232 research outputs found

    FGF9 can induce endochondral ossification in cranial mesenchyme

    Get PDF
    BACKGROUND: The flat bones of the skull (i.e., the frontal and parietal bones) normally form through intramembranous ossification. At these sites cranial mesenchymal cells directly differentiate into osteoblasts without the formation of a cartilage intermediate. This type of ossification is distinct from endochondral ossification, a process that involves initial formation of cartilage and later replacement by bone. RESULTS: We have analyzed a line of transgenic mice that expresses FGF9, a member of the fibroblast growth factor family (FGF), in cranial mesenchymal cells. The parietal bones in these mice show a switch from intramembranous to endochondral ossification. Cranial cartilage precursors are induced to proliferate, then hypertrophy and are later replaced by bone. These changes are accompanied by upregulation of Sox9, Ihh, Col2a1, Col10a1 and downregulation of CbfaI and Osteocalcin. Fate mapping studies show that the cranial mesenchymal cells in the parietal region that show a switch in cell fate are likely to be derived from the mesoderm. CONCLUSION: These results demonstrate that FGF9 expression is sufficient to convert the differentiation program of (at least a subset of) mesoderm-derived cranial mesenchyme cells from intramembranous to endochondral ossification

    Apoptosis and p53 expression in rat adjuvant arthritis

    Get PDF
    INTRODUCTION: RA is a chronic inflammatory disorder that is characterized by inflammation and proliferation of synovial tissue. The amount of DNA fragmentation is significantly increased in rheumatoid synovium. Only low numbers of apoptotic cells are present in rheumatoid synovial tissue, however. The proportion of cells with DNA strand breaks is so great that this disparity suggests impaired apoptosis. Therefore, the development of novel therapeutic strategies that are aimed at inducing apoptosis in rheumatoid synovial tissue is an attractive goal. Although animal models for arthritis only approximate RA, they provide a useful test system for the evaluation of apoptosis-inducing therapies. AA in rats is among the most commonly used animal models for RA. For the interpretation of such studies, it is essential to characterize the extent to which apoptosis occurs during the natural course of the disease. Therefore, we evaluated the number of apoptotic cells and the expression of p53 in various phases of AA. MATERIALS AND METHODS: In order to generate the AA rat model, Lewis rats were immunized with Mycobacterium tuberculosis in mineral oil on day 0. Paw swelling usually started around day 10. For the temporal analysis rats were sacrificed on days 0, 5 (prearthritis), 11 (onset of arthritis), 17 (accelerating arthritis), or 23 (chronic arthritis). For the detection of apoptotic cells, the hind paws were harvested on days 0(n=6),5 (n=6), 11 (n=6), 17 (n=6), or 23 (n=4). The right ankle joints were fixed in formalin, decalcified in ethylenediaminetetra-acetic acid, embedded in paraffin, and sectioned. The TUNEL method was applied. The percentage of TUNEL-positive cells of the total inflammatory cell infiltrate was noted. For Western blot analysis, hind paws were harvested on days 0 (n=2), 5 (n=3), 11 (n=4), 17 (n=4), or 23 (n=4). In addition, hind paws of normal rats (n=2) were studied. The right ankle joints were snap frozen and pulverized. Synovial tissue was also obtained by arthroscopy of three patients with longstanding (>5 years) RA. After protein extraction in lysis buffer, equal amounts of protein samples from lysates were pooled and examined by Western bolt analysis using anti-p53 monoclonal antibody D07, which recognizes wild-type and mutant p53 from rodents and humans. For immunohistochemical analysis, six rats were sacrificed on day 23 after immunization and synovial tissue of the right ankle joints was snap frozen and evaluated by immunohistochemistry using anti-p53-pan. The sections were evaluated semi-quantitatively using a 0-4 scale. The kruskal-Wallis test for several group means was used to compare the percentage of TUNEL-positive cells at different time points. RESULTS: The percentages of TUNEL-positive cells were strongly dependent on the stage of the disease. Very few TUNEL-positive cells were detected in normal rats or in the early phases of AA; the number of TUNEL-positive cells was 1% or less of the total cell infiltrate, including neutrophils, from days 0-17 (Table 1). On day 23, however, the percentage of TUNEL-positive cells was significantly increased [15.8±5.1% (mean ± standard error of the mean); P=0.01]. TUNEL-positive cells were observed in the intimal lining layer and synovial sublining of the invasive front, as well as in the articular cartilage (Fig. 1). Subsequently, we examined expression of the tumor suppressor gene p53, because this is a key regulator of apoptosis. Expression of p53 in pooled rat AA joint extracts gradually increased from day 0 (6 arbitrary units) to day 23 (173 arbitrary units), which was markedly higher than p53 levels in RA synovium (32 arbitrary units; Table 1). Overexpression of p53 protein on day 23 was confirmed by immunohistochemistry in a separate experiment in six rats with AA. Overexpression of p53 was observed in the intimal lining layer and synovial sublining in all rats on day 23. In all cases a semiquantitative score of 4 was assigned, indicating that 51% or more of the cells were positive, whereas control sections were negative. DISCUSSION: The results presented here reveal that the number of TUNEL-positive cells remained very low until chronic arthritis developed. This indicates that, although there was sufficient DNA damage to cause an increment in p53 expression in the early phases, DNA strand breaks that can be detected by TUNEL assays only occurred in chronic AA. The observation that TUNEL-positive cells were nearly absent in early AA clearly indicates that only very few cells were undergoing programmed cell death. This is an important observation, which makes it possible to study the effects of apoptosis-inducing therapies in situ in early and accelerating AA. An effective therapy would obviously increase the number of TUNEL-positive cells. There is already some overexpression of p53 in the preclinical phase and during the onset of the arthritis, with an additional increment in p53 expression during accelerating and chronic arthritis. Presumably, this is wild-type p53, because the disease duration is likely too short to allow for the development of p53 mutations. Transcription of p53 is probably increased in response to the toxic environment of the inflamed joint. The increased expression of p53 in the joints of rats with chronic AA was even greater than that observed in synovial tissue of RA patients with long-standing disease. Overexpression of p53 and increased numbers of apoptotic cells did not occur simultaneously in this model; rather p53 overexpression preceded increased apoptosis. Activation of p53 leads to induction of cell growth arrest, allowing time for DNA repair. It appears that DNA damage is only extensive enough to induce apoptosis in the latter stages of AA. Factors other than p53 may also play an important role in the actual induction of apoptosis Taken together, significant apoptosis only occurs late in AA and it follows marked p53 overexpression, making it a useful model for testing proapoptotic therapies. AA is not the best model for p53 gene therapy, however, because dramatic p53 overexpression occurs in the latter stages of the disease

