~! <’pr> = tan"! (?w) + 7T+ 2kt
w

Ye

for some integer k. Rearranging, we have

<1+Bx+ ) ?iw(l—ﬁw) (1+””)
tan™ 5 bu —tan ! | bu i e + 71 + 2k7T.
14 Bes — rw? 1—%w2 (1+“fp) prz

Taking the tangent of both sides and ignoring the trivial solution, we have
v g .2 g
(1+B:+ ) - 2(1-Zw?) - (1+2)

1+Bxﬁ—gj’;w2 1—%w2+(1+7y—’;) w2

Multiplying out fractions, we have

(1+Bx 7”) <1—7” w? + (1+’Y”> 7%2) - (7” (1—7%2) - <1+7”>> (1+Bx%—7”w2>.
by Yc Ye/ by buw Ye Ye Yr by

Expanding, we have

<1+Bx+7’”>+<1+13x+7”> (7’“+7’“7’7—7’“>w2
bw bw bw r)/wa r)/C

——<1+7’”—7 ) (1+sz€)+(1+7”—?”) T”wz—(HBx%) T Tr 2y 00T

Ye by p Yc bw/ by bw Ye b2 Ye
Simplifying, we have
2
~ Tt [(1+Bx+7”) <7€+:y”1> + (B 1+7”) %] w? + [2+ZBX g de g de|de g
o bw w  bo w/ Yw Ve Tr bw | vp

Solving, we have

7.2

C()2: be A+\/A2+47PIYC |:2+2Bx_'_r)/P+er)/c Bx')/c:|
2’)/17 bw Tp Ye Tp by (828)

A= [(1+Bx T”)<%+Y” 1) (Bx—1+7”)%}
by by by by /) by

Using the same approach as in previous sections, the magnitude constraint leads to the stability constraint

2 0.5
3 010,k 1+ bgw
Tp > 05 (529)
2105 [ 2 4 7 ((1+B c ”F’wz) +w2(1+B + 1 )
(1+CU) w +é x')’ by bw
using w from (528). This can be rewritten
2 2y 05
0.5 Y Ap, 2 2 T
= < (1 + w2)0'5 (w + '7(:) <(1 + By Tp Eww ) tw (1 + B i’w) (S30)
Yp '7p 1+ % w2

2
by w
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From SI3.1, we have there steady state error

Xon — X2 _ 1
X2n 1+,

where
o

= Ye (1 +Bx7;>

and so the steady state error constraint is

0.5

2 2

0.5 Yo _ M, 2 2 Tp

T (1+w?)® [ 42 (4B - 20?) 4+ (14 Be+ 32

< St |0+ 5 ;
Ye (1+Bx%;) ,)/p 1+2/pr2

where w is given in (528).
If we set by, = 7p for simplicity then w? =1+ 2(1 + Bx);’—; and

2+B 2
Qx<ﬁ+7’fy 1+7—§+2(1+Bx)ﬁ .
761+Bx7; Ty Ty

This equation can be rewritten
Yp 2+ By Ye 2 Ye
Oy < ———F—5- 1+—) +2By,—].
Ye 1+ Bx,T Yp Yp
P
S13.3. Rapid x; Buffering with Degradation can enable near-perfect adaptation

In this section, we analyse the ability of buffering at x1 to enable near perfect adaptation by stabilising antithetic
integral feedback. This section uses identical methodology and obtains equivalent results to SI3.1.
Consider the model with x; buffering and dilution
X1 = 0121 — Ypx1 — bix1 + bywy
Xp = kx1 — ypx2
Wy = bixy — bypwx — yiwx
21 = p — 12122
zp = Ooxp — 2122
where wy is the buffering species of x1, and b;, by, are the kinetic rates for the buffering reactions. Assuming rapid
buffering and using the same methodology as previous sections, the reduced model is
(14 Bj)x1 = b1z1 — (7p + Bivi)xa
Xp = kx1 — ypx2
21 = B — 112122 = YcZ1
Zy = Oaxp — 2122 — YcZo.

where B; = ﬁ is the buffer equilibrium ratio.

