65 research outputs found

    Experimental investigation of physical leaky barrier design implications on juvenile rainbow trout ( Oncorhynchus mykiss ) movement

    Get PDF
    Rivers have been subject to the construction of numerous small-scale anthropogenic structures, causing alteration and fragmentation of habitats. Despite their impact on fish habitat selection, migration and swimming performance, more hydraulic structures are being added to riverine systems. These mainly have the purpose of harnessing renewable energy or mitigating the impact of flooding, as in the case of leaky barriers that are widely used for natural flood management. By providing a sustainable and cost-effective supplement to traditional hard engineering flood risk management methods, these channel-spanning wooden barriers are constructed using sustainable, local materials, intended to slow down surface water and groundwater flow, reduce flood peaks, and attenuate the flow reaching downstream communities. Despite their increasing popularity, little is known about the design implications on fish movement or hydrodynamics. Using scaled laboratory flume experiments we investigate how the physical design of four leaky barriers varying in porosity, length, provision of overhead cover, and color, impacts on fish movement and spatial usage, and the channel hydrodynamics. Our fish behavioral analysis reveals that juvenile rainbow trout (Oncorhynchus mykiss) movement reduces with barrier presence. Upstream passage increases with barrier color but not cover, for shorter rather than longer leaky barriers, and for a non-porous barrier compared to its porous counterpart. Barrier specific flow alterations appear to play a secondary role compared to barrier color. Our study showed that physical barrier design and leaky barrier presence alter fish movement, and therefore care needs to be taken during the design of such natural flood management structures

    Assessment of the performance of six in vitro diagnostic kits for qualitative detection of hepatitis B virus surface antigen (HBsAg) in human serum or plasma in Lomé, Togo

    Get PDF
    Background: Several in vitro diagnostic (IVD) test kits for hepatitis B surface antigen (HBsAg) are commercially available. The question is whether they are performing well for both screening and diagnosis or not? Thus, this study aimed to evaluate the performance of six commercially available HBsAg detection kits in Togo. Methods: This study was conducted at the National Reference Center for HIV/STI testing in Lomé (CNR-VIH/IST), Togo. Reference sera used for the assessment were collected from blood donors and patients with history of hepatitis B viral (HBV) infection between 2008 and 2014, and includes 200 non-reactive HBsAg and 150 reactive HBsAg sera that were confirmed with a reference method which consisted of the combination of an ELISA, a RDT, and a molecular test. Four ELISA kits (EKOlab ELISA-HBsAg; HEPALISA ULTRA; HEPALISA; Murex AgHBs Version 3) and two RDTs kits (ACON AgHBs and OnSite HBsAg Rapid Test-Cassette) were then evaluated using these serum samples. The EPI-INFO software version 7.2 was used to determine the 95% confidence interval and performed statistical analysis. Results: Reference serum samples were collected from the population with 65.0% under 40 years of age and 61.2% males. The sensitivity of the 4 ELISA tests compared to the reference method was 100%. Apart from the HEPALISA test with a specificity of 100.0%, the specificity of the other three ELISA tests (Murex HBsAg version 3, HEPALISA ULTRA and EKOlab ELISA-HBsAg) were 98.4%, 97.3% and 91.8% respectively. For the RDTs, the sensitivity of ACON HBsAg and OnSite HBsAg Rapid Test-Cassette was 70.0% and 95.6% respectively while the specificity was 100.0% for both. Conclusion: The ELISA tests evaluated were more sensitive than the RDTs, and HEPALISA test was the most efficient. Of the two RDTs, the OnSite HBsAg Rapid Test-Cassette was more sensitive. Our findings highlight the need for onsite verification of in vitro diagnostic kits for qualitative detection of hepatitis B surface antigen before their routine use in Togo. Keywords: HBV, HBsAg, Performance, IVD tes

