17 research outputs found

    CaractĂ©risation de la voie de signalisation AMPK/ACC dans le foie et l’intestin du Psammomys obesus, un modĂšle animal de rĂ©sistance Ă  l’insuline et de diabĂšte de type 2

    Full text link
    L’expansion des maladies mĂ©taboliques dans les sociĂ©tĂ©s modernes exige plus d’activitĂ©s de recherche afin d’augmenter notre comprĂ©hension des mĂ©canismes et l’identification de nouvelles cibles d’interventions cliniques. L’obĂ©sitĂ©, la rĂ©sistance Ă  l’insuline (RI) et la dyslipidĂ©mie, en particulier sont tous des facteurs de risque associĂ©s Ă  la pathogenĂšse du diabĂšte de type 2 (DT2) et des maladies cardiovasculaires. Ainsi, la dyslipidĂ©mie postprandiale, notamment la surproduction des lipoprotĂ©ines hĂ©patiques et intestinales, contribue d’une façon significative Ă  l’hypertriglycĂ©ridĂ©mie. Quoique plusieurs Ă©tudes cliniques et fondamentales chez l’homme et les modĂšles animaux aient mis en Ă©vidence les rĂŽles importants jouĂ©s par le foie et l’intestin dans la dyslipidĂ©mie, les mĂ©canismes molĂ©culaires en cause ne sont pas bien Ă©lucidĂ©s. L’une des voies principales rĂ©gulant le mĂ©tabolisme lipidique est la voie de la protĂ©ine kinase AMPK. L’épuisement de l’ATP intracellulaire entraĂźne une activation de l’AMPK qui va Ɠuvrer pour rĂ©tablir l’équilibre Ă©nergĂ©tique en stimulant des voies gĂ©nĂ©ratrices d’ATP et en inhibant des voies anaboliques consommatrices d’ATP. Les effets positifs de l’activation de l’AMPK comprennent l’augmentation de la sensibilitĂ© Ă  l’insuline dans les tissus pĂ©riphĂ©riques, la rĂ©duction de l’hyperglycĂ©mie et la rĂ©duction de la lipogenĂšse, d’oĂč son importance dans les interventions cliniques pour la correction des dĂ©rangements mĂ©taboliques. Il est Ă  souligner que le rĂŽle de l’AMPK dans le foie et l’intestin semble plus complexe et mal compris. Ainsi, la voie de signalisation de l’AMPK n’est pas bien Ă©lucidĂ©e dans les situations pathologiques telles que le DT2, la RI et l’obĂ©sitĂ©. Dans le prĂ©sent projet, notre objectif consiste Ă  caractĂ©riser le rĂŽle de cette voie de signalisation dans la lipogenĂšse hĂ©patique et dans le mĂ©tabolisme des lipides dans l’intestin chez le Psammomys obesus, un modĂšle animal d’obĂ©sitĂ©, de RI et de DT2. À cette fin, 3 groupes d’animaux sont Ă©tudiĂ©s (i.e. contrĂŽle, RI et DT2). En caractĂ©risant la voie de signalisation de l’AMPK/ACC dans le foie, nous avons constatĂ© une augmentation de l’expression gĂ©nique des enzymes clĂ©s de la lipogenĂšse (ACC, FAS, SCD-1 et mGPAT) et des facteurs de transcription (ChREBP, SREBP-1) qui modulent leur niveau d’expression. Nos analyses dĂ©taillĂ©es ont rĂ©vĂ©lĂ©, par la suite, une nette augmentation de l’expression de l’isoforme cytosolique de l’ACC, ACC1 (impliquĂ© dans la lipogenĂšse de novo) concomitante avec une invariabilitĂ© de l’expression de l’isoforme mitochondrial ACC2 (impliquĂ© dans la rĂ©gulation nĂ©gative de la ÎČ-oxydation). En dĂ©pit d’un Ă©tat adaptatif caractĂ©risĂ© par une expression protĂ©ique et une phosphorylation (activation) Ă©levĂ©es de l’AMPKα, l’activitĂ© de la kinase qui phosphoryle et inhibe l’ACC reste trĂšs Ă©levĂ©e chez les animaux RI et DT2. Au niveau de l’intestin grĂȘle des animaux RI et DT2, nous avons dĂ©montrĂ© que l’augmentation de la lipogenĂšse intestinale est principalement associĂ©e avec une diminution de la voie de signalisation de l’AMPK (i.e. expression protĂ©ique et phosphorylation/activation rĂ©duites des deux isoformes AMPKα1 et AMPKα2). La principale consĂ©quence de la diminution de l’activitĂ© AMPK est la rĂ©duction de la phosphorylation de l’ACC. Étant donnĂ© que le niveau d’expression totale d’ACC reste inchangĂ©, nos rĂ©sultats suggĂšrent donc une augmentation de l’activitĂ© des deux isoformes ACC1 et ACC2. En parallĂšle, nous avons observĂ© une rĂ©duction de l’expression protĂ©ique et gĂ©nique