222 research outputs found

    Community trait overdispersion due to trophic interactions: concerns for assembly process inference

    Full text link
    The expected link between competitive exclusion and community trait overdispersion has been used to infer competition in local communities, and trait clustering has been interpreted as habitat filtering. Such community assembly process inference has received criticism for ignoring trophic interactions, as competition and trophic interactions might create similar trait patterns. While other theoretical studies have generally demonstrated the importance of predation for coexistence, ours provides the first quantitative demonstration of such effects on assembly process inference, using a trait-based ecological model to simulate the assembly of a competitive primary consumer community with and without the influence of trophic interactions. We quantified and contrasted trait dispersion/clustering of the competitive communities with the absence and presence of secondary consumers. Trophic interactions most often decreased trait clustering (i.e. increased dispersion) in the competitive communities due to evenly distributed invasions of secondary consumers and subsequent competitor extinctions over trait space. Furthermore, effects of trophic interactions were somewhat dependent on model parameters and clustering metric. These effects create considerable problems for process inference from trait distributions; one potential solution is to use more process-based and inclusive models in inference

    Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities

    Get PDF
    Many parasites circulate endemically within communities of multiple host species. To understand disease persistence within these communities, it is essential to know the contribution each host species makes to parasite transmission and maintenance. However, quantifying those contributions is challenging. We present a conceptual framework for classifying multihost sharing, based on key thresholds for parasite persistence. We then develop a generalized technique to quantify each species’ contribution to parasite persistence, allowing natural systems to be located within the framework. We illustrate this approach using data on gastrointestinal parasites circulating within rodent communities and show that, although many parasites infect several host species, parasite persistence is often driven by just one host species. In some cases, however, parasites require multiple host species for maintenance. Our approach provides a quantitative method for differentiating these cases using minimal reliance on system-specific parameters, enabling informed decisions about parasite management within poorly understood multihost communities

    Inferring processes of community assembly from macroscopic patterns: the case for inclusive and mechanistic approaches

    Full text link
    Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as the causal link between process and pattern is often lacking and processes known to be important are ignored. Here, we revisit current knowledge on community assembly across scales and, in line with several reviews that have outlined the features and challenges associated with current inference techniques, we identify a discrepancy between features of real communities and current inference techniques. We argue, that mechanistic eco-evolutionary models in combination with novel model fitting and model evaluation techniques can provide avenues for more accurate, reliable and inclusive inference. To exemplify, we implement a trait-based and spatially explicit dynamic eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. This suggested approach can be computationally intensive, and model fitting and parameter estimation can be challenging. We discuss optimization of model implementation, data requirements and availability, and Approximate Bayesian Computation (ABC) as potential solutions to challenges that may arise in our quest for better inference techniques

    Metadata Made Easy: Develop and Use Domain‐Specific Metadata Schemes by following the dmdScheme approach

    Full text link
    Metadata plays an essential role in the long-term preservation, reuse, and interoperability of data. Nevertheless, creating useful metadata can be sufficiently difficult and weakly enough incentivized that many datasets may be accompanied by little or no metadata. One key challenge is, therefore, how to make metadata creation easier and more valuable. We present a solution that involves creating domain-specific metadata schemes that are as complex as necessary and as simple as possible. These goals are achieved by co-development between a metadata expert and the researchers (i.e., the data creators). The final product is a bespoke metadata scheme into which researchers can enter information (and validate it) via the simplest of interfaces: a web browser application and a spreadsheet.We provide the R package dmdScheme (dmdScheme: An R package for working with domain specific MetaData schemes (Version v0.9.22), 2019) for creating a template domain-specific scheme. We describe how to create a domain-specific scheme from this template, including the iterative co-development process, and the simple methods for using the scheme, and simple methods for quality assessment, improvement, and validation.The process of developing a metadata scheme following the outlined approach was successful, resulting in a metadata scheme which is used for the data generated in our research group. The validation quickly identifies forgotten metadata, as well as inconsistent metadata, therefore improving the quality of the metadata. Multiple output formats are available, including XML.Making the provision of metadata easier while also ensuring high quality must be a priority for data curation initiatives. We show how both objectives are achieved by close collaboration between metadata experts and researchers to create domain-specific schemes. A near-future priority is to provide methods to interface domain-specific schemes with general metadata schemes, such as the Ecological Metadata Language, to increase interoperability

    Warming reduces the effects of enrichment on stability and functioning across levels of organisation in an aquatic microbial ecosystem

    Full text link
    Warming and nutrient enrichment are major environmental factors shaping ecological dynamics. However, cross‐scale investigation of their combined effects by linking theory and experiments is lacking. We collected data from aquatic microbial ecosystems investigating the interactive effects of warming (constant and rising temperatures) and enrichment across levels of organisation and contrasted them with community models based on metabolic theory. We found high agreement between our observations and theoretical predictions: we observed in many cases the predicted antagonistic effects of high temperature and high enrichment across levels of organisation. Temporal stability of total biomass decreased with warming but did not differ across enrichment levels. Constant and rising temperature treatments with identical mean temperature did not show qualitative differences. Overall, we conclude that model and empirical results are in broad agreement due to robustness of the effects of temperature and enrichment, that the mitigating effects of temperature on effects of enrichment may be common, and that models based on metabolic theory provide qualitatively robust predictions of the combined ecological effects of enrichment and temperature