S13.3.a. Steady State Analysis

We next analyse the steady state of the system. We have

21 —Zo = U — 0X2 — Yez1 + Y22
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and so the steady state of the output is

M Je
Xy = 0, 6221 + 0, Z7.

We also have the steady state

and so

S i v

Now at steady state we have

X1 = %9@

j 6
S (1+Bi%> =L (1+Bl%) X=2 <1+Bl%> %
9] Tr le Tp Tp
where o = 91{#. Substituting, we have
4

. 2
R PRI
« Tp 2 N 9%,7 (1 4 Bi%)

Assuming strong binding

> 1o, ehr
ko3 (14 B,21)

(1 + Xe <1+Bi%>) x% = ﬁx2
o Tp 0>

and so, ignoring the solution x; = 0, the steady state is

we have

U 1
Xy = — -
0214 2 (1+B,21)
1 12 1+ Bk
xlzﬁﬁ Zl_ ( l"/p) 22:70(

k621+%(1+Bi%)’ _a+7c(1+31‘%),

The steady state error of x; is

Xopn — X2 1

o

)

S13.3.b. Stability Analysis

We next study the stability of the system. If we linearise about the steady state, we have
(14 B))A%y = 014z — 7, (1 4 Bizi) Ax;
p

Axy = kAx1 — vpAxa
Az = —nz2Az1 — 21Dz — Y Azq
Azy = O0pAxy — nZAz1 — 1Z1Az) — Y Az).
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This system can be rewritten as

Af(l = 91A21 — ’Yprl

(14 B))Axy = kAx; — 1, <1 i Bi’?) Ax

P
(o b1
Azy = — VP +9c | Az — - Azy
(1+B:2) a+ e (1+Bi2)
i
o o [ B (1+B:2)
Azy = 0 Axp TN Azq ” 4+ ve | Azp.
(1+Bi7;) &+ e <1+Bi7;>
where a = 91;# and B = nu. Taking the Laplace transforms, we have
P
Tp + Bivi
(+z)<5+ 1+Bi> 1=01Z;
: 51+ 0)
s+ 77 + Ye Z1 = — ”
(1+B:2) a+ 7 (1+Bi)
b(1+03) :
s+ . + Y | Zo = 6,X5 — 77'21‘
a+7 (1+Bi2) (1+B:1)

where X1, X», Z1 and Z; are the Laplace transforms for Axq, Axy, Azq and Az;. Substituting, we have

Tp + Bivi

1+ B+ ) (5+ 22

) Xy = 01kZ4

B (1+Bi%)

s+ :
o+ ye (1+Bi%

Ye s+ )+'Yc Z1

(r5)
IGRED by 8
o+ (1+Bi¥—;) (1+Bi%)

Zq

Rewriting and substituting, we have

Vi

Yp + Bivi o 5<1+B177>

ol B ICRON B ~ + :
i (1+B,-7l;) &+ e (1+Bl-;—;

(14 B)(s + 77) (s+ e X2

b1+ 0)

- 0,600k X>

The above equation is equivalent to that for x, buffering (see SI3.1), and so for strong integral binding we have the
equivalent stability constraint and steady state error

x2n—x2: 1
Xon 1+Qi
Q; < <1+%> (1+A) (7”+A1>
Yp Ye
2R,
P i

1+B;
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S13.4. Rapid z; Buffering with Degradation has a trade-off due to leaky integration

In this section, we analyse the trade-offs for rapid buffering at z; on stability and the steady state error from perfect
adaptation. For buffering at z; with dilution, we use the model