    Histone posttranslational modifications and cell fate determination: Lens induction requires the lysine acetyltransferases CBP and p300

    Get PDF
    Lens induction is a classical embryologic model to study cell fate determination. It has been proposed earlier that specific changes in core histone modifications accompany the process of cell fate specification and determination. The lysine acetyltransferases CBP and p300 function as principal enzymes that modify core histones to facilitate specific gene expression. Herein, we performed conditional inactivation of both CBP and p300 in the ectodermal cells that give rise to the lens placode. Inactivation of both CBP and p300 resulted in the dramatic discontinuation of all aspects of lens specification and organogenesis, resulting in aphakia. The CBP/p300(−/−) ectodermal cells are viable and not prone to apoptosis. These cells showed reduced expression of Six3 and Sox2, while expression of Pax6 was not upregulated, indicating discontinuation of lens induction. Consequently, expression of αB- and αA-crystallins was not initiated. Mutant ectoderm exhibited markedly reduced levels of histone H3 K18 and K27 acetylation, subtly increased H3 K27me3 and unaltered overall levels of H3 K9ac and H3 K4me3. Our data demonstrate that CBP and p300 are required to establish lens cell-type identity during lens induction, and suggest that posttranslational histone modifications are integral to normal cell fate determination in the mammalian lens

    Human adipose tissue as a reservoir for memory CD4\u3csup\u3e+\u3c/sup\u3e T cells and HIV

    Get PDF
    Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved. Objective: The objective of this study is to determine whether adipose tissue functions as a reservoir for HIV-1. Design: We examined memory CD4+ T cells and HIV DNA in adipose tissue-stromal vascular fraction (AT-SVF) of five patients [four antiretroviral therapy (ART)-treated and one untreated]. To determine whether adipocytes stimulate CD4+ T cells and regulate HIV production, primary human adipose cells were cocultured with HIV-infected CD4+ T cells. Methods: AT-SVF T cells were studied by flow cytometry, and AT-SVF HIV DNA (Gag and Env) was examined by nested PCR and sequence analyses. CD4+ T-cell activation and HIV production were measured by flow cytometry and ELISA. Results: AT-SVF CD3+ T cells were activated (\u3e60% CD69+) memory CD4+ and CD8+ T cells in uninfected andHIV-infected persons, but the AT-SVF CD4+/CD8+ ratiowas lower in HIV patients. HIVDNA(Gag and Env)was detected in AT-SVF of all five patients examined by nested PCR, comparably to other tissues [peripheral blood mononuclear cell (PBMC), lymph node or thymus]. In coculture experiments, adipocytes increased CD4+ T-cell activation and HIV production approximately two to three-fold in synergy with gammachain cytokines interleukin (IL)-2, IL7 or IL15. These effects were mitigated by neutralizing antibodies against IL6 and integrin-a1b1. Adipocytes also enhanced T-cell viability. Conclusion: Adipose tissues of ART-treated patients harbour activated memory CD4+ T cells and HIV DNA. Adipocytes promote CD4+ T-cell activation and HIV production in concert with intrinsic adipose factors. Adipose tissue may be an important reservoir for HIV

