16 research outputs found

    Holocene bidirectional river system along the Kenya Rift and its influence on East African faunal exchange and diversity gradients

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dommain, R., Riedl, S., Olaka, L. A., deMenocal, P., Deino, A. L., Owen, R. B., Muiruri, V., Müller, J., Potts, R., & Strecker, M. R. Holocene bidirectional river system along the Kenya Rift and its influence on East African faunal exchange and diversity gradients. Proceedings of the National Academy of Sciences of the United States of America, 119(28),(2022): e2121388119, https://doi.org/10.1073/pnas.2121388119.East Africa is a global biodiversity hotspot and exhibits distinct longitudinal diversity gradients from west to east in freshwater fishes and forest mammals. The assembly of this exceptional biodiversity and the drivers behind diversity gradients remain poorly understood, with diversification often studied at local scales and less attention paid to biotic exchange between Afrotropical regions. Here, we reconstruct a river system that existed for several millennia along the now semiarid Kenya Rift Valley during the humid early Holocene and show how this river system influenced postglacial dispersal of fishes and mammals due to its dual role as a dispersal corridor and barrier. Using geomorphological, geochronological, isotopic, and fossil analyses and a synthesis of radiocarbon dates, we find that the overflow of Kenyan rift lakes between 12 and 8 ka before present formed a bidirectional river system consisting of a “Northern River” connected to the Nile Basin and a “Southern River,” a closed basin. The drainage divide between these rivers represented the only viable terrestrial dispersal corridor across the rift. The degree and duration of past hydrological connectivity between adjacent river basins determined spatial diversity gradients for East African fishes. Our reconstruction explains the isolated distribution of Nilotic fish species in modern Kenyan rift lakes, Guineo-Congolian mammal species in forests east of the Kenya Rift, and recent incipient vertebrate speciation and local endemism in this region. Climate-driven rearrangements of drainage networks unrelated to tectonic activity contributed significantly to the assembly of species diversity and modern faunas in the East African biodiversity hotspot.R.D. was funded by a Smithsonian Human Origins Postdoctoral Fellowship and by Geo.X—the Research Network for Geosciences in Berlin and Potsdam. Fig. 1 D, E, and G and SI Appendix, Figs. S1 and S3 are based on the TanDEM-X Science DEM granted to L.A.O. and S.R. by the German Aerospace Center (DLR) in 2017. L.A.O. acknowledges the Volkswagen Foundation for funding this study with Grant No. 89369. M.R.S. and S.R. were supported by funds from Potsdam University and the Geothermal Development Company of Kenya, and R.B.O. and V.M. were supported by the Hong Kong General Research Fund. We acknowledge support from the National Museums of Kenya and the Kenya Government permission granted by the Ministry of Sports, Culture and the Arts, and by the National Commission for Science, Technology and Innovation (NACOSTI) Permits P/14/7709/683 (to R.P.) and P/16/11924/11448 (to L.A.O.). This work is a contribution of the Olorgesailie Drilling Project, for which support from the National Museums of Kenya, the Oldonyo Nyokie Group Ranch, the Peter Buck Fund for Human Origins Research (Smithsonian Institution), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonian Human Origins Program is gratefully acknowledged. LacCore is acknowledged for support in drilling and core storage

    The Hominin Sites and Paleolakes Drilling Project:High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Understanding the Environmental Context of Hominin Evolution

