48 research outputs found

    Bacterial Cellulose-Carboxymethyl Cellulose (BC:CMC) dry formulation as stabilizer and texturizing agent for surfactant-free cosmetic formulations

    Get PDF
    Generic cosmetic creams (oil-in-water emulsions) were prepared using dry Bacterial Cellulose and Carboxymethyl Cellulose (BC:CMC) to study the possibility of partially or completely replacing surfactants, while ensuring a long-term stability and the required organoleptic characteristics. BC:CMC was benchmarked against two hydrocolloidal Avicel products (PC-591 and PC-611), commonly used as thickeners and stabilizing aids in cosmetics production. The emulsions were then characterized regarding storage stability, rheology, texture and microscopic features. The full replacement of 5.5% surfactants with only 0.75% BC:CMC consistently showed similar results to those obtained with surfactants, namely concerning viscosity and texture. Although producing emulsions with larger oil droplets, BC:CMC provided for a very effective stabilization through a Pickering effect and by structuring the continuous phase. The more effective Avicel tested (PC-591) required a higher concentration (1.5 %) to achieve similar rheological profile but was ineffective in stabilizing the oil phase in a surfactant-free formulation with the adopted protocol. By replacing surfactants, dry BC:CMC matches a strong market need since both end users and manufacturers increasingly seek natural ingredients for cosmetic formulations.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/ 04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER 000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Daniela Martins also gratefully acknowledges FCT for the PhD scholarship, reference SFRH/BD/115917/2016.info:eu-repo/semantics/publishedVersio

    A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions

    Get PDF
    Supplementary material related to this article can be found, in theonline version, at: doi:https://doi.org/10.1016/j.carbpol.2019.115657Bacterial cellulose (BC) is an emerging alternative to plant cellulose in different applications. Several works demonstrated the potential of never-dried BC; however, envisioning real industrial applications, a dry product retaining its functional properties upon rehydration is preferable. A dry and completely redispersible formulation of BC with carboxymethyl cellulose (CMC) was prepared by Spray-drying. The obtained material showed a Zeta Potential of (-67.0±3.9) mV, a Dv(50) of (601±19.7) µm and was able to decrease the oil/water interface energy. The dry BC:CMC formulation was employed as stabilizer in oil-in-water emulsions, in parallel with commercial plant celluloses and Xanthan gum. The emulsions were monitored over time by optical microscopy and characterized by rheological measurements. BC:CMC effectively stabilized emulsions against coalescence and creaming, at a concentration of 0.50 % - contrarily to other commercial dry celluloses due to the Pickering effect and to the structuring of the continuous phase, as seen with Cryo-SEM.This study was supported by the Portuguese Foundation for Scienceand Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund (ERDF) under the scope of Norte2020. FCT also supported this work by funding UID/EQU/00511/2019 unit, Project POCI-01-0145-FEDER-028715 funded by FEDER funds through COMPETE 2020 and by national funds (PIDDAC) throughFCT/MCTES, and Project NORTE-01-0145-FEDER-000005, funded by ERDF under the scope of NORTE 2020. The authors also acknowledgeFCT for the PhD scholarship SFRH/BD/115917/2016 (Daniela Martins) and for the contract based on “Lei do Emprego Científico” (DL 57/2016) (Berta Estevinho).info:eu-repo/semantics/publishedVersio

    Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion

    Get PDF
    Dry or powdered formulations of food additives facilitate transportation, storage, preservation and handling. In this work, dry formulations of bacterial cellulose and carboxymethyl cellulose (BC:CMC), easily redispersible and preserving the functionality of the never-dried dispersions are reported. Different processing parameters and their effect on the materials properties were evaluated, namely: (i) wet-grinding of BC (Hand-blender, Microcut Head Impeller, High-pressure Homogenizer), (ii) drying of BC:CMC mixtures (fast drying at130 °C and slow drying at 80 °C) and subsequent (iii) comminution to different particle sizes. The dispersibility of the obtained BC:CMC powders was evaluated, and their functionality after redispersion was assessed by measuring the dynamic viscosity, the effect in oil/water interfacial tension (liquidliquid system) and the stabilization of cocoa in milk (solidliquid system). The size of BC fibre bundles was of paramount relevance to its stabilizing ability in multiphasic systems. A more extensive wet-grinding of the BC fibres was accompanied by a loss in the BC:CMC functionality, related to the increasingly smaller size of the BC bundles. Indeed, as the Dv (50) of the wet BC bundles was reduced from 1228 to 55 µm, the BC:CMC viscosity profile dropped and the effect on interfacial tension decreased. This effect was observed both on the never-dried and dry BC:CMC formulations. On the other hand, the drying method did not play a major effect in the materials properties. In a benchmarking study, the BC:CMC formulations, at a low concentration (0.15%), had better stabilizing ability of the cocoa particles than several commercial cellulose products.Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10570-020-03211-9) contains supplementary material, which is available to authorized users.This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte. Daniela Martins also gratefully acknowledges FCT for the PhD scholarship, reference SFRH/BD/115917/2016.info:eu-repo/semantics/publishedVersio

    Interactions between microfibrillar cellulose and carboxymethyl cellulose in an aqueous suspension

    Get PDF
    New microstructures with interesting, unique and stable textures, particularly relevant to food systems were created by redispersing Microfibrillar cellulose (MFC). This paper reports the interactions between microfibrillar cellulose and carboxymethyl cellulose (CMC) in redispersed aqueous suspensions, by using rheological measurements on variable ratios of MFC/CMC and correlating these with apparent water mobility as determined by time domain NMR. MFC is a network of cellulose fibrils produced by subjecting pure cellulose pulp to high-pressure mechanical homogenisation. A charged polymer such as CMC reduces the aggregation of microfibrillar/fibre bundles upon drying. Small amplitude oscillatory rheological analysis showed the viscoelastic gel-like behaviour of suspensions which was independent of the CMC content in the MFC suspension. A viscous synergistic effect was observed when CMC was added to MFC before drying, leading to improved redispersibility of the suspension. Novel measurements of NMR relaxation suggested that the aggregated microfibrillar/fibre bundles normally dominate the relaxation times (T2). The dense microfibrillar network plays an important role in generating stable rheological properties and controlling the mobility of the polymer and hence the apparent mobility of the water in the suspensions

    A Fundamental Study of the Surface Durability of Medium-Hardness Gears : Effects of Combination of Hardness and Surface Roughness

    Get PDF
    The effects of the combination of tooth flank hardness and tooth surface roughness on the surface durability of medium-hardness gears are investigated using a disk machine. The meaning of the difference in hardness between a pair of gears is discussed. In the case where the surface roughnesses differ between contact surfaces with the same initial hardness, severe wear and pitting occur on the smooth surface because the asperities on the rough surface are highly hardeneddue to the repetition of contact. Therefore, it is necessary that the initial hardness of the smooth surface is higher than that of the rough surface in a combination of different sufface roughnesses. This means that the hardness combination between a pair of gears should be determined in consideration of the final condition of the finished tooth surfaces of the gears

    Study on high efficiency milling of steam turbine blade

    Get PDF
    In response to global environmental issues, higher efficiency and improved operational reliability are increasingly being requested for steam turbines, essential equipment for thermal power generation. Its material is stainless steel, which is difficult to cut because of high work-hardening trend and high resistance to heat. As its complex shape and high accuracy requirement, conventional methods such as using a ball end mill have obstacles of achieve a high accuracy coexist with high efficiency. The main objectives of this study are to propose a new method called Linear Interpolation Milling(LIM) using a taper end mill and verify its validity both in theory and practice.1st International Conference on Renewable Energy Research and Applications, ICRERA 2012; Nagasaki; Japan; 11 November 2012 ~ 14 November 201
    corecore