    A Microphysiological System for Studying Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease (NAFLD), which to date has no approved drug treatments. There is an urgent need for better understanding of the genetic and molecular pathways that underlie NAFLD/NASH, and currently available preclinical models, be they in vivo or in vitro, do not fully represent key aspects of the human disease state. We have developed a human in vitro co‐culture NASH model using primary human hepatocytes, Kupffer cells and hepatic stellate cells, which are cultured together as microtissues in a perfused three‐dimensional microphysiological system (MPS). The microtissues were cultured in medium containing free fatty acids for at least 2 weeks, to induce a NASH‐like phenotype. The co‐culture microtissues within the MPS display a NASH‐like phenotype, showing key features of the disease including hepatic fat accumulation, the production of an inflammatory milieu, and the expression of profibrotic markers. Addition of lipopolysaccharide resulted in a more pro‐inflammatory milieu. In the model, obeticholic acid ameliorated the NASH phenotype. Microtissues were formed from both wild‐type and patatin‐like phospholipase domain containing 3 (PNPLA3) I148M mutant hepatic stellate cells. Stellate cells carrying the mutation enhanced the overall disease state of the model and in particular produced a more pro‐inflammatory milieu. Conclusion: The MPS model displays a phenotype akin to advanced NAFLD or NASH and has utility as a tool for exploring mechanisms underlying the disease. Furthermore, we demonstrate that in co‐culture the PNPLA3 I148M mutation alone can cause hepatic stellate cells to enhance the overall NASH disease phenotype

    Microplastic and natural sediment in bed load saltation: material does not dictate the fate

    Get PDF
    Microplastic (MP) pollution is a well document threat to our aquatic and terrestrial ecosystems, however, the mechanisms by which MPs are transported in river flows are still unknown. The transport of MPs and natural sediment in aquatic flows could be somewhat comparable, as particles are similar in size. However, it is unknown how the lower density of MPs and their different material properties impact their transport dynamics. To answer this, novel laboratory experiments on bed load saltation dynamics in an open-channel flow, using high-speed camera imaging and the detection of 11,035 individual saltation events were used to identify the similarities and differences between spherical MPs and spherical natural sediments transport. The tested MPs varied in terms of size and material properties (density and elasticity). Our analysis shows that the Rouse number accurately describes saltation length, height, transport velocity and collision angles equally well for both MPs and natural sediments. Through statistical inference, the distribution functions of saltation trajectory characteristics for MPs were analogous to natural sediment with only one sediment experiment (1.4 % of cases) differing from all other plastic experiments. Similarly, only nine experiments (9.3 % of cases) showed that collision angles for MPs differed from those of natural sediment experiments. Differences observed in terms of restitution become negligible in overall transport dynamics as turbulence overcomes the kinetic energy lost at particle-bed impact, which keeps particle motion independent from impact. Overall, spherical MP particles behave similarly to spherical natural sediments in aquatic environments under the examined experimental conditions. This is significant because there is an established body of knowledge for sediment transport that can serve as a foundation for the study of MP transport

    Herbal Remedies And Their Adverse Effects In Tem Tribe Traditional Medicine In Togo

    Get PDF
    In Africa, up to 80% of the population relies on herbal concoctions for their primarily health care. In Togo, western Africa, Tem tribe is a population with old knowledge of medicinal plants, however, still very little is known about their medical practices. The present study was conducted to access for the apprehension of adverse effects of traditional remedies by Tem traditional healers (TH). Enquiry was performed by interviews with healers from August to October 2007 in Tchaoudjo prefecture (Togo). The study allowed us to interview 54 TH including 41(75.93%) males and 13(24.07%) females, who cited 102 recipes assumed to have adverse effects. The recipes were used alone to cure several diseases including haemorrhoids (22.55%), female sexual disorders and infertility (21.57%), gastrointestinal disorders (18.63%), and malaria (6.86%). A total of 34 plants belonging to 21 families were cited to be components of the recipes. Euphorbiaceae and Mimosaceae families were the most represented, however, Nauclea latifolia, Khaya senegalensis, Pseudocedrela kotschyi and Xeroderris stuhlmannii were the main components of recipes linked to adverse effects. A total of 20 adverse effects were linked to the administration of theses drugs, and among them; diarrhoea, abdominal pains, polyuria, general weakness and vomiting were the most frequently encountered. These findings were in accordance with several reports of the literature concerning medicinal plants, although they were based on empirical observations. Laboratory screenings are needed to access for the effectiveness as well as the possible toxic effects of the recipes. Keywords: traditional concoctions, medicinal plants, adverse effects, Togo

    Friction factor decomposition for rough-wall flows : theoretical background and application to open-channel flows

