96 research outputs found

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma

    Get PDF
    BackgroundImage- guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma.ProcedureA multi- institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3- year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children’s Oncology Group for risk stratification.ResultsA total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P = .314) or determine MYCN copy number (92.4% vs 97.8%, P = .111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P < .05; and 58.0% vs. 88.5%, P < .05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy.ConclusionsPCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real- time pathology assessment of specimen quality.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/1/pbc28153_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154667/2/pbc28153.pd

    Optimization of percutaneous biopsy for diagnosis and pretreatment risk assessment of neuroblastoma

    Get PDF
    Background: Image-guided percutaneous core needle biopsy (PCNB) is increasingly utilized to diagnose solid tumors. The objective of this study is to determine whether PCNB is adequate for modern biologic characterization of neuroblastoma. Procedure: A multi-institutional retrospective study was performed by the Pediatric Surgical Oncology Research Collaborative on children with neuroblastoma at 12 institutions over a 3-year period. Data collected included demographics, clinical details, biopsy technique, complications, and adequacy of biopsies for cytogenetic markers utilized by the Children\u27s Oncology Group for risk stratification. Results: A total of 243 children were identified with a diagnosis of neuroblastoma: 79 (32.5%) tumor excision at diagnosis, 94 (38.7%) open incisional biopsy (IB), and 70 (28.8%) PCNB. Compared to IB, there was no significant difference in ability to accurately obtain a primary diagnosis by PCNB (95.7% vs 98.9%, P =.314) or determine MYCN copy number (92.4% vs 97.8%, P =.111). The yield for loss of heterozygosity and tumor ploidy was lower with PCNB versus IB (56.1% vs 90.9%, P \u3c.05; and 58.0% vs. 88.5%, P \u3c.05). Complications did not differ between groups (2.9 % vs 3.3%, P = 1.000), though the PCNB group had fewer blood transfusions and lower opioid usage. Efficacy of PCNB was improved for loss of heterozygosity when a pediatric pathologist evaluated the fresh specimen for adequacy. Conclusions: PCNB is a less invasive alternative to open biopsy for primary diagnosis and MYCN oncogene status in patients with neuroblastoma. Our data suggest that PCNB could be optimized for complete genetic analysis by standardized protocols and real-time pathology assessment of specimen quality

    Efficacy of acupuncture for chronic low back pain: protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic back pain is a major public health problem and the primary reason patients seek acupuncture treatment. Therefore, an objective assessment of acupuncture efficacy is critical for making informed decisions about its appropriate role for patients with this common condition. This study addresses methodological shortcomings that have plagued previous studies evaluating acupuncture for chronic low back pain.</p> <p>Methods and Design</p> <p>A total of 640 participants (160 in each of four arms) between the ages of 18 and 70 years of age who have low back pain lasting at least 3 months will be recruited from integrated health care delivery systems in Seattle and Oakland. They will be randomized to one of two forms of Traditional Chinese Medical (TCM) acupuncture needling (individualized or standardized), a "control" group (simulated acupuncture), or to continued usual medical care. Ten treatments will be provided over 7 weeks. Study participants and the "Diagnostician" acupuncturists who evaluate participants and propose individualized treatments will be masked to the acupuncture treatment actually assigned each participant. The "Therapist" acupuncturists providing the treatments will not be masked but will have limited verbal interaction with participants. The primary outcomes, standard measures of dysfunction and bothersomeness of low back pain, will be assessed at baseline, and after 8, 26, and 52 weeks by telephone interviewers masked to treatment assignment. General health status, satisfaction with back care, days of back-related disability, and use and costs of healthcare services for back pain will also be measured. The primary analysis comparing outcomes by randomized treatment assignment will be analysis of covariance adjusted for baseline value. For both primary outcome measures, this trial will have 99% power to detect the presence of a minimal clinically significant difference among all four treatment groups and over 80% power for most pairwise comparisons. Secondary analyses will compare the proportions of participants in each group that improve by a clinically meaningful amount.</p> <p>Conclusion</p> <p>Results of this trial will help clarify the value of acupuncture needling as a treatment for chronic low back pain.</p> <p>Trial registration</p> <p>Clinical Trials.gov NCT00065585.</p

    Christianity as Public Religion::A Justification for using a Christian Sociological Approach for Studying the Social Scientific Aspects of Sport

    Get PDF
    The vast majority of social scientific studies of sport have been secular in nature and/or have tended to ignore the importance of studying the religious aspects of sport. In light of this, Shilling and Mellor (2014) have sought to encourage sociologists of sport not to divorce the ‘religious’ and the ‘sacred’ from their studies. In response to this call, the goal of the current essay is to explore how the conception of Christianity as ‘public religion’ can be utilised to help justify the use of a Christian sociological approach for studying the social scientific aspects of sport. After making a case for Christianity as public religion, we conclude that many of the sociological issues inherent in modern sport are an indirect result of its increasing secularisation and argue that this justifies the need for a Christian sociological approach. We encourage researchers to use the Bible, the tools of Christian theology and sociological concepts together, so to inform analyses of modern sport from a Christian perspective

    Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of beta-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Liquid biopsies come of age: towards implementation of circulating tumour DNA

    Get PDF
    Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a ‘liquid biopsy’ for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.We would like to acknowledge the support of The University of Cambridge, Cancer Research UK (grant numbers A11906, A20240, A15601) (to N.R., J.D.B.), the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 337905 (to N.R.), the Cambridge Experimental Cancer Medicine Centre, and Hutchison Whampoa Limited (to N.R.), AstraZeneca (to R.B., S.P.), the Cambridge Experimental Cancer Medicine Centre (ECMC) (to R.B., S.P.), and NIHR Biomedical Research Centre (BRC) (to R.B., S.P.). J.G.C. acknowledges clinical fellowship support from SEOM
    corecore