X1 = 60121 — 7px1

Xp = kx1 — ypx — ypx2

21 = p— 12122 = ez — bazy + bow

Z =X — 2122 — Ve2

W = byz1 — byw — yow

where x; is the output concentration being controlled, x; is another concentration in the process being controlled,
and z; and zp represent the molecular species involved in the perfect adaptation mechanism. Assuming that the
buffer is rapid then w is at quasi-steady state then

b,

w = BlZl Bl = m
w c

If x7 = w + z; is the slow variable then x7 = (1 + Bq)z;. Thus X1 = (1 + B1)z1 and so
(14 B1)z1 = u —nz1z2 — Ye(1 + B1)z1.
Thus we have

X1 = 0121 — Vpx1
X = kx1 — ypx2

(14 B1)z1 = p—nz122 — 7c(1 + B1)z1
Zy = bhxa — 12122 — YcZ2-

S13.4.a. Steady State Analysis

We next determine the steady state and and any error from perfect adaptation. For the case of dilution, we have
(14 B1)z1 —22 = p — bhx2 — Ye((1+ B1)z1 —22) =0
resulting in

Y N Je
Xy = 5 6 (1 + Bl)Z1 + 0 Z7.

We also have

71
and so
o7 Ye Yep 1
= —°.(1+B;)——(1+B —.
Y2 = 9217( + B1) 92( + By)z1 + 617 71
Now at steady state we have
Y
X1 = kpr
v 7 0
Z1 = lx = iXQ = £X2.
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31
where a« = szk Substituting, we have
Z
2
4 e B Tepa
1+B =(——-—(1+8B .
(4 2 m)d= (5 - Foaem)u s T
Assuming strong binding of the sequestration mechanism
s 2+ B) e
2 03
we have
(1 + — Te (1+ B1)> x% = ﬁxz
)
and so, ignoring the zero solution, the steady state is
Xy = T S (S31)
27 01+ ZE(1+By)
xlzlﬁ;, 21:#, 22:5, (S32)
k02143 (1+B1) a+7:(1+By) 1
The steady state error of x; is
Xop — X2 1 o
= , Ql - |
Xon 1+ Ye(1+By)

We can see that increasing By increases the steady state error of x, when there is degradation/dilution of z; and zj.

S13.4.b. Stability Analysis

We next study the stability of the system with degradation. If we linearise about the steady states, we have
AfC] = 91A21 - ’)’prl
Asz = kAX] — ’)/pAXQ
(1+ B1)AZ; = 1122021 — 121822 — 71e(1 + B1)Az
AZy = 02Axy — nZaAz1 — §Z1Azp — Y Az).
This system can be rewritten as

AX] = 91A21 — ’)’prl
Axy = kAxq — ’)/prZ

. B
14+ By)Ad = — 14 By))Az — ——b A
(14 B1)Azy (@ +9c(1+ By))Az &+ 7c(1+ By) 22

L N (B

Nzy = O Axy — aAzq (Dé—l—’)/c(l+B1) + ¢ ) Az

where
010k
=5 B=nm

Tp
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Taking the Laplace transforms, we have

(s+7p)X1 =021
(s + 7p)X2 =kXy

p
1+B 1+B))Zj=—— - 7
((1+By)s+a+v:(1+ By))Zy (1B 2
; )
7o = 0,Xy — aZy.
(S+a+%(1+31)+% 2 =% —aa

where X, X», Z; and Z; are the laplace transforms for Axy, Axp, Az; and Azp. Substituting, we have

(s+7p)*Xo = 01kZ4

((1+By)s+a+v:.(1+ By)) (5+ zx—i—'yc&gl—i—Bl) +’Yc> Zq
_ B
= _a+’yc(l+B1)(92X2_aZl).