    Get PDF
    Financial support was provided by the EPSRC/UK project ‘Bed friction in rough-bed free-surface flows: a theoretical framework, roughness regimes, and quantification’ (grants EP/K041088/1 and EP/K04116/1). I.M. acknowledges the support of the Australian Research Council (grant FL120100017). The large-eddy simulations were carried out at Cardiff University’s high performance computer, which is part of the Supercomputing Wales project. Useful and stimulating discussions with M. Fletcher (Arup), P. Samuels (HR Wallingford), T. Schlicke (Scottish Environment Protection Agency) and J. Wicks (Jacobs) have been instrumental for this project and are gratefully acknowledged. The editor and three reviewers provided insightful comments and helpful suggestions that have been gratefully incorporated in the final version.Peer reviewedPublisher PD

    Large-eddy simulation of shallow turbulent wakes behind a conical island

    Get PDF
    Large-Eddy Simulations (LESs) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow, and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6500 to 8125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding, and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding, and the upward flow region on the leeward face (once the cone's apex is submerged), similar flow structures to cylinder flow were observed. These include an arch vortex tilted in the downstream direction and von Karman vortices in the far-wake. Spectra of velocity time series and the drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer, and thus the shedding frequency decreased as the cone's apex became submerged. Finally, the generalised flow structures in the wake of a submerged conical body are outlined

    PTEN Activity Defines an Axis for Plasticity at Cortico-Amygdala Synapses and Influences Social Behavior

    Get PDF
    Phosphatase and tensin homolog on chromosome 10 (PTEN) is a tumor suppressor and autism-associated gene that exerts an important influence over neuronal structure and function during development. In addition, it participates in synaptic plasticity processes in adulthood. As an attempt to assess synaptic and developmental mechanisms by which PTEN can modulate cognitive function, we studied the consequences of 2 different genetic manipulations in mice: presence of additional genomic copies of the Pten gene (Ptentg) and knock-in of a truncated Pten gene lacking its PDZ motif (Pten-ΔPDZ), which is required for interaction with synaptic proteins. Ptentg mice exhibit substantial microcephaly, structural hypoconnectivity, enhanced synaptic depression at cortico-amygdala synapses, reduced anxiety, and intensified social interactions. In contrast, Pten-ΔPDZ mice have a much more restricted phenotype, with normal synaptic connectivity, but impaired synaptic depression at cortico-amygdala synapses and virtually abolished social interactions. These results suggest that synaptic actions of PTEN in the amygdala contribute to specific behavioral traits, such as sociability. Also, PTEN appears to function as a bidirectional rheostat in the amygdala: reduction in PTEN activity at synapses is associated with less sociability, whereas enhanced PTEN activity accompanies hypersocial behavior.Spanish Ministry of Economy and Competitiveness (SAF2016-78071-R and SAF2015-62540-ERC to S.K.; PCIN-2016-095 and SAF2017-86983-R to J.A.E.; BFU201563769-R to R.L.; SAF2014-58598-JIN and RYC-2016-20414 to M.N.); Basque Ministry of Health (RIS3 and ELKARTEK to S.K.); University of the BasqueCountry (EHUrOPE14/03 to S.K.); Junta de Comunidades de Castilla–La Mancha (PPII2014-005-P to R.L.); Spanish Ministry of Economy and Competitiveness (BES-2011-043464 to C.S.-P.)

    Instantaneous transport of a passive scalar in a turbulent separated flow

    Get PDF
    The results of large-eddy simulations of flow and transient solute transport over a backward facing step and through a 180° bend are presented. The simulations are validated successfully in terms of hydrodynamics and tracer transport with experimental velocity data and measured residence time distribution curves confirming the accuracy of the method. The hydrodynamics are characterised by flow separation and subsequent recirculation in vertical and horizontal directions and the solute dispersion process is a direct response to the significant unsteadiness and turbulence in the flow. The turbulence in the system is analysed and quantified in terms of power density spectra and covariance of velocity fluctuations. The injection of an instantaneous passive tracer and its dispersion through the system is simulated. Large-eddy simulations enable the resolution of the instantaneous flow field and it is demonstrated that the instabilities of intermittent large-scale structures play a distinguished role in the solute transport. The advection and diffusion of the scalar is governed by the severe unsteadiness of the flow and this is visualised and quantified. The analysis of the scalar mass transport budget quantifies the mechanisms controlling the turbulent mixing and reveals that the mass flux is dominated by advection
    corecore