    Get PDF
    The possibility of a causal relationship between Earth history processes and hominin evolution in Africa has been the subject of intensive paleoanthropological research for the last 25 years. One fundamental question is: can any geohistorical processes, in particular, climatic ones, be characterized with sufficient precision to enable temporal correlation with events in hominin evolution and provide support for a possible causal mechanism for evolutionary changes? Previous attempts to link paleoclimate and hominin evolution have centered on evidence from the outcrops where the hominin fossils are found, as understanding whether and how hominin populations responded to habitat change must be examined at the local basinal scale. However, these outcrop records typically provide incomplete, low-resolution climate and environmental histories, and surface weathering often precludes the application of highly sensitive, state-of-the-art paleoenvironmental methods. Continuous and well-preserved deep-sea drill core records have provided an alternative approach to reconstructing the context of hominin evolution, but have been collected at great distances from hominin sites and typically integrate information over vast spatial scales. The goal of the Hominin Sites and Paleolakes Drilling Project (HSPDP) is to analyze climate and other Earth system dynamics using detailed paleoenvironmental data acquired through scientific drilling of lacustrine depocenters at or near six key paleoanthropological sites in Kenya and Ethiopia. This review provides an overview of a unique collaboration of paleoanthropologists and earth scientists who have joined together to explicitly explore key hypotheses linking environmental history and mammalian (including hominin) evolution and potentially develop new testable hypotheses. With a focus on continuous, high-resolution proxies at timescales relevant to both biological and cultural evolution, the HSPDP aims to dramatically expand our understanding of the environmental history of eastern Africa during a significant portion of the Late Neogene and Quaternary, and to generate useful models of long-term environmental dynamics in the regionpublishersversionPeer reviewe

    Diversity and distribution of marcrophytes in a freshwater wetland, Loboi swamp (Rift valley), Kenya

    No full text
    An inventory of Loboi swamp was undertaken to determine the macrophyte diversity and distribution. A total of 36 vascular plant species in 13 families were recorded, with Cyperaceae forming over 30% of macrophytes. Two vegetation zones were observed, characterised by the presence of Typha and papyrus. The Typha zone, comprising over 70% of the swamp, is dominated by T. domingensis and is species rich with 35 plant species whereas the papyrus zone includes the dominant Cyperus papyrus and only one other macrophyte species. Distribution of macrophytes is correlated with depth and period under water, with the Typha zone seasonally flooded while the papyrus zone is permanently under water at depths over 0.5m. Water chemistry has little influence on the distribution of macrophytes in the swamp, but at the edges there is predominance of Cyperus laevigatus in high alkalinity soils. Current uses of the swamp include dry season grazing, harvesting of papyrus and other plant material for mat making and house thatching, and use of the swamp water for domestic and irrigation agriculture. Further monitoring is needed to evaluate the effect of the resource uses on the swamp..Journal of East African Natural History Vol. 93 (1&2) 2004: pp. 39-4

    Hydroclimate reconstructions in the Suguta Valley, northern Kenya, during the Early-Middle Pleistocene Transition

    No full text
    International audienceThe Early-Middle Pleistocene Transition (EMPT) between 1200 and 700 ka represents a major global climate transition from dominantly 41,000- to 100,000-year glacial cycles. The forces and mechanisms behind this transition and the response of African environments are not well understood. The active volcanism and tectonics of the East African Rift System add complexity to local environmental systems and can erase important proxy records, inhibiting studies of lacustrine dynamics. As a result, there is minimal understanding of how this transition impacted the region’s lake systems. At Paleolake Suguta, in the northern Kenya Rift, however, flood basalts cap lacustrine EMPT-age deposits, preserving these strata and their valuable paleoenvironmental record. This research presents a high-resolution reconstruction of hydrological change from approximately 931 to 831 ka within the Suguta-Turkana Basin in the northern Kenya Rift. Paleolake dynamics are reconstructed from a 41 m sedimentary section using diatom morphology, sedimentology, and X-Ray Fluorescence elemental analysis. Results show that lake levels varied greatly during this part of the EMPT with two wetter phases and two drier phases developing over about 100 kyr. From ~885–831 ka, especially, the Suguta-Turkana Basin exhibits rapid changes in paleohydrology, ranging between deep stratified lakes; shallow, well-mixed lakes; and complete desiccation, with some of these changes occurring on an order of hundreds of years. This EMPT Suguta-Turkana- Baringo record therefore provides valuable insight into hydroclimate variability at an overall resolution of several thousand years, allowing reconstruction of past environments during a period of poorly understood terrestrial environmental change

    Quaternary Diatom and Palynomorph Stratigraphies and Palaeoenvironments of the Koora Graben and Lake Magadi Basin, Kenya Rift Valley

