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Abstract: Epigenetic changes are associated with altered behavior and neuropsychiatric disorders and
they modify the trajectory of aging. Maternal anxiety during pregnancy is a common environmental
challenge for the fetus, causing changes in DNA methylation. Here, we determined the mediating role
of DNA methylation and the moderating role of offspring sex on the association between maternal
anxiety and children’s behavioral measures. In 83 mother–child dyads, maternal anxiety was assessed
in each trimester of pregnancy when the child was four years of age. Children’s behavioral measures
and children’s buccal DNA methylation levels (NR3C1, IGF2/H19 ICR, and LINE1) were examined.
Higher maternal anxiety during the third trimester was associated with more methylation levels of
the NR3C1. Moderating effects of sex on the association between maternal anxiety and methylation
were found for IGF2/H19 and LINE1 CpGs. Mediation analysis showed that methylation of NR3C1
could buffer the effects of maternal anxiety on children’s behavioral measures, but this effect did not
remain significant after controlling for covariates. In conclusion, our data support an association
between maternal anxiety during pregnancy and DNA methylation. The results also underscore
the importance of sex differences and timing effects. However, DNA methylation as underlying
mechanism of the effect of maternal anxiety during pregnancy on offspring’s behavioral measures
was not supported.

Keywords: DNA methylation; NR3C1; IGF2/H19; LINE1; maternal anxiety; interaction; mediation;
sex-specific effects

1. Introduction

With the population aging worldwide, understanding the biology of healthy aging is
more relevant than ever. Brain aging is a major determinant of aging. Individual rates of
brain aging—including age-related brain diseases such as neurocognitive and neuropsychi-
atric disorders—may be shaped not only by the genome but also by the epigenome [1–3],
which is extensively modified by the prenatal environment [4]. Epigenetic modifications
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allow the offspring to rapidly adapt its phenotype in response to environmental cues at
the expense of a predisposition for disease in order to reach the reproduction period [5].
The relationship between adverse environmental influences during critical periods of pre-
natal life and the health of offspring in later life is the basis of the ‘Fetal Programming’ or
‘Developmental Origins of Health and Disease (DOHaD) hypothesis’ [6].

Exposure to maternal distress during pregnancy—including the experience of anxiety,
of depression or of stressful events—is a rather common environmental challenge for the
fetus. About 30% to 40% of pregnant women experience psychosocial distress (broadly de-
fined) during pregnancy [7–10]. With regard to anxiety, 18.2%, 19.1%, and 24.6% experience
self-reported anxiety in the first, second, and third trimesters, respectively (meta-analysis;
Dennis et al. [9]) and 14% to 15.8% is diagnosed with an anxiety disorder [11]. The preva-
lence of depression is up to 10% [12] or 7.4% (95% CIs: 2.2, 12.6), 12.8% (95% CIs: 10.7, 14.8),
and 12.0% (95% CIs: 7.4, 16.7) for each trimester, respectively [13]. Differences in prevalence
depend on population characteristics, timing, and type of screening used [11]. Higher per-
centages for depression (pooled prevalence of 25.5% in 37 studies (n = 47,677)) and anxiety
(pooled prevalence of 30.5% in 34 studies (n = 42,773)) occur during periods of universal
stress exposure, such as the corona pandemic [14]. Boekhorst et al. [15] reported a 49.7%
higher distress score in the COVID pandemic group as compared to a pre-pandemic group.

Exposure to maternal distress may increase fetal stress sensitivity and adapt fetal brain
function to meet the challenges of an “expected” stressful postnatal environment [5,16–18].
However, a stress-sensitive brain is susceptible to stress-related disorders—such as behav-
ioral measures, mental health problems, and neuropsychiatric diseases—in later life in a
sex-specific manner [19,20]. Although the aging brain is particularly vulnerable due to its
loss of resilience [21], neurodevelopmental and behavioral problems become phenotypi-
cally apparent already at childhood [22–26]. This is important for human research since
prospective studies from pregnancy to old age are extremely time consuming.