Rewriting and substituting, we have

(s +7p)2 [(sm) (<1+Bl>s+a+ PO+ By) ) +%<1+Bl>ﬂ %

06+'7c(1+B1

B
= 016,kX,.
Di‘l")/c(l‘l'Bl) 1vanaz

Taking the limit of strong binding (ﬁ > max { (HA’{(EI; Bl))z, i (aﬁZﬁgﬁBl)) }) then

p o
(BP0 (4 g iy ) % =

Thus we have the characteristic equation

2
P )+(m” e =0,

2
(s +7p)°(s +7c) (S+a+%(1+31) 1+ By) a+v:(1+ By)

Substituting s = 7,0, we have

2 Ve B _ B o
(1+o) (H%) (H vp(oc+%(1+B1))> P +B)a+7.(1+By)

Using the same argument as above, for the stability boundary with strong binding there is a negative real and

complex pair of roots in the region || < , as well as one large negative root.

B
Tp(ate(1+B1))
To determine the boundary of stability, we next determine the conditions for which the roots are purely imaginary.
Substituting s = iw7y,, we have

N2 e . p _ p &
(1 i) (“"Hp) (“”*vamawl))) = AT B)at (T E)

Taking the strong antithetic binding limit where |iw| < T T B We have

. . Ye ®
1+iw)? <za)+) =
( ) Tp 'Yp(1+Bl)

The phase and magnitude constraints are

2 2 72 " a
c _
(14 w?) w*+ — —pi

2tan"!(w) + tan! (Ww> = 71+ 2km.
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for some integer k. Solving the phase constraint, we have
2w + %w(l —w?)

_ Tp 2
1 (1+2%)w

-1

tan = 1t + 2k7.

For this, we require

2w + ﬁw(l —w?)

c

w = ,/ZE—I—L
Tp

Substituting into the magnitude equation, we have

which reduces to

2
o Ye
L ) .
'Yp(l + By) ( Tp
As a consequence, the stability constraint is
d Tp 7\
O =% oM (1+C> |
! Ye(1+ By) Ye Tp

We can observe that increasing B; improves the stability constraint. However, the steady state error of x; is

Xopn — X2 _ 1
Xon 14+ 0y
14
O =—
! Ye(1+ B1)

2
Q] < Zﬁ <1 + %>
Ye Yr

Thus there is a steady state error constraint that is independent of By, and so increasing B; does not enable the
removal of leaky integration.

S13.5. Non-Rapid z; Buffering can allow Near Perfect Adaptation

In this section, we analyse the ability of non-rapid buffering at z; to enable near perfect adaptation by stabilising
antithetic integral feedback. We use the model
X1 = 0121 — Ypx1
Xp = kx1 — ypx2
21 = p — 21z — Yez1 — bzz1 + bpw (533)
Zp = 02xp — 2122 — Y22
W = byz1 — bypyw — yw.
where the buffer w is not assumed to rapidly reach equilibrium. The steady state for (S33) is identical to the rapid
case in SI3.4. The linearisation is
AX1 = 91AZ1 — ')/prl
Axy = kAx1 — vpAxp
Az = —nZpAzy — nZ210zp — YeAzy — by Az1 + by Aw
Azy = O Axy — NZoAzy — §Z1Azy — Y Azp
A = b;Azy — (by + 7c) Aw.
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This system can be rewritten
Ax1 = 91AZl — ')’prl
AXZ = kAx1 - ')/prz

. B
ANz = —(a Az — ———F—— A2y — b; Az + by Aw
1 ( +,)/C) 1 0é+’)/c(1+B1> 2 z 1+ w
. B )
Nzyp = OAxy) — Az — | ——F————~ Az
2 = 0hAxy —alAzy (zx—i—’yc(l—i—Bl)jL% 2
At = by Az — (by + 7)) Aw.
where
016,k
= —> B =np.
Tp
Taking the Laplace transform of Aw = b,Az; — (by + 7c)Aw, we have
b,
=— 7
s+ by + ¢ !

