9 research outputs found

    Insights on the Interactions of Synthetic Amphipathic Peptides with Model Membranes as Revealed by (31)P and (2)H Solid-State NMR and Infrared Spectroscopies

    No full text
    We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, (31)P and (2)H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. (31)P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas (31)P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, (2)H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length

    Interaction of the Neuropeptide Met-Enkephalin with Zwitterionic and Negatively Charged Bicelles as Viewed by (31)P and (2)H Solid-State NMR

    Get PDF
    The interaction of the neuropeptide methionine-enkephalin (Menk) with bicelles was investigated by solid-state NMR. Bicelles composed of dimyristoylphosphatidylcholine (DMPC) and dicaproylphosphatidylcholine (DCPC) were modified to investigate the effect of the lipid headgroup and electrostatic charges on the association with Menk. A total of 10 mol % of DMPC was replaced by zwitterionic phosphatidylethanolamine (DMPE), anionic phosphatidylglycerol (DMPG), or phosphatidylserine (DMPS). The preparation of DMPE-doped bicelles (Bic/PE) is reported for the first time. The (31)P and (2)H NMR results revealed changes in the lipid dynamics when Menk interacts with the bicellar systems. (2)H NMR experiments showed a disordering effect of Menk on the lipid chains in all the bicelles except Bic/PG, whereas the study of the choline headgroups indicated a decreased order of the lipids only in Bic/PE and Bic/PG. Our results suggest that the insertion depth of Menk into bicelles is modulated by their composition, more specifically by the balance between hydrophobic and electrostatic interactions. Menk would be buried at the lipid polar/apolar interface, the depth of penetration into the hydrophobic membrane core following the scaling Bic > Bic/PE > Bic/PS at the slightly acidic pH used in this study. The peptide would not insert into the bilayer core of Bic/PG and would rather remain at the surface

    A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy

    Get PDF
    Research in the field of bioengineered skin substitutes is motivated by the need to find new dressings for people affected by skin injuries (burns, diabetic ulcers), and to develop adequate skin models to test new formulations developed in vitro. Thanks to advances in tissue engineering, it is now possible to produce human skin substitutes without any exogenous material, using the self-assembly method developed by the Laboratoire d’Organogénèse Expérimentale. These human skin substitutes consist of a dermis and a stratified epidermis (stratum corneum and living epidermis). Raman microspectroscopy has been used to characterize and compare the molecular organization of skin substitutes with normal human skin. Our results confirm that the stratum corneum is a layer rich in lipids which are well ordered (trans conformers) in both substitutes and normal human skin. The amount of lipids decreases and more gauche conformers appear in the living epidermis in both cases. However, the results also show that there are fewer lipids in the substitutes and that the lipids are more organized in the normal human skin. Concerning the secondary structure of proteins and protein content, the data show that they are similar in the substitutes and in the normal human skin. In fact, the epidermis is rich in α-keratin, whereas the dermis contains mainly type I collagen
    corecore