27 research outputs found

    Population pharmacokinetics of artesunate and amodiaquine in African children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacokinetic (PK) data on amodiaquine (AQ) and artesunate (AS) are limited in children, an important risk group for malaria. The aim of this study was to evaluate the PK properties of a newly developed and registered fixed dose combination (FDC) of artesunate and amodiaquine.</p> <p>Methods</p> <p>A prospective population pharmacokinetic study of AS and AQ was conducted in children aged six months to five years. Participants were randomized to receive the new artesunate and amodiaquine FDC or the same drugs given in separate tablets. Children were divided into two groups of 70 (35 in each treatment arm) to evaluate the pharmacokinetic properties of AS and AQ, respectively. Population pharmacokinetic models for dihydroartemisinin (DHA) and desethylamodiaquine (DeAq), the principal pharmacologically active metabolites of AS and AQ, respectively, and total artemisinin anti-malarial activity, defined as the sum of the molar equivalent plasma concentrations of DHA and artesunate, were constructed using the non-linear mixed effects approach. Relative bioavailability between products was compared by estimating the ratios (and 95% CI) between the areas under the plasma concentration-time curves (AUC).</p> <p>Results</p> <p>The two regimens had similar PK properties in young children with acute malaria. The ratio of loose formulation to fixed co-formulation AUCs, was estimated as 1.043 (95% CI: 0.956 to 1.138) for DeAq. For DHA and total anti-malarial activity AUCs were estimated to be the same. Artesunate was rapidly absorbed, hydrolysed to DHA, and eliminated. Plasma concentrations were significantly higher following the first dose, when patients were acutely ill, than after subsequent doses when patients were usually afebrile and clinically improved. Amodiaquine was converted rapidly to DeAq, which was then eliminated with an estimated median (range) elimination half-life of 9 (7 to 12) days. Efficacy was similar in the two treatments groups, with cure rates of 0.946 (95% CI: 0.840–0.982) in the AS+AQ group and 0.892 (95% CI: 0.787 – 0.947) in the AS/AQ group. Four out of five patients with PCR confirmed recrudescences received AQ doses < 10 mg/kg. Both regimens were well tolerated. No child developed severe, post treatment neutropaenia (<1,000/μL). There was no evidence of AQ dose related hepatotoxicity, but one patient developed an asymptomatic rise in liver enzymes that was resolving by Day-28.</p> <p>Conclusion</p> <p>The bioavailability of the co-formulated AS-AQ FDC was similar to that of the separate tablets for desethylamodiaquine, DHA and the total anti-malarial activity. These data support the use this new AS-AQ FDC in children with acute uncomplicated falciparum malaria.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Variation in haematological parameters in children less than five years of age with asymptomatic Plasmodium infection: implication for malaria field studies

    No full text
    During the season of high malaria transmission, most children are infected by Plasmodium, which targets red blood cells (RBCs), affecting haematological parameters. To describe these variations, we examined the haematological profiles of two groups of children living in a malaria-endemic area. A cross-sectional survey was conducted at the peak of the malaria transmission season in a rural area of Burkina Faso. After informed consent and clinical examination, blood samples were obtained from the participants for malaria diagnosis and a full blood count. Of the 414 children included in the analysis, 192 were not infected with Plasmodium, whereas 222 were asymptomatic carriers of Plasmodium infection. The mean age of the infected children was 41.8 months (range of 26.4-57.2) compared to 38.8 months (range of 22.4-55.2) for the control group (p = 0.06). The asymptomatic infected children tended to have a significantly lower mean haemoglobin level (10.8 g/dL vs. 10.4 g/dL; p < 0.001), mean lymphocyte count (4592/&#181;L vs. 5141/&#181;L; p = 0.004), mean platelet count (266 x 103/&#181;L vs. 385 x 103/&#181;L; p < 0.001) and mean RBC count (4.388 x 106/&#181;L vs. 4.158 x 106/&#181;L; p < 0.001) and a higher mean monocyte count (1403/&#181;L vs. 1192/&#181;L; p < 0.001) compared to the control group. Special attention should be applied when interpreting haematological parameters and evaluating immune responses in asymptomatic infected children living in malaria-endemic areas and enrolled in vaccine trials

    Haematological parameters, natural regulatory CD4 + CD25 + FOXP3+ T cells and γδ T cells among two sympatric ethnic groups having different susceptibility to malaria in Burkina Faso.