    No full text
    International audienceTwo cores from the southern Kenya Rift (Koora and Magadi basins) were recovered through the Hominin Sites and Paleolakes Drilling Project and the Olorgesailie Drilling Project. Each contains a detailed environmental history of up to ~1 Ma that correlates with much of the 1.2 Ma outcrop sedimentary record of the neighboring Olorgesailie Basin. The Magadi core, MAG14-2A, reached trachyte at 194 m and includes zeolitic, laminated and massive clay and silt, calcareous mud, limestone, chert and trona. The Koora core (OLO12-1A) extended to depths of 166 m and contains laminated and massive diatomites, fine to coarse sands, lime and siliciclastic mud, with pumice-rich gravels. The two cores are particularly important because they fill erosional gaps in the environmental history of the Olorgesailie Basin, which includes important evidence for changing hominin cultures and evolution.Diatoms are present in much of the Koora and Magadi basin sediments. These are dominated by a variety of planktonic Aulacoseira, Cyclotella and Thalassiosira taxa in both basins. These and other taxa provide a detailed record of lakes that fluctuated in depth, extent and chemistry, and reveal the presence of wetlands, freshwater and saline lakes. Diatom transfer functions indicate that the water bodies fluctuated widely in conductivity between ~200 to >20,000 μS cm−1, with pH changing between about 7.5 and 11.5. The palaeolakes also periodically exceeded diatom tolerance limits and intermittently dried out. Pollen are generally lacking in the Koora basin sediments, but deposits in the Magadi core contain common pollen that document a wide range of habitats, including forests, woodlands and grasslands that could have supported the presence of hominins and their activities in the region. Fungal spore data support pollen inferences and indicate periods when large mammals might have been common.The microfossil record shows a broad trend towards more arid conditions in the southern Kenya Rift after about 550 Ka, interrupted by periodic wetter conditions. A major episode of desiccation developed between ~450 and 325 Ka that partially overlaps with a period of regional mammal extinctions and a change from Acheulean to Middle Stone Age toolkits in the Olorgesailie Basin, which suggests these changes might have been related to environmental conditions

    Progressive aridification in East Africa over the last half million years and implications for human evolution

    No full text
    Evidence for Quaternary climate change in East Africa has been derived from outcrops on land and lake cores and from marine dust, leaf wax, and pollen records. These data have previously been used to evaluate the impact of climate change on hominin evolution, but correlations have proved to be difficult, given poor data continuity and the great distances between marine cores and terrestrial basins where fossil evidence is located. Here, we present continental coring evidence for progressive aridification since about 575 thousand years before present (ka), based on Lake Magadi (Kenya) sediments. This long-Term drying trend was interrupted by many wet-dry cycles, with the greatest variability developing during times of high eccentricity-modulated precession. Intense aridification apparent in the Magadi record took place between 525 and 400 ka, with relatively persistent arid conditions after 350 ka and through to the present. Arid conditions in the Magadi Basin coincide with the Mid-Brunhes Event and overlap with mammalian extinctions in the South Kenya Rift between 500 and 400 ka. The 525 to 400 ka arid phase developed in the South Kenya Rift between the period when the last Acheulean tools are reported (at about 500 ka) and before the appearance of Middle Stone Age artifacts (by about 320 ka). Our data suggest that increasing Middle-To Late-Pleistocene aridification and environmental variability may have been drivers in the physical and cultural evolution of Homo sapiens in East Africa

    Plio-Pleistocene environmental variability in Africa and its implications for mammalian evolution

    No full text
    Significance: We have developed an Africa-wide synthesis of paleoenvironmental variability over the Plio-Pleistocene. We show that there is strong evidence for orbital forcing of variability during this time that is superimposed on a longer trend of increasing environmental variability, supporting a combination of both low- and high-latitude drivers of variability. We combine these results with robust estimates of mammalian speciation and extinction rates and find that variability is not significantly correlated with these rates. These findings do not currently support a link between environmental variability and turnover and thus fail to corroborate predictions derived from the variability selection hypothesis.National Science FoundationOpen access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore