23 research outputs found
Short-Term Belowground Responses to Thinning and Burning Treatments in Southwestern Ponderosa Pine Forests of the USA
Microbial-mediated decomposition and nutrient mineralization are major drivers of forest productivity. As landscape-scale fuel reduction treatments are being implemented throughout the fire-prone western United States of America, it is important to evaluate operationally how these wildfire mitigation treatments alter belowground processes. We quantified these important belowground components before and after management-applied fuel treatments of thinning alone, thinning combined with prescribed fire, and prescribed fire in ponderosa pine (Pinus ponderosa) stands at the Southwest Plateau, Fire and Fire Surrogate site, Arizona. Fuel treatments did not alter pH, total carbon and nitrogen (N) concentrations, or base cations of the forest floor (O horizon) or mineral soil (0–5 cm) during this 2-year study. In situ rates of net N mineralization and nitrification in the surface mineral soil (0–15 cm) increased 6 months after thinning with prescribed fire treatments; thinning only resulted in net N immobilization. The rates returned to pre-treatment levels after one year. Based on phospholipid fatty acid composition, microbial communities in treated areas were similar to untreated areas (control) in the surface organic horizon and mineral soil (0–5 cm) after treatments. Soil potential enzyme activities were not significantly altered by any of the three fuel treatments. Our results suggest that a variety of one-time alternative fuel treatments can reduce fire hazard without degrading soil fertility
Decadal changes in fire frequencies shift tree communities and functional traits
Global change has resulted in chronic shifts in fire regimes. Variability in the sensitivity of tree communities to multi-decadal changes in fire regimes is critical to anticipating shifts in ecosystem structure and function, yet remains poorly understood. Here, we address the overall effects of fire on tree communities and the factors controlling their sensitivity in 29 sites that experienced multi-decadal alterations in fire frequencies in savanna and forest ecosystems across tropical and temperate regions. Fire had a strong overall effect on tree communities, with an average fire frequency (one fire every three years) reducing stem density by 48% and basal area by 53% after 50 years, relative to unburned plots. The largest changes occurred in savanna ecosystems and in sites with strong wet seasons or strong dry seasons, pointing to fire characteristics and species composition as important. Analyses of functional traits highlighted the impact of fire-driven changes in soil nutrients because frequent burning favoured trees with low biomass nitrogen and phosphorus content, and with more efficient nitrogen acquisition through ectomycorrhizal symbioses. Taken together, the response of trees to altered fire frequencies depends both on climatic and vegetation determinants of fire behaviour and tree growth, and the coupling between fire-driven nutrient losses and plant traits
Workflow and Atlas System for Brain-Wide Mapping of Axonal Connectivity in Rat
Detailed knowledge about the anatomical organization of axonal connections is important for understanding normal functions of brain systems and disease-related dysfunctions. Such connectivity data are typically generated in neuroanatomical tract-tracing experiments in which specific axonal connections are visualized in histological sections. Since journal publications typically only accommodate restricted data descriptions and example images, literature search is a cumbersome way to retrieve overviews of brain connectivity. To explore more efficient ways of mapping, analyzing, and sharing detailed axonal connectivity data from the rodent brain, we have implemented a workflow for data production and developed an atlas system tailored for online presentation of axonal tracing data. The system is available online through the Rodent Brain WorkBench (www.rbwb.org; Whole Brain Connectivity Atlas) and holds experimental metadata and high-resolution images of histological sections from experiments in which axonal tracers were injected in the primary somatosensory cortex. We here present the workflow and the data system, and exemplify how the online image repository can be used to map different aspects of the brain-wide connectivity of the rat primary somatosensory cortex, including not only presence of connections but also morphology, densities, and spatial organization. The accuracy of the approach is validated by comparing results generated with our system with findings reported in previous publications. The present study is a contribution to a systematic mapping of rodent brain connections and represents a starting point for further large-scale mapping efforts
Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear.
Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19.