    Get PDF
    Fulani ethnic group individuals are less susceptible than sympatric Mossi ethnic group, in term of malaria infection severity, and differ in antibody production against malaria antigens. The differences in susceptibility to malaria between Fulani and Mossi ethnic groups are thought to be regulated by different genetic backgrounds and offer the opportunity to compare haematological parameters, Tregs and γδT cell profiles in seasonal and stable malaria transmission settings in Burkina Faso. The study was conducted at two different time points i.e. during the high and low malaria transmission period. Two cross-sectional surveys were undertaken in adults above 20 years belonging either to the Fulani or the Mossi ethnic groups 1) at the peak of the malaria transmission season and 2) during the middle of the low malaria transmission season. Full blood counts, proportions of Tregs and γδ T cells were measured at both time-points.As previously shown the Fulani and Mossi ethnic groups showed a consistent difference in P. falciparum infection rates and parasite load. Differential white blood cell counts showed that the absolute lymphocyte counts were higher in the Mossi than in the Fulani ethnic group at both time points. While the proportion of CD4+CD25high was higher in the Fulani ethnic group at the peak of malaria transmission season (p = 0.03), no clear pattern emerged for T regulatory cells expressing FoxP3+ and CD127low. However CD3+γδ+ subpopulations were found to be higher in the Fulani compared to the Mossi ethnic group, and this difference was statistically significant at both time-points (p = 0.004 at low transmission season and p = 0.04 at peak of transmission). Our findings on regulatory T cell phenotypes suggest an interesting role for immune regulatory mechanisms in response to malaria. The study also suggests that TCRγδ + cells might contribute to the protection against malaria in the Fulani ethnic group involving their reported parasite inhibitory activities

    Malaria morbidity in high and seasonal malaria transmission area of Burkina Faso.

    Get PDF
    Malariometric parameters are often primary endpoints of efficacy trials of malaria vaccine candidates. This study aims to describe the epidemiology of malaria prior to the conduct of a series of drug and vaccine trials in a rural area of Burkina Faso.Malaria incidence was prospectively evaluated over one year follow-up among two cohorts of children aged 0-5 years living in the Saponé health district. The parents of 1089 children comprising a passive case detection cohort were encouraged to seek care from the local health clinic at any time their child felt sick. Among this cohort, 555 children were randomly selected for inclusion in an active surveillance sub-cohort evaluated for clinical malaria during twice weekly home visits. Malaria prevalence was evaluated by cross-sectional survey during the low and high transmission seasons.Number of episodes per child ranged from 0 to 6 per year. Cumulative incidence was 67.4% in the passive and 86.2% in the active cohort and was highest among children 0-1 years. Clinical malaria prevalence was 9.8% in the low and 13.0% in the high season (p>0.05). Median days to first malaria episode ranged from 187 (95% CI 180-193) among children 0-1 years to 228 (95% CI 212, 242) among children 4-5 years. The alternative parasite thresholds for the malaria case definition that achieved optimal sensitivity and specificity (70-80%) were 3150 parasites/µl in the high and 1350 parasites/µl in the low season.Clinical malaria burden was highest among the youngest age group children, who may represent the most appropriate target population for malaria vaccine candidate development. The pyrogenic threshold of parasitaemia varied markedly by season, suggesting a value for alternative parasitaemia levels in the malaria case defintion. Regional epidemiology of malaria described, Sapone area field centers are positioned for future conduct of malaria vaccine trials