de la CPT1 [enzyme clĂ© de la ÎČ-oxydation des acides gras (AG)]. L’ensemble de ces rĂ©sultats suggĂšre une inhibition de l’oxydation des AG concomitante avec une stimulation de la lipogenĂšse de novo. Enfin, nous avons dĂ©montrĂ© que l’intestin grĂȘle est un organe sensible Ă  l’action de l’insuline et que le dĂ©veloppement de la rĂ©sistance Ă  l’insuline pourrait altĂ©rer les deux voies de signalisation (i.e. Akt/GSK3 et p38MAPK) essentielles dans plusieurs processus mĂ©taboliques. En conclusion, nos rĂ©sultats indiquent que l’augmentation de la lipogenĂšse qui contribue pour une grande partie Ă  la dyslipidĂ©mie dans la rĂ©sistance Ă  l’insuline et le diabĂšte serait due, en partie, Ă  des dĂ©fauts de signalisation par l’AMPK. Nos observations illustrent donc le rĂŽle crucial du systĂšme AMPK au niveau hĂ©patique et intestinal, ce qui valide l’approche thĂ©rapeutique consistant Ă  activer l’AMPK pour traiter les maladies mĂ©taboliques.Understanding the cellular mechanisms involved in the development of insulin resistance, and later on the occurrence of type 2 diabetes and its metabolic complications, is a perquisite step toward the identification of new therapeutic targets to fight against the development of these metabolic diseases. In the present studies, we used the gerbil Psammomys obesus, a well-established animal model of obesity, insulin resistance (IR) and type 2 diabetes (T2D), to characterize the hepatic and intestinal signaling abnormalities associated with lipid metabolism disorders during the pathogenesis of IR and T2D. Thus, we are able to demonstrate that the development of these metabolic diseases in Psammomys obesus animals, is accompanied by increased hepatic and intestinal lipogenesis with very high efficiency to form triglycerides rich-lipoproteins. In the liver, we observed an increase in mRNA levels of key lipogenic enzymes (ACC, FAS, SCD-1 and mGPAT) and transcription factors (SREBP-1, ChREBP), which modulate the expression level of lipogenic enzymes. Thereafter, our detailed analysis of the AMPK/ACC signaling pathway revealed a rise in the gene expression of the cytosolic ACC1 isoform of ACC(involved in de novo lipogenesis) concomitant with a constant expression of the mitochondrial ACC2 (negative regulator of ÎČ-oxidation). In spite of an adaptive state characterized by higher protein expression and phosphorylation (activation) of AMPKα, the kinase that phosphorylates and inhibits ACC, the activity of the later remains very high in IR and T2D animals. In the small intestine of IR and T2D animals, we demonstrated that the increase in intestinal lipogenesis is mainly associated with a decrease of AMPK signaling pathway (i.e. reduced expression and protein phosphorylation/activation of the two AMPKα1 and AMPKα2 isoforms). The main consequence of the decline in AMPK activity is the reduction of ACC phosphorylation. Given that, the expression levels of ACC remain unchanged; our results thus suggest an increased activity of both ACC isoforms, ACC1 and ACC2. Next, we observed a reduction in protein and gene expression of CPT1 [key enzyme in fatty acid (FA) ÎČ-oxidation]. Taken together, these results suggest an inhibition of FA ÎČ-oxidation concomitant with a stimulation of de novo lipogenesis. Finally, we demonstrated that the small intestine is an insulin sensitive organ and that the development of IR affects two signaling pathways (i.e. Akt/GSK3 and p38MAPK) essentials for several metabolic processes. In conclusion, our results indicate that increased lipogenesis, in IR and T2D, which exacerbate the dyslipidemia associated with these diseases, might be, at least partially, a result of AMPK signaling defects. In addition, our observations illustrate the crucial role of AMPK/ACC in the liver and intestine and validate AMPK as a potential target to treat the metabolic diseases