Still, it remains unclear how maternal distress during pregnancy “gets under the skin”
of the offspring. Epigenetic mechanisms are well known to be involved in the individual
trajectory of brain development and programming of the activity of the stress axis [27–31].
For instance, DNA methylation of the glucocorticoid receptor gene (NR3C1) may increase
offspring stress sensitivity. In one seminal paper from human study, Oberlander’s group
revealed that prenatal maternal anxiety and mood disorders were associated with increased
NR3C1 exon 1F DNA methylation in leukocytes from cord blood, which was also associ-
ated with an increased salivary cortisol response in three-month-old infants [32]. Other
promoter regions of NR3C1 have also drawn attention. For instance, the methylation profile
of NR3C1, 1B, 1D, and 1F promoter regions was investigated in cord blood mononuclear
cells trigged by the effect of maternal distress during pregnancy [33]. More recently, the
DNA methylation within proximal (within and at the shores of the CpG island) and distal
promoter regions was investigated in a rat study [34], showing tissue-, sex-, and age-specific
DNA methylation of these regions. Evidence from human studies also showed sex-specific
DNA methylation in offspring of mothers experiencing stress during pregnancy [35,36].
Although a meta-analysis [30] and several review papers [4,37,38] reported mixed results
(i.e., no changes, decreased and increased methylation), in the aftermath of prenatal expo-
sure to objective hardship (war-related trauma, interpersonal violence) studies focusing
on self-reported maternal distress in pregnancy mostly report positive correlations with
NR3C1 methylation (however, Mansell et al. [39] reported no effect). The authors argued
that these mixed findings were largely due to the lack of methodological consensus, cell- or
tissue specific effects (either neonatal cord blood, or whole blood, or placental tissue, or
buccal cells were analyzed), and selection of CpG sites. Additionally, they noted an extreme
focus on the 1F exon and emphasized the need for widening the examined sequence, in
order to include all non-protein-coding first exons of the NR3C1 in the analysis [30]. Taken
together, while several experimental and human studies relate maternal objective hardship
as well as maternal distress in pregnancy to methylation changes of NR3C1, there is some
evidence of an association of such methylation changes with offspring psychosocial stress
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reactivity (e.g., [32,40]) and behavior (e.g., [41]) and hardly any evidence for the role of
methylation changes of NR3C1 in the association between maternal distress in pregnancy
and offspring behavior [35] (for a review, see Cao Lei et al. [4]; Berretta et al. [37]; Sosnowski
et al. [42]).

Maternal mental health during pregnancy has not only been associated with DNA
methylation of the NR3C1 in the offspring, but also with other genes such as imprinted
genes. For instance, the IGF2 encodes insulin-like growth factor 2 which is an important
growth hormone for fetal development [43]. The IGF2 consists of several differentially
methylated regions (DMRs) located throughout IGF2 and the neighboring H19. The im-
printed control region (ICR) located between IGF2 and the upstream H19 is involved in
expression of IGF2 paternally inherited allele [44]. Chen et al. [45] found increased DNA
methylation of IGF2/H19 ICR in placental and cord blood of children whose mothers expe-
rienced high levels of distress. However, in another study, maternal anxiety was associated
with decreased IGF2/H19 ICR DNA methylation in cord blood of female neonates [39].
These inconsistent findings need to be studied further. Moreover, only some human studies
relating methylation changes of IGF2/H19 ICR to behavioral outcome are available [46–48].
A possible explanation for the inconsistent findings could be that early life stress alters
epigenetic patterns in a sex-specific manner, potentially under the control of sex chromo-
somes and/or sex hormones [49–51]. Yet, sex differences are often ignored in research
on epigenetic effects of early life stress [52]. Similarly, timing effect of exposure during
pregnancy may constitute an important factor for outcome in later life [53], and data from
the first trimester of pregnancy is often lacking (e.g., [32]). Therefore, sex effect and timing
effect need to be taken into account as critical factors moderating the effect of prenatal
exposure to maternal distress on the fetal epigenome.

The current study prospectively investigated whether maternal anxiety during preg-
nancy could influence children’s behavioral measures through epigenetic mechanisms.
We considered the timing of exposure to maternal anxiety on child’s DNA methylation
status, which seems to have significant effects on offspring behavior (reviewed in Van den
Bergh et al. [19]). Therefore, the aims of this study were to: (1) determine the association of
maternal anxiety in first, second, and third trimester with buccal cell DNA methylation
of candidate regions in four-year-olds, and, the moderating role of sex on this association;
(2) determine the mediating role of buccal DNA methylation on the association of maternal
anxiety during pregnancy with children’s behavioral measures and the moderating role
of sex on the mediation effect. We selected three candidate regions for our investigation:
NR3C1, IGF2/H19 ICR, and long interspersed nucleotide elements 1 (LINE1). NR3C1 and
IGF2/H19 are prime targets in mediating effects of prenatal stress and offspring neurode-
velopment and behavior [34]. LINE1 are quantified as an indicator of global methylation
status [54].

2. Materials and Methods
2.1. Study Design and Participants

The authors assert that all procedures contributing to this work comply with the
ethical standards set by the St. Elisabeth hospital Ethical Review Committee on research
regarding human subjects and with the Helsinki Declaration. All participating parents
provided written informed consent.

Data were collected as part of the Prenatal Early Life Stress (PELS) project, an ongoing
prospective cohort study in Tilburg, The Netherlands, following pregnant women and their
offspring from the beginning of pregnancy onwards. Participants were recruited before
the 15th week (n = 178; between the 8th and 14th week) and between the 15th and 22nd
week of pregnancy (n = 12) from the St. Elisabeth hospital in Tilburg, The Netherlands,
and four midwife practices. A total number of 191 children were born in this study (one
pair of twins). Via postal or digital questionnaires mothers provided information on their
psychological state three times during pregnancy (once every trimester), and three times
after birth (at 2/4 months, at 9 months, and at 4 years). At four years of age, buccal cells
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were collected from the children. For the purpose of the current study, we analyzed data
of all mother–child dyads with available questionnaires of maternal prenatal anxiety and
child buccal cells.

From a total of 118 children (one twin) buccal cells were collected. Reasons for not
participating in the buccal cells collection were: decline or no response to the invitation
for participation (n = 35), loss to follow-up (n = 20), drop-out (n = 13; i.e., families that
dropped-out at earlier waves), or miscarriage/death/disability of the child (n = 5). Part
of the final sample was excluded (n = 9) because of too little DNA and/or the quality of
the DNA being too low. In addition, we excluded all mother–child dyads of which the
mother smoked during pregnancy or did not disclose whether they smoked or not (n = 15)
and of which the children had been born prematurely or with a low birth weight (n = 5)
(gestational age ≤ 36 and/or birth weight ≤ 2600 g). Finally, those mother–child dyads
that did not have maternal prenatal anxiety data were excluded. The final sample differed
per trimester, since not all mothers completed the questionnaires at every wave: n = 82 for
the first trimester, n = 83 for the second trimester, n = 83 for the third trimester.

Our final sample consisted of 39 boys and 44 girls. Almost all participating mothers
were Caucasian, except for on mother who reported Asian as her ethnical background.
The nationality of our mothers was mostly Dutch, with some mothers reporting double
nationalities (i.e., Russian, Romanian, French, and German).

