242 research outputs found

    Submerged Aquatic Vegetation Trends of Back Bay, Virginia

    Get PDF
    (First Paragraph): Submerged aquatic vegetation (SAV) is an important part of a healthy Back Bay ecosystem. SAV helps to stabilize sediments that enter the system and to deter shoreline erosion. The submerged macrophytes serve as filters, improving the quality of the water column by removing many pollutants and dissolved nutrients (Clark, et al., 1973; and Stevenson, et al., 1979). These aquatic plants provide important habitats for a variety of wildlife species, which use the grass beds for shelter, feeding and breeding areas. SAV is a major primary producer in the food chain associated within the aquatic and adjoining upland habitats. The added physical characteristics of the plants within the aquatic environment allow for a greater diversity of wildlife species, when compared to habitats not supporting SAV (Stevenson & Confer, 1978)

    Neural distinctiveness of fatigue and low sleep quality in multiple sclerosis

    Get PDF
    Background and purpose Fatigue and low sleep quality in multiple sclerosis (MS) are closely related symptoms. Here, the associations between the brain's functional connectivity (FC) and fatigue and low sleep quality were investigated to determine the degree of neural distinctiveness of these symptoms. Method A hundred and four patients with relapsing–remitting MS (age 38.9 ± 10.2 years, 66 females) completed the Modified Fatigue Impact Scale and the Pittsburgh Sleep Quality Index and underwent resting-state functional magnetic resonance imaging. FC was analyzed using independent-component analysis in sensorimotor, default-mode, fronto-parietal and basal-ganglia networks. Multiple linear regression models allowed us to test the association between FC and fatigue and sleep quality whilst controlling for one another as well as for demographic, disease-related and imaging variables. Results Higher fatigue correlated with lower sleep quality (r = 0.54, p < 0.0001). Higher fatigue was associated with lower FC of the precentral gyrus in the sensorimotor network, the precuneus in the posterior default-mode network and the superior frontal gyrus in the left fronto-parietal network, independently of sleep quality. Lower sleep quality was associated with lower FC of the left intraparietal sulcus in the left fronto-parietal network, independently of fatigue. Specific associations were found between fatigue and the sensorimotor network's global FC and between low sleep quality and the left fronto-parietal network's global FC. Conclusion Despite the high correlation between fatigue and low sleep quality in the clinical picture, our findings clearly indicate that, on the neural level, fatigue and low sleep quality in MS are associated with decreased FC in distinct functional brain networks

    Epigenetic modifications associated with maternal anxiety during pregnancy and children's behavioral measures

    Get PDF
    Epigenetic changes are associated with altered behavior and neuropsychiatric disorders and they modify the trajectory of aging. Maternal anxiety during pregnancy is a common environmental challenge for the fetus, causing changes in DNA methylation. Here, we determined the mediating role of DNA methylation and the moderating role of offspring sex on the association between maternal anxiety and children’s behavioral measures. In 83 mother–child dyads, maternal anxiety was assessed in each trimester of pregnancy when the child was four years of age. Children’s behavioral measures and children’s buccal DNA methylation levels (NR3C1, IGF2/H19 ICR, and LINE1) were examined. Higher maternal anxiety during the third trimester was associated with more methylation levels of the NR3C1. Moderating effects of sex on the association between maternal anxiety and methylation were found for IGF2/H19 and LINE1 CpGs. Mediation analysis showed that methylation of NR3C1 could buffer the effects of maternal anxiety on children’s behavioral measures, but this effect did not remain significant after controlling for covariates. In conclusion, our data support an association between maternal anxiety during pregnancy and DNA methylation. The results also underscore the importance of sex differences and timing effects. However, DNA methylation as underlying mechanism of the effect of maternal anxiety during pregnancy on offspring’s behavioral measures was not supported

    Strategia bezpiecznego przeprowadzania badania metodą rezonansu magnetycznego u pacjenta z wszczepionym kardiowerterem-defibrylatorem

    Get PDF
    U pacjenta ze wszczepionym kardiowerterem-defibrylatorem (ICD) z powodu wskazań klinicznych przeprowadzono bezpiecznie badanie metodą rezonansu magnetycznego (MRI) urządzeniem o indukcji 1,5 T. Kardiowerter-defibrylator przeprogramowano wyłącznie do detekcji, a tomograf i protokół badania zmodyfikowano w celu zmniejszenia mocy impulsów o wysokiej częstotliwości, oddziałujących na ICD. Funkcjonowanie urządzenia sprawdzono bezpośrednio po MRI oraz po 6 tygodniach, wykonując m.in. test indukcji migotania komór. W opisanym przypadku wykazano, że w wyjątkowych okolicznościach u starannie dobranych pacjentów z ICD można wykonać MRI mózgowia z zastosowaniem szczególnych środków ostrożności. (Folia Cardiologica Excerpta 2006; 1: 442-447