    Simplex projection walkthrough

    Full text link
    Simplex projection is an important method for forecasting times series. The aim of this document is to explain how simplex projection work, in terms that are very easy to understand

    Manipulating the strength of organism–environment feedback increases nonlinearity and apparent hysteresis of ecosystem response to environmental change

    Full text link
    Theory predicts that organism–environment feedbacks play a central role in how ecological communities respond to environmental change. Strong feedback causes greater nonlinearity between environmental change and ecosystem state, increases the likelihood of hysteresis in response to environmental change, and augments the possibility of alternative stable regimes. To illustrate these predictions and their dependence on a temporal scale, we simulated a minimal ecosystem model. To test the predictions, we manipulated the feedback strength between the metabolism and the dissolved oxygen concentration in an aquatic heterotrophic tri‐trophic community in microecosystems. The manipulation consisted of five levels, ranging from low to high feedback strength by altering the oxygen diffusivity: free gas exchange between the microcosm atmosphere and the external air (metabolism not strongly affecting environmental oxygen), with the regular addition of 200, 100, or 50 ml of air and no gas exchange. To test for nonlinearity and hysteresis in response to environmental change, all microecosystems experienced a gradual temperature increase from 15 to 25°C and then back to 15°C. We regularly measured the dissolved oxygen concentration, total biomass, and species abundance. Nonlinearity and hysteresis were higher in treatments with stronger organism–environment feedbacks. There was no evidence that stronger feedback increased the number of observed ecosystem states. These empirical results are in broad agreement with the theory that stronger feedback increases nonlinearity and hysteresis. They therefore represent one of the first direct empirical tests of the importance of feedback strength. However, we discuss several limitations of the study, which weaken confidence in this interpretation. Research demonstrating the causal effects of feedback strength on ecosystem responses to environmental change should be placed at the core of efforts to plan for sustainable ecosystems

    Density-and trait-mediated effects of a parasite and a predator in a tri-trophic food web

    Get PDF
    1. Despite growing interest in ecological consequences of parasitism in food webs, relatively little is known about effects of parasites on long-term population dynamics of non-host species or about whether such effects are density- or trait- mediated. 2. We studied a tri-trophic food chain comprised of: (i) a bacterial basal resource (Serratia fonticola), (ii) an intermediate consumer (Paramecium caudatum), (iii) a top predator (Didinium nasutum), and (iv) a parasite of the intermediate consumer (Holospora undulata). A fully-factorial experimental manipulation of predator and parasite presence/absence was combined with analyses of population dynamics, modelling, and analyses of host (Paramecium) morphology and behavior. 3. Predation and parasitism each reduced the abundance of the intermediate consumer (Paramecium), and parasitism indirectly reduced the abundance of the basal resource (Serratia). However, in combination, predation and parasitism had non-additive effects on the abundance of the intermediate consumer, as well as on that of the basal resource. In both cases, the negative effect of parasitism seemed to be effaced by predation. 4. Infection of the intermediate consumer reduced predator abundance. Modelling and additional experimentation revealed that this was most likely due to parasite reduction of intermediate host abundance (a density-mediated effect), as opposed to changes in predator functional or numerical response. 5. Parasitism altered morphological and behavioural traits, by reducing host cell length and increasing the swimming speed of cells with moderate parasite loads. Additional tests showed no significant difference in Didinium feeding rate on infected and uninfected hosts, suggesting that the combination of these modifications does not affect host vulnerability to predation. However, estimated rates of encounter with Serratia based on these modifications were higher for infected Paramecium than for uninfected Paramecium. 6. A mixture of density-mediated and trait-mediated indirect effects of parasitism on non- host species creates rich and complex possibilities for effects of parasites in food webs that should be included in assessments of possible impacts of parasite eradication or introduction

    Large and interacting effects of temperature and nutrient addition on stratified microbial ecosystems in a small, replicated, and liquid-dominated Winogradsky column approach

    Full text link
    Aquatic ecosystems are often stratified, with cyanobacteria in oxic layers and phototrophic sulfur bacteria in anoxic zones. Changes in stratification caused by the global environmental change are an ongoing concern. Increasing understanding of how such aerobic and anaerobic microbial communities, and associated abiotic conditions, respond to multifarious environmental changes is an important endeavor in microbial ecology. Insights can come from observational and experimental studies of naturally occurring stratified aquatic ecosystems, theoretical models of ecological processes, and experimental studies of replicated microbial communities in the laboratory. Here, we demonstrate a laboratory-based approach with small, replicated, and liquid-dominated Winogradsky columns, with distinct oxic/anoxic strata in a highly replicable manner. Our objective was to apply simultaneous global change scenarios (temperature, nutrient addition) on this micro-ecosystem to report how the microbial communities (full-length 16S rRNA gene seq.) and the abiotic conditions (O2 , H2 S, TOC) of the oxic/anoxic layer responded to these environmental changes. The composition of the strongly stratified microbial communities was greatly affected by temperature and by the interaction of temperature and nutrient addition, demonstrating the need of investigating global change treatments simultaneously. Especially phototrophic sulfur bacteria dominated the water column at higher temperatures and may indicate the presence of alternative stable states. We show that the establishment of such a micro-ecosystem has the potential to test global change scenarios in stratified eutrophic limnic systems. Keywords: anaerobes; cyanobacteria; global change; oxygen; phototrophic sulfur bacteri
    • 

    corecore