    Boesenbergia pandurata Attenuates Diet-Induced Obesity by Activating AMP-Activated Protein Kinase and Regulating Lipid Metabolism

    Get PDF
    Obesity, a chronic metabolic disorder, is characterized by enlarged fat mass and dysregulation of lipid metabolism. The medicinal plant, Boesenbergia pandurata (Roxb.) Schltr., has been reported to possess anti-oxidative and anti-inflammatory properties; however, its anti-obesity activity is unexplored. The present study was conducted to determine whether B. pandurata extract (BPE), prepared from its rhizome parts, attenuated high-fat diet (HFD)-induced obesity in C57BL/6J mice. The molecular mechanism was investigated in 3T3-L1 adipocytes and HepG2 human hepatoma cells. BPE treatment decreased triglyceride accumulation in both 3T3-L1 adipocytes and HepG2 hepatocytes by activating AMP-activated protein kinase (AMPK) signaling and regulating the expression of lipid metabolism-related proteins. In the animal model, oral administration of BPE (200 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were suppressed by BPE administration. Fat pad masses were reduced in BPE-treated mice, as evidenced by reduced adipocyte size. Furthermore, BPE protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. BPE also activated AMPK signaling and altered the expression of lipid metabolism-related proteins in white adipose tissue and liver. Taken together, these findings indicate that BPE attenuates HFD-induced obesity by activating AMPK and regulating lipid metabolism, suggesting a potent anti-obesity agent

    Noyau et image de la transformation definie par integration sur les droites de P3(C) ne rencontrant par une droite donnee

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Identification of novel regulatory mechanisms for for Cdc42 GTPase-activating protein CdGAP/ARHGAP31, a protein involved in development and cancer

