10 research outputs found

    All-inorganic perovskite-based distributed feedback resonator

    Get PDF
    Halide perovskite materials have rapidly emerged as outstanding optoelectronic materials for solar cells, light-emitting diodes (LEDs), and lasers. Compared to hybrid organic-inorganic perovskites, all-inorganic perovskites have shown unique merits that may contribute to the ultimate goal of developing electrically-pumped lasers. In this paper, we demonstrate a distributed feedback (DFB) resonator using an all-inorganic perovskite thin film as the gain medium. The film has a gain coefficient of 161.1 cm−1 and a loss coefficient of 30.9 cm−1. Excited by picosecond pulses, the microstructured all-inorganic perovskite film exhibits a single-mode emission at 654 nm with a threshold of 33 μJ/cm2. The facile fabrication process provides a promising route towards low-cost single-mode visible lasers for many practical applications

    X-ray photoelectron spectroscopy studies of indium-tin-oxide treated via oxygen plasma immersion ion implantation

    No full text
    Surface modification was performed on the indium-tin-oxide (ITO) thin films by oxygen inductive coupling plasma (O-ICP) and oxygen plasma immersion ion implantation (O-PIII). The electronic states of ITO surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The observed peak shifts of O 1s, In 3d5/2 and Sn d5/2 core levels showed that the work function of ITO can be further enhanced by O-PIII treatment, compared with that of untreated and O-ICP treated surfaces. The deconvolution of O 1s spectrum and calculation of stoichiometry showed that the work function improvement should be attributed to the increase of effective oxygen content, namely, the elimination of oxygen vacancies. In addition, the measurement of Kelvin probe confirmed that an increment of the ITO work function by 1.1 eV was obtained on O-PIII treated sample and the results sustained our proposal
    corecore