where W and Z; are the Laplace transforms of w and z;. We have

b
s+ by + ¢
S+ ¢
17— 21
1 + hwi’)‘c
= —Cy(s)Z1

—b,Z1 + byW = —b,Z1 + by, 71

= —B

where
S+ ve

S
T+

Cp = By ’ I;w:bw‘i"Yo

Thus
(s+7p)X1 = 0174
(s +7p) X2 = kX4
B
S A/
® + 'Yc(l + Bl) 2

)
s+ —m—F——— Zr = 0, Xy — /.
(+Dé+%(1+31)+% 2 h X5 1

(s+at+v+CpZ =

Combining, we have

(S + ’)’p)ZXQ = 91kZ1

P ) P
C — 21 = ————F—— (X0 —aZy).
(a1 @) (o4 o iy +9¢) 2=~y e 02)
Simplifying, we have
[(s+%) (s+ac+ﬁ+'yc>+cb <s+ﬁ+%)]Z1
a+v.(1+ By) &+ v:(1+ By)

B
=0, X>.
DC+'YC(1+B1) 202

Taking the strong antithetic binding limit of the sequestration mechanism
(B> max {(«+vc)(a+ (14 B1)), vp(a +7:(1+ B1)) }), we have

B

p
C _ | Zi=———F— 0, X
(s +7c+Cp) (S+1x+'yc(1+B1)> LS T (14 By 2


https://doi.org/10.1101/2021.04.18.440372
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440372; this version posted September 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

35
and so
(S—i—’)fp)z {(S—F’YC—O—C;,) <S+ ﬁ)} X, = —‘[372#}(2
a+7ye(1+By) Pa+ve(14 By)
Rewriting C;, we have
1—|—B1—i-Ai 'B «
+7p)* (s + + B | X2 =0
(57 (s 70) T+ ( oc+%(1+Bl)) Prr By |
or
1+)
S [3 2 “( b,
s+7p) (s+7)1+Bi+ ) [s+ ——F——~ | +B1rr——— 0.
(54 7p)°(5 +70)( ! bw>< a+'yc(1+B1)> ’B’Y”och%(leBl) ?
Substituting s = iw<y,, we have
1+iw
T Ye o\ (; B B ( b)
1+ B +iw=)(1+iw (—i—lw) (zw—i— ) — = (.
(1+5 bw)( ’ Tp Tol@+7(1+B1) ) " v a+7(1+B1)
Taking the strong antithetic binding limit where |iw| < T TTB) We have
(1—|—B1+zw7 )(1+1w) <%+iw>:—“ <1+iwiyp).
bw Tp Tp bw
The magnitude constraint is
2L 0.5 . 05 . 0.5
14By) (1+ L | (1+a?) |25 +a? 1+w?E (534)
( 1)< B2 (1+Bl)> ( )<7;27 L b3,

and the phase constraint is

_ 1 {r (v 1 Tp
2tan" ! (w) + tan 1<w>+tan (A w>—n+tan <A )+2k7‘(
( ) r)/C bw 1 + Bl bw

for some integer k. Using trigonometric identities, we have

B, 7
20+ 2 w(1 - w?) o L w
tan~! Te g = 77+ 2k + tan~? i bwvz
— Y (2 1
1 <1+27E)w 1+1+81f§,“’2
This can be simplified to
g4 B 7
2w+ 2Lw(l — w?) _ 1+}51iw
_ M 2 1 7% o
1-(1+22) w 1+ g fo?

Ignoring the trivial solution w = 0, we have

2
To  Yp 2) 1 7% - B, ’Yp< < 'YP> 2)
24+ — - —w 1+ wo | = 1-(1+2 .
( Ye Ye ( 1+ B b%u 1+ By by, Ye

Rewriting, we have

1 'YP’YP Wt
1+Blb2 Ye

+

2
1 7 B
7’7+<2+7”) L - 7’“(1+27”>

2 7 Tr Bi v
+ + T =
¢ Y 1+B1 b2 1+B1 bw Ye ( )