    ОСОБЕННОСТИ ЧИСЛЕННЫХ МЕТОДОВ РЕШЕНИЯ НЕСТАЦИОНАРНЫХ ЗАДАЧ ГЕОМЕХАНИКИ И ИХ ПРОГРАММНОЙ РЕАЛИЗАЦИИ

    Get PDF
    Приведен способ решения нестационарных задач геомеханики с применением методов крупных частиц и прогонки. Реализация способов осуществляется в среде разработки Visual Studio 2008

    ADP-ribosylation of arginine

    Get PDF
    Arginine adenosine-5′-diphosphoribosylation (ADP-ribosylation) is an enzyme-catalyzed, potentially reversible posttranslational modification, in which the ADP-ribose moiety is transferred from NAD+ to the guanidino moiety of arginine. At 540 Da, ADP-ribose has the size of approximately five amino acid residues. In contrast to arginine, which, at neutral pH, is positively charged, ADP-ribose carries two negatively charged phosphate moieties. Arginine ADP-ribosylation, thus, causes a notable change in size and chemical property at the ADP-ribosylation site of the target protein. Often, this causes steric interference of the interaction of the target protein with binding partners, e.g. toxin-catalyzed ADP-ribosylation of actin at R177 sterically blocks actin polymerization. In case of the nucleotide-gated P2X7 ion channel, ADP-ribosylation at R125 in the vicinity of the ligand-binding site causes channel gating. Arginine-specific ADP-ribosyltransferases (ARTs) carry a characteristic R-S-EXE motif that distinguishes these enzymes from structurally related enzymes which catalyze ADP-ribosylation of other amino acid side chains, DNA, or small molecules. Arginine-specific ADP-ribosylation can be inhibited by small molecule arginine analogues such as agmatine or meta-iodobenzylguanidine (MIBG), which themselves can serve as targets for arginine-specific ARTs. ADP-ribosylarginine specific hydrolases (ARHs) can restore target protein function by hydrolytic removal of the entire ADP-ribose moiety. In some cases, ADP-ribosylarginine is processed into secondary posttranslational modifications, e.g. phosphoribosylarginine or ornithine. This review summarizes current knowledge on arginine-specific ADP-ribosylation, focussing on the methods available for its detection, its biological consequences, and the enzymes responsible for this modification and its reversal, and discusses future perspectives for research in this field

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure

    Inclusive e+^+e^- production in collisions of pions with protons and nuclei in the second resonance region of baryons

    Full text link
    Inclusive e+^+e^- production has been studied with HADES in π\pi^- + p, π\pi^- + C and π+CH2\pi^- + \mathrm{CH}_2 reactions, using the GSI pion beam at sπp\sqrt{s_{\pi p}} = 1.49 GeV. Invariant mass and transverse momentum distributions have been measured and reveal contributions from Dalitz decays of π0\pi^0, η\eta mesons and baryon resonances. The transverse momentum distributions are very sensitive to the underlying kinematics of the various processes. The baryon contribution exhibits a deviation up to a factor seven from the QED reference expected for the dielectron decay of a hypothetical point-like baryon with the production cross section constrained from the inverse γ\gamma nπ\rightarrow \pi^- p reaction. The enhancement is attributed to a strong four-momentum squared dependence of the time-like electromagnetic transition form factors as suggested by Vector Meson Dominance (VMD). Two versions of the VMD, that differ in the photon-baryon coupling, have been applied in simulations and compared to data. VMD1 (or two-component VMD) assumes a coupling via the ρ\rho meson and a direct coupling of the photon, while in VMD2 (or strict VMD) the coupling is only mediated via the ρ\rho meson. The VMD2 model, frequently used in transport calculations for dilepton decays, is found to overestimate the measured dielectron yields, while a good description of the data can be obtained with the VMD1 model assuming no phase difference between the two amplitudes. Similar descriptions have also been obtained using a time-like baryon transition form factor model where the pion cloud plays the major role.Comment: (HADES collaboration

    Update on the diagnosis and treatment of neuromyelitis optica spectrum disorders (NMOSD) – revised recommendations of the Neuromyelitis Optica Study Group (NEMOS). Part II: Attack therapy and long-term management

    Get PDF
    corecore