    COVID-19 epidemiological, sociological and anthropological investigation: study protocol for a multidisciplinary mixed methods research in Burkina Faso

    No full text
    International audienceBackground: The world has high hopes of vaccination against COVID-19 to protect the population, boost economies and return to normal life. Vaccination programmes are being rolled out in high income countries, but the pandemic continues to progress in many low-and middle-income countries (LMICs) despite implementation of strict hygiene measures. We aim to present a comprehensive research protocol that will generate epidemiological, sociological and anthropological data about the COVID-19 epidemic in Burkina Faso, a landlocked country in West Africa with scarce resources. Methods: We will perform a multidisciplinary research using mixed methods in the two main cities in Burkina Faso (Ouagadougou and Bobo-Dioulasso). Data will be collected in the general population and in COVID-19 patients, caregivers and health care professionals in reference care centers: (i) to determine cumulative incidence of SARS-CoV-2 infection in the Burkinabe population using blood samples collected from randomly selected households according to the WHO-recommended protocol; (ii) develop a score to predict severe complications of COVID-19 in persons infected with SARS-CoV-2 using retrospective and prospective data; (iii) perform semi-structured interviews and direct observation on site, to describe and analyze the healthcare pathways and experiences of patients with COVID-19 attending reference care centers, and to identify the perceptions, acceptability and application of preventive strategies among the population. Discussion: This study will generate comprehensive data that will contribute to improving COVID-19 response strategies in Burkina Faso. The lessons learned from the management of this epidemic may serve as examples to the country authorities to better design preventive strategies in the case of future epidemics or pandemics. The protocol was approved by the Ministry for Health (N° 2020-00952/MS/CAB/INSP/CM) and the Health Research Ethics Committee in Burkina Faso (N° 2020-8-140)

    Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017–2018

    No full text
    International audienceBackgroundThe World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy.MethodsThis was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6–59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed.ResultsOf 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64–83%) in Nanoro, 76% (66–83%) in Gourcy, and 92% (84–96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75–89%) in Gourcy, 89% (81–94%) in Nanoro, and 97% (92–99%) in Niangoloko.No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation.ConclusionThe results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso

    Malaria Incidence in Children in South-West Burkina Faso: Comparison of Active and Passive Case Detection Methods

    Get PDF
    <div><p>Background</p><p>The aim of this study was to determine the incidence and seasonal pattern of malaria in children in South-West Burkina Faso, and to compare, in a randomized trial, characteristics of cases detected by active and passive surveillance. This study also enabled the planning of a malaria vaccine trial.</p><p>Methods</p><p>Households with young children, located within 5 kilometers of a health facility, were randomized to one of two malaria surveillance methods. In the first group, children were monitored actively. Each child was visited twice weekly; tympanic temperature was measured, and if the child had a fever or history of fever, a malaria rapid diagnostic test was performed and a blood smear collected. In the second group, children were monitored passively. The child’s parent or caregiver was asked to bring the child to the nearest clinic if he was unwell. Follow up lasted 13 months from September 2009.</p><p>Results</p><p>Incidence of malaria (Fever with parasitaemia ≥5,000/µL) was 1.18 episodes/child/year in the active cohort and 0.89 in the passive cohort (rate ratio 1.32, 95% CI 1.13–1.54). Malaria cases in the passive cohort were more likely to have high grade fever; but parasite densities were similar in the two groups. Incidence was highly seasonal; when a specific case definition was used, about 60% of cases occurred within the 4 months June-September.</p><p>Conclusion</p><p>Passive case detection required at least a 30%–40% increase in the sample size for vaccine trials, compared to active detection, to achieve the same power. However we did not find any evidence that parasite densities were higher with passive than with active detection. The incidence of malaria is highly seasonal and meets the WHO criteria for Seasonal Malaria Chemoprevention (SMC). At least half of the malaria cases in these children could potentially be prevented if SMC was effectively deployed.</p></div
    corecore