    Characterization of five members of the actin gene family in the sea urchin

    Full text link
    Hybridization of an actin cDNA clone (pSA38) to restriction enzyme digests of Strongylocentrotus purpuratus DNA indicates that the sea urchin genome contains at least five different actin genes. A sea urchin genomic clone library was screened for recombinants which hydridize to pSA38 and four genomic clones were isolated. Restriction maps were generated which indicate that three of these recombinants contain different actin genes, and that the fourth may be an allele to one of these. The restriction maps suggest that one clone contains two linked actin genes. This fact, which was confirmed by heteroduplex analysis, indicates that the actin gene family may be clustered. The linked genes are oriented in the same direction and spaced about 8.0 kilobases apart. In heteroduplexes between genomic clones two intervening sequences were seen. Significant homology is confined to the actin coding region and does not include any flanking sequence. Southern blot analysis reveals that repetitive DNA sequences are found in the region of the actin genes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24164/1/0000422.pd

    Pharmacokinetic boosting of olaparib:A randomised, cross-over study (PROACTIVE-study)

    Get PDF
    Background: Pharmacokinetic (PK) boosting is the intentional use of a drug-drug interaction to enhance systemic drug exposure. PK boosting of olaparib, a CYP3A-substrate, has the potential to reduce PK variability and financial burden. The aim of this study was to investigate equivalence of a boosted, reduced dose of olaparib compared to the non-boosted standard dose. Methods: This cross-over, multicentre trial compared olaparib 300 mg twice daily (BID) with olaparib 100 mg BID boosted with the strong CYP3A-inhibitor cobicistat 150 mg BID. Patients were randomised to the standard therapy followed by the boosted therapy, or vice versa. After seven days of each therapy, dense PK sampling was performed for noncompartmental PK analysis. Equivalence was defined as a 90% Confidence Interval (CI) of the geometric mean ratio (GMR) of the boosted versus standard therapy area under the plasma concentration-time curve (AUC0–12 h) within no-effect boundaries. These boundaries were set at 0.57–1.25, based on previous pharmacokinetic studies with olaparib capsules and tablets. Results: Of 15 included patients, 12 were eligible for PK analysis. The GMR of the AUC0–12 h was 1.45 (90% CI 1.27–1.65). No grade ≥3 adverse events were reported during the study. Conclusions: Boosting a 100 mg BID olaparib dose with cobicistat increases olaparib exposure 1.45-fold, compared to the standard dose of 300 mg BID. Equivalence of the boosted olaparib was thus not established. Boosting remains a promising strategy to reduce the olaparib dose as cobicistat increases olaparib exposure Adequate tolerability of the boosted therapy with higher exposure should be established.</p

    Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG

    Get PDF
    Background: Metagenomics is the study of microbial organisms using sequencing applied directly to environmental samples. Technological advances in next-generation sequencing methods are fueling a rapid increase in the number and scope of metagenome projects. While metagenomics provides information on the gene content, metatranscriptomics aims at understanding gene expression patterns in microbial communities. The initial computational analysis of a metagenome or metatranscriptome addresses three questions: (1) Who is out there? (2) What are they doing? and (3) How do different datasets compare? There is a need for new computational tools to answer these questions. In 2007, the program MEGAN (MEtaGenome ANalyzer) was released, as a standalone interactive tool for analyzing the taxonomic content of a single metagenome dataset. The program has subsequently been extended to support comparative analyses of multiple datasets. Results: The focus of this paper is to report on new features of MEGAN that allow the functional analysis of multiple metagenomes (and metatranscriptomes) based on the SEED hierarchy and KEGG pathways. We have compared our results with the MG-RAST service for different datasets. Conclusions: The MEGAN program now allows the interactive analysis and comparison of the taxonomical and functional content of multiple datasets. As a stand-alone tool, MEGAN provides an alternative to web portals for scientists that have concerns about uploading their unpublished data to a website
    corecore