156 research outputs found

    Diffusion tensor imaging and quantitative T2 mapping to monitor muscle recovery following hamstring injury

    Get PDF
    MRI examinations are accurate for diagnosing sports-related acute hamstring injuries. However, sensitive imaging methods for assessing recovery of these injuries are lacking. Diffusion tensor imaging (DTI) and quantitative T2 (qT2) mapping have both shown promise for assessing recovery of muscle micro trauma and exercise effects. The purpose of this study was to explore the potential of DTI and qT2 mapping for monitoring the muscle recovery processes after acute hamstring injury. In this prospective study, athletes with an acute hamstring injury underwent a 3-T MRI examination of the injured and contralateral hamstrings including DTI and qT2 measurements at three time points: (1) within 1 week after sustaining the injury, (2) 2 weeks after time point 1, and (3) return to play (RTP). A linear mixed model was used for time-effect analysis and paired t-tests for the detection of differences between injured and uninjured muscles. Forty-one athletes (age 27.8 ± 7 years; two females and 39 males) were included. Mean RTP time was 50 (range 12–169) days. A significant time effect was found for mean diffusivity, radial diffusivity, and the second and third eigenvalues (p ≤ 0.001) in the injured muscles. Fractional anisotropy (p = 0.40), first eigenvalue (p = 0.02), and qT2 (p = 0.61) showed no significant time effect. All DTI indices, except for fractional anisotropy, were significantly elevated compared with control muscles right after the injury (p 0.04). In conclusion, DTI can be used to monitor recovery after an acute hamstring injury. Future work should explore the potential of DTI indices to predict RTP and recovery times in athletes after an acute strain injury

    The effect of noise and lipid signals on determination of Gaussian and non-Gaussian diffusion parameters in skeletal muscle

    Get PDF
    This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments. Simulations were performed using literature input values, modeling fat contamination as an additive baseline to data, whereas phantom studies used a phantom containing aliphatic and olefinic fats and muscle-like gel. Human imaging was performed in the hamstring muscles of 10 volunteers. Diffusion-weighted imaging was applied with spectral attenuated inversion recovery (SPAIR), slice-select gradient reversal and water-specific excitation fat suppression, alone and in combination. Measurement bias (accuracy) and dispersion (precision) were evaluated, together with intra- and inter-scan repeatability. Simulations indicated that noise in magnitude images resulted in <6% bias in diffusion coefficients and non-Gaussian parameters (α, K), whereas baseline fitting minimized fat bias for all models, except IVIM. In vivo, popular SPAIR fat suppression proved inadequate for accurate parameter estimation, producing non-physiological parameter estimates without baseline fitting and large biases when it was used. Combining all three fat suppression techniques and fitting data with a baseline offset gave the best results of all the methods studied for both Gaussian diffusion and, overall, for non-Gaussian diffusion. It produced consistent parameter estimates for all models, except IVIM, and highlighted non-Gaussian behavior perpendicular to muscle fibers (α ~ 0.95, K ~ 3.1). These results show that effective fat suppression is crucial for accurate measurement of non-Gaussian diffusion parameters, and will be an essential component of quantitative studies of human muscle quality

    Perforating artery flow velocity and pulsatility in patients with carotid occlusive disease: a 7 tesla MRI study

    Get PDF
    Patients with carotid occlusive disease express altered hemodynamics in the post-occlusive vasculature and lesions commonly attributed to cerebral small vessel disease (SVD). We addressed the question if cerebral perforating artery flow measures, using a novel 7T MRI technique, are altered and related to SVD lesion burden in patients with carotid occlusive disease. 21 patients were included with a uni- (18) or bilateral (3) carotid occlusion (64±7 years) and 19 controls (65 ±10 years). Mean flow velocity and pulsatility in the perforating arteries in the semi-oval center (CSO) and basal ganglia (BG), measured with a 2D phase contrast 7T MRI sequence, were compared between patients and controls, and between hemispheres in patients with unilateral carotid occlusive disease. In patients, relations were assessed between perforating artery flow measures and SVD burden score and white matter hyperintensity (WMH) volume. CSO perforating artery flow velocity was lower in patients than controls, albeit non-significant (mean difference [95% confidence interval] 0.08 cm/s [0.00–0.16]; p = 0.053), but pulsatility was similar (0.07 [-0.04–0.18]; p = 0.23). BG flow velocity and pulsatility did not differ between patients and controls (velocity = 0.28 cm/s [-0.32–0.88]; p = 0.34; pulsatility = 0.00 [-0.10–0.11]; p = 0.97). Patients with unilateral carotid occlusive disease showed no significant interhemispheric flow differences. Though non-significant, within patients lower CSO (p = 0.06) and BG (p = 0.11) flow velocity related to larger WMH volume. Our findings suggest that carotid occlusive disease may be associated with abnormal cerebral perforating artery flow and that this relates to SVD lesion burden in these patients, although our observations need corroboration in larger study populations.</p

    Cerebral Perfusion and the Occurrence of Nonfocal Transient Neurological Attacks

    Get PDF
    INTRODUCTION: Nonfocal transient neurological attacks (TNAs) are associated with an increased risk of cardiac events, stroke and dementia. Their etiology is still unknown. Global cerebral hypoperfusion has been suggested to play a role in their etiology, but this has not been investigated. We assessed whether lower total brain perfusion is associated with a higher occurrence of TNAs. METHODS: Between 2015 and 2018, patients with heart failure were included in the Heart Brain Connection study. Patients underwent brain magnetic resonance imaging, including quantitative magnetic resonance angiography (QMRA) to measure cerebral blood flow (CBF). We calculated total brain perfusion of each participant by dividing total CBF by brain volume. Patients were interviewed with a standardized questionnaire on the occurrence of TNAs by physicians who were blinded to QMRA flow status. We assessed the relation between total brain perfusion and the occurrence of TNAs with Poisson regression analysis. RESULTS: Of 136 patients (mean age 70 years, 68% men), 29 (21%) experienced ≥1 TNAs. Nonrotatory dizziness was the most common subtype of TNA. Patients with TNAs were more often female and more often had angina pectoris than patients without TNAs, but total CBF and total brain perfusion were not different between both groups. Total brain perfusion was not associated with the occurrence of TNAs (adjusted risk ratio 1.12, 95% CI 0.88-1.42). CONCLUSION: We found no association between total brain perfusion and the occurrence of TNAs in patients with heart failure

    Blood pressure and body mass index in an ethnically diverse sample of adolescents in Paramaribo, Suriname

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High blood pressure (BP) is now an important public health problem in non-industrialised countries. The limited evidence suggests ethnic inequalities in BP in adults in some non-industrialised countries. However, it is unclear whether these ethnic inequalities in BP patterns in adults reflect on adolescents. Hence, we assessed ethnic differences in BP, and the association of BP with body mass index (BMI) among adolescents aged 12–17 years in Paramaribo, Suriname.</p> <p>Methods</p> <p>Cross-sectional study with anthropometric and blood pressure measurements. A random sample of 855 adolescents (167 Hindustanis, 169 Creoles, 128 Javanese, 91 Maroons and 300 mixed-ethnicities) were studied. Ethnicity was based on self-reported ethnic origin.</p> <p>Results</p> <p>Among boys, Maroons had a lower age- and height-adjusted systolic BP than Creoles, and a lower diastolic BP than other ethnic groups. However, after further adjustment for BMI, only diastolic BP in Maroons was significantly lower than in Javanese (67.1 versus 70.9 mmHg). Creole boys had a lower diastolic BP than Hindustani (67.3 versus 70.2 mmHg) and Javanese boys after adjustment for age, height and BMI. Among girls, there were no significant differences in systolic BP between the ethnic groups. Maroon girls, however, had a lower diastolic BP (65.6 mmHg) than Hindustani (69.1 mmHg), Javanese (71.2 mmHg) and Mixed-ethnic (68.3 mmHg) girls, but only after differences in BMI had been adjusted for. Javanese had a higher diastolic BP than Creoles (71.2 versus 66.8 mmHg) and Mixed-ethnicity girls. BMI was positively associated with BP in all the ethnic groups, except for diastolic BP in Maroon girls.</p> <p>Conclusion</p> <p>The study findings indicate higher mean BP levels among Javanese and Hindustani adolescents compared with their African descent peers. These findings contrast the relatively low BP reported in Javanese and Hindustani adult populations in Suriname and underscore the need for public health measures early in life to prevent high BP and its sequelae in later life.</p

    Nonfocal transient neurological attacks are related to cognitive impairment in patients with heart failure

    Get PDF
    Introduction Nonfocal transient neurological attacks (TNAs) are associated with an increased risk of future dementia, but it is unclear whether TNAs are also associated with concurrent cognitive impairment. We hypothesized that recent TNAs are related to worse cognitive functioning. We tested our hypothesis in patients with heart failure, as these patients are at risk of cerebral hypoperfusion, which might play a role in the etiology of TNAs. Methods We performed neuropsychological testing in all patients with heart failure enrolled in the Heart Brain Connection study. We assessed global cognition, attention-psychomotor speed, executive functioning, memory and language. All patients were interviewed with a standardized questionnaire on the occurrence of TNAs in the preceding 6 months. We studied associations between TNAs and cognitive functioning with linear and logistic regression analyses, adjusted for age, sex and education. We performed additional analyses in patients without previous stroke or TIA and in patients without brain infarction on MRI. Results Thirty-seven (23%) of 158 patients (mean age 70 years, 67% men) experienced one or more TNAs. Patients with a recent TNA were more likely to be impaired on≥1 cognitive domains than patients without TNAs [41% vs. 18%, adjusted odds ratio 4.6, 95% confdence interval (CI) 1.8–11.8]. Patients with TNAs performed worse than patients without TNAs on global cognition (mean diference in z scores −0.36, 95% CI −0.54 to −0.18), and on the cognitive domains attentionpsychomotor speed (mean diference −0.40, 95% CI −0.66 to −0.14), memory (mean diference −0.57, 95% CI −0.98 to −0.15) and language (mean diference −0.47, 95% CI −0.79 to −0.16). These associations were independent of cardiac output and volume of white matter hyperintensities. Subgroup analyses in patients without previous stroke or TIA or brain infarction on MRI (n=78) yielded comparable results, with the exception of the cognitive domain language, which was no longer diferent between patients with and without TNAs. Conclusion Among patients with heart failure, TNAs are associated with cognitive impairment, which warrants the need for more clinical awareness of this problem

    Metal carbonyl stabilized carbonium ions

    No full text
    Bibliography:p. 186-196
    • …
    corecore