    No full text
    Abstract The small Rho GTPase proteins act as molecular switches that regulate diverse cellular processes linked mostly to the actin-cytoskeleton remodeling making them essential regulators of cell adhesion, migration and invasion. Dysregulation of their activities can result in different abnormal phenotypes particularly, tumor progression and metastasis. Hence, regulators of Rho GTPases such as Rho guanine nucleotide exchange factors (RhoGEFs) and Rho GTPase-activating proteins (RhoGAPs), are critical for normal cellular responses and are targets for subversion during oncogenic transformation. CdGAP (Cdc42 GTPase-activating protein) is a member of a well-conserved subfamily of RhoGAP proteins and a negative regulator of the small Rho GTPases, Rac1 and Cdc42. Associated with a rare developmental disorder (AOS, Adams-Oliver Syndrome) and required for a normal angiogenesis, CdGAP plays important roles in the regulation of cell migration and proliferation during early development. In addition, recent findings characterize CdGAP as an essential synergistic component between TGFÎČ and HER2/Neu/ErbB-2 signaling pathways which play a positive role in cancer, particularly breast cancer. CdGAP is regulated by lipid binding, protein-protein interactions and phosphorylation, still these mechanisms are not well understood. In this work we first investigate the interaction between CdGAP and its negative regulator, the endocytic protein Intersectin. Using an in vitro approach, we identify a novel, atypical xKx(K/R) (SKSKK) motif in the basic rich (BR) region of CdGAP that directly interacts with the Intersectin-SH3D domain. Moreover, the well-conserved motif is required for the regulation of CdGAP activity following Intersectin binding. Next, we investigate CdGAP phosphorylation and identify two regulatory phospho-serines in the C-terminal (CT) tail, Ser-1093 and Ser-1163, that are phosphorylated by the AGC-kinase family member, RSK1. Finally, we show that 14-3-3 family members bind and regulate both the cellular localization and activity of CdGAP in a Ser-1093 and Ser-1163 phosphorylation-dependent manner. Overall, this work provides two novel CdGAP-regulatory mechanisms that can be applied in therapeutic approaches targeting this RhoGAP, particularly in breast cancers.RĂ©sumĂ©Les petites protĂ©ines G de la famille Rho sont des commutateurs molĂ©culaires qui contrĂŽlent divers procĂ©dĂ©s cellulaires associĂ©s notamment, Ă  la rĂ©gulation du cytosquelette et jouent par consĂ©quent, un rĂŽle clĂ© dans la rĂ©gulation de la motilitĂ© cellulaire. La dĂ©rĂ©gulation de leur activitĂ© peut entrainer des aberrations se manifestant en particulier, par une progression du cancer et des mĂ©tastases. Ainsi, les protĂ©ines rĂ©gulatrices comme les facteurs d'Ă©change de nuclĂ©otide (RhoGEFs) et les protĂ©ines activatrices des Rho GTPases (RhoGAPs) sont essentielles pour une signalisation cellulaire normale et sont en gĂ©nĂ©ral, affectĂ©es lors des transformations oncogĂ©niques. CdGAP (Cdc42-GTPase activating protein) est un membre d'une sous-famille de protĂ©ines RhoGAPs bien conservĂ©e qui rĂ©gule nĂ©gativement les Rho GTPases Cdc42 et Rac1. AssociĂ© Ă  un trouble du dĂ©veloppement rare, le syndrome d'Adams-Oliver ou AOS et nĂ©cessaire pour une angiogenĂšse normale, CdGAP joue un rĂŽle important dans la rĂ©gulation de la migration et la prolifĂ©ration cellulaires au cours du dĂ©veloppement. RĂ©cemment, CdGAP est identifiĂ© comme une composante synergique essentielle entre les voies de signalisation de TGFÎČ et HER2/Neu/ErbB-2 et qui joue un rĂŽle proto-oncogĂ©nique, en particulier dans le cancer du sein. CdGAP est rĂ©gulĂ©e par des mĂ©canismes incluant les lipides, les interactions protĂ©ine-protĂ©ine et la phosphorylation, nĂ©anmoins, ces mĂ©canismes ne sont pas bien Ă©lucidĂ©s. Dans cette Ă©tude, nous Ă©tudions en premier l'interaction entre CdGAP et son rĂ©gulateur nĂ©gatif, la protĂ©ine endocytique, Intersectin. En utilisant une approche in vitro, nous identifions un nouveau motif atypique, xKx (K/R) (SKSKK) dans la rĂ©gion riche en rĂ©sidus basiques (BR) de CdGAP interagissant directement avec le domaine SH3D d'Intersectin. Le motif est en outre, bien conservĂ© est requis pour la rĂ©gulation de l'activitĂ© CdGAP par Intersectin. Par la suite, nous identifions deux sites de phosphorylation clĂ©s dans la rĂ©gion C-terminale de CdGAP, Ser-1093 et Ser-1163 qui sont phosphorylĂ©s par la protĂ©ine AGC-kinase, RSK1. Nous dĂ©montrons finalement, que les protĂ©ines adaptatrices 14-3-3 lient et rĂ©gulent la localisation cellulaire et l'activitĂ© de CdGAP d'une maniĂšre dĂ©pendante de la phosphorylation des rĂ©sidus, Ser-1093 et Ser-1163. La prĂ©sente Ă©tude identifie deux nouveaux mĂ©canismes de rĂ©gulation de CdGAP qui peuvent ĂȘtre exploitĂ©s dans des approches thĂ©rapeutiques ciblant cette protĂ©ine, notamment dans les cancers du sein

    The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts

    No full text
    Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba poses a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies

    AMPK in the small intestine in normal and pathophysiological conditions

    No full text
    International audienceThe role of AMPK in regulating energy storage and depletion remains unexplored in the intestine. This study will to define its status, composition, regulation and lipid function, as well as to examine the impact of insulin resistance and type 2 diabetes on intestinal AMPK activation, insulin sensitivity, and lipid metabolism. Caco-2/15 cells and Psammomys obesus (P. obesus) animal models were experimented. We showed the predominance of AMPKalpha1 and the prevalence of alpha1/beta2/gamma1 heterotrimer in Caco-2/15 cells. The activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside and metformin resulted in increased phospho(p)-ACC. However, the down-regulation of p-AMPK by compound C and high glucose lowered p-ACC without affecting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Administration of metformin to P. obesus with insulin resistance and type 2 diabetes led to 1) an up-regulation of intestinal AMPK signaling pathway typified by ascending p-AMPKalpha(-Thr172); 2) a reduction in ACC activity; 3) an elevation of carnitine palmitoyltransferase 1; 4) a trend of increase in insulin sensitivity portrayed by augmentation of p-Akt and phospho-glycogen synthetase kinase 3beta; 5) a reduced phosphorylation of p38-MAPK and ERK1/2; and 6) a decrease in diabetic dyslipidemia following lowering of intracellular events that govern lipoprotein assembly. These data suggest that AMPK fulfills key functions in metabolic processes in the small intestine

    New Sequencing technologies help revealing unexpected mutations in Autosomal Dominant Hypercholesterolemia

    Get PDF
    International audienceAutosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH

    Molecular interactions of PCSK9 with an inhibitory nanobody, CAP1 and HLA-C: Functional regulation of LDLR levels

    No full text
    Objective: The liver-derived circulating PCSK9 enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes. PCSK9 inhibition or silencing is presently used in clinics worldwide to reduce LDL-cholesterol, resulting in lower incidence of cardiovascular disease and possibly cancer/metastasis. The mechanism by which the PCSK9-LDLR complex is sorted to degradation compartments is not fully understood. We previously suggested that out of the three M1, M2 and M3 subdomains of the C-terminal Cys/His-rich-domain (CHRD) of PCSK9, only M2 is critical for the activity of extracellular of PCSK9 on cell surface LDLR. This likely implicates the binding of M2 to an unknown membrane-associated "protein X" that would escort the complex to endosomes/lysosomes for degradation. We reported that a nanobody P1.40 binds the M1 and M3 domains of the CHRD and inhibits the function of PCSK9. It was also reported that the cytosolic adenylyl cyclase-associated protein 1 (CAP1) could bind M1 and M3 subdomains and enhance the activity of PCSK9. In this study, we determined the 3-dimensional structure of the CHRD-P1.40 complex to understand the intricate interplay between P1.40, CAP1 and PCSK9 and how they regulate LDLR degradation. Methods: X-ray diffraction of the CHRD-P1.40 complex was analyzed with a 2.2 Å resolution. The affinity and interaction of PCSK9 or CHRD with P1.40 or CAP1 was analyzed by atomic modeling, site-directed mutagenesis, bio-layer interferometry, expression in hepatic cell lines and immunocytochemistry to monitor LDLR degradation. The CHRD-P1.40 interaction was further analyzed by deep mutational scanning and binding assays to validate the role of predicted critical residues. Conformational changes and atomic models were obtained by small angle X-ray scattering (SAXS). Results: We demonstrate that PCSK9 exists in a closed or open conformation and that P1.40 favors the latter by binding key residues in the M1 and M3 subdomains of the CHRD. Our data show that CAP1 is well secreted by hepatic cells and binds extracellular PCSK9 at distinct residues in the M1 and M3 modules and in the acidic prodomain. CAP1 stabilizes the closed conformation of PCSK9 and prevents P1.40 binding. However, CAP1 siRNA only partially inhibited PCSK9 activity on the LDLR. By modeling the previously reported interaction between M2 and an R-X-E motif in HLA-C, we identified Glu567 and Arg549 as critical M2 residues binding HLA-C. Amazingly, these two residues are also required for the PCSK9-induced LDLR degradation. Conclusions: The present study reveals that CAP1 enhances the function of PCSK9, likely by twisting the protein into a closed configuration that exposes the M2 subdomain needed for targeting the PCSK9-LDLR complex to degradation compartments. We hypothesize that "protein X", which is expected to guide the LDLR-PCSK9-CAP1 complex to these compartments after endocytosis into clathrin-coated vesicles, is HLA-C or a similar MHC-I family member. This conclusion is supported by the PCSK9 natural loss-of-function Q554E and gain-of-function H553R M2 variants, whose consequences are anticipated by our modeling
    corecore