Ye 1+B1 Bw
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Simplifying, we have
% 7%
~Lwt 4+ | ~(1+By) + (2% + ) 2 4B (7 +2) W+ (2% +1) (1+B) —B 12T =0,
bw Ty bw by Tp bw Tp
Solving, we have
b2 7% Ye Y
(02: w A+ A2+4,\(<2 +1> (1+B1)—Bl,\>
A=—(1+B))+ (2% +1> i +B P <% +2)
Y b2 bw Yp
From the magnitude constraint 534, we have the stability constraint
140« 02 05
(1+ By) M 1+ w?) %+w > & (S35)
1+ wZ ,YP r)/p Tp
which can be rewritten in terms of steady state error (31 = ﬁ as
05 02
1+ 2 =
Ql < ﬁ(l +w2) (7; +w > b (1+Bl)
Ye 'Yp 1+ (4)2 bzv
For b, = Yp, we have
A= (1+%> By +22¢.
Tp Tp
w? = ( 7C> By +1+2X¢
Yr Tp
and the stability constraint
7P(Z+Bl)( ’YC)< 'YC)
< (1+B+— ) |1+—).
Ye (1+ By) Tp Tp
S14. CHARACTERISATION OF ANTITHETIC FEEDBACK WITH BUFFERING
In this section we characterise the feedback in the system with antithetic feedback and buffering of the control
species 21, 3.
SI14.1. Characterisation with Rapid Buffering
We first characterise antithetic feedback with rapid buffering. We use the model
X1 =6121 — Ypx1
(1+ By)xp = kxy — ('Yp + Bxyx) X2 (S36)

(14 B1)z1 = u— nz122
(1 + BQ)ZZ = O)xp — 2127
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It can be observed that rapid buffers of the controller change the time-scale for z; and z,. In integral feedback, the
time-scale is inversely proportional to gain, and this relationship can be observed in the following characterisation
of integral gain. We have

(1+ By)z1(t) — (1+ B2)22(t) = p — bp0.
Integrating, we have

(1+B1)z1(t) — (1+ B2)z2(t) = 6, /Ot (g; - xz(f/)> dt'.

Rearranging, we can observe that the feedback control input u into the plant (i.e. (x1, x) subsystem) is

0,6 t
u=~01z; = % /0 <y—x2( ))dt+1+ 29122

(14 B )
N———
integral negative other
feedback gain integral feedback feedback

We can observe an integral feedback term and a second feedback term that is dependent upon z;. The other
feedback term becomes negligible and the integral term dominates the overall feedback if

1+ B;

9 6
1+ B 122 < 0121

which can occurs if 1 + Bj is sufficiently large or if z; is sufficiently small. The latter can be achieved via large 7,
which drives z; to a much lower concentration than z;. For this case

0160 " (p N ar’
M:9121: 7/ — — X2 dt
(1+By1) Jo \ 62 (#)
———
integral negative
feedback gain integral feedback

where we can observe that the feedback gain is dependent on Bj.

S14.2. Characterisation with Non-rapid z; Buffering

For the case of non-rapid z; buffering, we have

X1 = b1z1 — vpx1

Xy = kx1 — ('Yp + Byyx)x2

Z1 = p —nz1zp — bzz1 + byw (S37)
Zy = Ox2 — 12122

W = byz1 — byw

We have
z1(t) +w(t) — 22(t) = p — 62x2

where the integral is

z1(f) +w(t) — zp(t) = 0, /Ot (:2 - xz(t/)> dr’

and so perfect adaptation occurs. Rearranging, we have the feedback

t
u=061z1 = —0w(t) + 61z2(t) + 9192/0 (: — xz(t’)> dat'.
2
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Taking Laplace transforms, we have

1
U=01Zy = ~0W + 6125 + 0165 (;‘ - X2>
2

where Z1, W, Z,, X; are the Laplace transforms of z1, w, z, x». Taking the Laplace transforms of (S37), we also have

sW = b,Z; — b W (S38)
and so
b,
= /1. S39
st (539)

Substituting, we have

b, 1/u
= - Z - ==X
0171 915 T be1 + 012, + 91925 (92 2)

and so the control input is

s+ by s+ by 1(;1 )
141 =0 At il T 2

If Z, is small due to large 7, then we have

= 71 = - - (==X
u 91 1 91925 4+ bz + bw S ( 2)

Thus for non-rapid buffering (small b,,) we are able to add a zero and pole and zero to the controller, where the zero
is small than the pole. This result is equivalent to the integral controller in series with a lead controller, where the
latter is know to help stabilise systems’.

We can see the effect of non-rapid buffering on the integral component of feedback gain separately by determining
the gain of the control input in the asymptote as s — 0, where we have

0:0 s+ by 17 016> 1
! 2S+bz+bws N 1+B;s’

Thus the integral component of feedback gain is

&%zl , which is identical to the rapid case.

S14.3. Bode Integral of Buffering and Antithetic Integral Feedback

Feedback is a highly effective method of robust regulation, but this mechanism is subject to fundamental limits. The
Bode integral describes one of these fundamental limit, where improving the regulation at one frequency of a
disturbance will worsen regulation of disturbances at other frequencies. Here, we show that topology 3 has the
ability to reduce the fundamental limit on feedback and thus uniformly improve output regulation at all
frequencies, while topology 1 does not. While we show the two state example from above to illustrate the concept,
the Fourier transform description below is written generally as the Bode Integral holds for more general processes
controlled by antithetic feedback and buffering.

We use the example model of the system

X1 = b61z1 — vpx1

Xo = kx1 — YpXo — byw + bywy

Wy = byx — bpywy — YW

21 = p —nz122 — Yez1 — bzz1 + bypwy
W1 = byz1 — bywy — YWy

2y = bpXp — 12122 — YcZ2-
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We can write the linearised model in an open-loop form with the two states

Axl = 91Mh — "yprl
Axy = kAx1 — "}/pAX2 + uy

where Ax; = x; — x; for i = 1,2, x; is the steady state of x; for the closed loop system, uy, is the process input for
antithetic integral feedback and u, is the input for buffering at x,. Buffering at z; and antithetic integral feedback
act through the input u, while buffering at x; acts through u;,.

If we take the Fourier transform, we can describe the open loop model in general terms by>

X3 = G(iw)Uy, + Gy (iw) U,

where Xj, Uy, U, are the Fourier transforms of xp, uy, uy, respectively, G is the transfer function from Uj, to the output
X; and Gy, is the transfer function from Uj, to X;. With two control inputs we have the loop transfer function®

L(iw) = G(iw)Cy(iw) + Gy (iw)Cy(iw)

where C}, is the transfer function for the antithetic feedback controller (i.e. from X, to Uj) and Cy, is the transfer
function for the output buffer (i.e. from X, to Uy). The sensitivity function quantifies the improvement or
worsening in regulation at each frequency for the ‘closed-loop” system, where a smaller magnitude implies
improved regulation, and can be described by

1
S(iw) = ————
(i) = T 7w
In this case the sensitivity function incorporates the regulatory effect of both feedback and buffering®.
The Bode integral is a fundamental constraint on the effectiveness of feedback in any system. It provides a
constraint on the overall regulatory effectiveness in terms of the sensitivity function. If the system without feedback

is stable then Bode’s integral with output buffering (Topology 3) is®

| 1og (IS (ie) )y dew = T,

where the integral of S(iw) represents an overall measure of regulation and by is the kinetic rate of the forward
buffering reaction. The integral of S(iw) sums the effect of oscillating disturbances at different frequencies w.
Without buffering, if regulation is improved at one frequency of regulation, it worsens at other frequencies.
However, increasing by reduces the whole integral. Thus buffering can uniformly improve regulation and thus
improve the trade-off.

In contrast, control species buffering (Topology 1) is part of the feedback regulation mechanism using the same
control input and so Bode’s integral is®

/Ooolog(|5(iw)|)dw 0.

Thus control buffering does not remove fundamental constraints, despite stabilising buffering. The tradeoff remains
such that improving regulation at one frequency will worsen regulation of disturbances at other frequencies.
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