Setting, Design, and Participants Case series of patients (age <21 years) hospitalized between March 15, 2020, and December 15, 2020, with positive severe acute respiratory syndrome coronavirus 2 test result (reverse transcriptase-polymerase chain reaction and/or antibody) at 61 US hospitals in the Overcoming COVID-19 public health registry, including 616 (36%) meeting criteria for multisystem inflammatory syndrome in children. Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening involvement was adjudicated by experts based on clinical and/or neuroradiologic features.
Exposures Severe acute respiratory syndrome coronavirus 2.
Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge.
Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barré syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died.
Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown
Recommended from our members
Short-Term Belowground Responses to Thinning and Burning Treatments in Southwestern Ponderosa Pine Forests of the USA
Short-Term Belowground Responses to Thinning and Burning Treatments in Southwestern Ponderosa Pine Forests of the USA
Microbial-mediated decomposition and nutrient mineralization are major drivers of forest productivity. As landscape-scale fuel reduction treatments are being implemented throughout the fire-prone western United States of America, it is important to evaluate operationally how these wildfire mitigation treatments alter belowground processes. We quantified these important belowground components before and after management-applied fuel treatments of thinning alone, thinning combined with prescribed fire, and prescribed fire in ponderosa pine (Pinus ponderosa) stands at the Southwest Plateau, Fire and Fire Surrogate site, Arizona. Fuel treatments did not alter pH, total carbon and nitrogen (N) concentrations, or base cations of the forest floor (O horizon) or mineral soil (0–5 cm) during this 2-year study. In situ rates of net N mineralization and nitrification in the surface mineral soil (0–15 cm) increased 6 months after thinning with prescribed fire treatments; thinning only resulted in net N immobilization. The rates returned to pre-treatment levels after one year. Based on phospholipid fatty acid composition, microbial communities in treated areas were similar to untreated areas (control) in the surface organic horizon and mineral soil (0–5 cm) after treatments. Soil potential enzyme activities were not significantly altered by any of the three fuel treatments. Our results suggest that a variety of one-time alternative fuel treatments can reduce fire hazard without degrading soil fertility
Recommended from our members
Travertine Geomorphology of Fossil Creek
From the Proceedings of the 1996 Meetings of the Hydrology Section - Arizona-Nevada Academy of Science - April 20, 1996, University of Arizona, Tucson, ArizonaThis article is part of the Hydrology and Water Resources in Arizona and the Southwest collections. Digital access to this material is made possible by the Arizona-Nevada Academy of Science and the University of Arizona Libraries. For more information about items in this collection, contact [email protected]
Effects of fuels/fire risk reduction treatments using hydro-mow or thinning on pinyon-juniper ecosystem components within the wildland-urbaninterface.
Pinyon-juniper woodlands are a dominant vegetation type throughout the Interior West on lands managed by the U.S. Forest Service and the USDI Bureau of Land Management. The woodlands have traditionally been viewed as having a low risk of wildfires because of the lack of a continuous and dense ground cover and low tree stand densities. However, stand densities are often high and are increasing in many areas and wildfires, often resulting in loss of lives and property, will occur under conditions of low humidity, high temperatures and wind speeds, and an ignition source. Woodlands commonly surround or are adjacent to many towns in the region; however, in recent years, people have moved into the woodlands to construct individual homes and housing developments. In this decade, the ecology and fire risk in pinyon-juniper woodlands have changed dramatically because of the continuing drought and the region-wide infestation of the pinyon engraver beetle, Ips confusus, which have resulted in high pinyon mortality, increased fuel loadings, and risks of severe wildfires. Managers are attempting to reduce fire hazards and create defensible spaces in the wildland-urban-interface (W.U.I.). They have commonly used hand thinning-piling-burning prescriptions in the W.U.I. but have recently turned to mechanical mastication to accomplish stand reduction goals, especially where slope and soil surface conditions permit the safe operation of heavy equipment. In most situations the goal is to create a mosaic of open and wooded conditions on the landscape. These has advantages of maintaining wildlife habitats, tree and shrub growth, an esthetic landscape, and increasing herbaceous production while improving fire suppression opportunities and reducing fire hazards. However, managers do not know the consequences of mastication on soil nutrient and microbiological populations and on the residual tree, shrub, and herbaceous vegetation. While the number of research studies of the effects mastication on ecosystem components has increased recently, there still are many questions