2.2. Questionnaires Measuring Maternal Anxiety and Children’s Behavioral Measures

Maternal anxiety. Maternal anxiety during pregnancy was assessed with the Symptom
Checklist-90 (SCL-90) [55]. The anxiety subscale of the SCL-90 mainly measures somatic
anxiety symptoms (e.g., vegetative arousal) instead of merely psychological anxiety symp-
toms (e.g., anxious thoughts). Participants rated the scale, which consists of 10 items,
on a five-point Likert scale (1 = not at all, 2 = somewhat, 3 = quite, 4 = quite a lot, and
5 = extremely). A higher score indicates a higher level of experienced anxiety. In general,
the scale has good convergent and divergent validity and has good internal consistency
(α = 0.88) [55]. In our sample, the scale had high reliability during pregnancy (trimester 1:
α = 0.876; trimester 2: α = 0.828; trimester 3: α = 0.803). The same questionnaire was used
again for the measurement of maternal anxiety when the child was four years of age and
had a Cronbach’s alpha of α = 0.90 at this measurement point.

Child behavioral measures. When the children were four years of age, mothers
reported on potential behavioral measures of their children using the Child Behavioral
Checklist (CBCL) [56]. The CBCL consists of 99 items about the children’s behavior
with a three-point Likert scale ranging from ‘not at all’ (0) to ‘clearly’ or ‘often’ (2). For
the purpose of this study, we used the internalizing and externalizing subscales and
the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV specific subscales,
including affective symptoms, anxiety symptoms, pervasive developmental symptoms,
attention deficit/hyperactivity symptoms, and oppositional defiant symptoms. In our
sample, four children had clinical levels of affective problems, seven had clinical levels of
anxiety problems, three had clinical levels of pervasive developmental disorder, three had
clinical levels of Attention-Deficit/Hyperactivity Disorder (ADHD) problems, and four
had clinical levels of oppositional defiant problems.

2.3. Covariates

Based on previous research on the association between maternal psychological func-
tioning during pregnancy and DNA methylation status [33], we considered a number of
possible covariates, including: birth weight of the child, gestational age at birth, child
gender, and SCL-90 maternal anxiety when the child was four years of age.

2.4. Buccal Cells Collection, DNA Extraction, and Bisulfite Treatment

We used a standardized protocol for buccal cell collection from the children. In short,
children were told we were going to “brush their cheeks on the inside for 10 seconds”. We
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used a CytosoftTM cytology brush (Thermo Fisher Scientific, Waltham, MA, USA) and we
rotated it five times on one side and five times on the opposite interior cheek. The head of
the brush was placed in a tube with buffer which contains Proteinase K. DNA extraction
was performed using PrepIT-L2P kits (DNA Genotek Inc., Ottawa, ON, Canada) according
to the manufacturer’s instructions. The average yield was around 2 µg. DNA was stored at
−20 ◦C until analysis. Bisulfite-converted DNA was subjected to PCR amplification of the
CpG regions under study.

2.5. Bisulfite (BS) Specific PCR
2.5.1. NR3C1

Two amplicons were selected from the human NR3C1 promoter regions: four CpGs
named CpG1–CpG4 (283bp; Chr5: 143434589–143434871) which are located in exon 1A,
and six CpGs named CpG5–CpG10 (178bp; Chr5: 143401889-143402066) located in the
intron between exon 1H and exon2 (Figure 1A). The genomic position of each CpG is
shown in Table S1. Primers were designed using MethPrimer (https://www.urogene.org/
methprimer/). A nested PCR approach was applied. The first PCR was performed with the
same pairs of amplicon-specific BS primers for all samples in microtiter plates. Cycling was
done using the Bioline PCR mix (BIOLINE, Luckenwalde, Germany) in a 25 µL reaction
vol. (1 min denaturation at 94 ◦C, followed by 29 cycles at 57 ◦C for 30 s, 72 ◦C for 1 min,
94 ◦C for 30 s, and a final elongation step at 72 ◦C for 5 min. PCR products was diluted
1:10 and 1 µL of the dilution was used in a second PCR using sample-specifically tagged
primers (tag: 3 nucleotides at 5 = -ends; Table S2). PCR conditions were the same as in
the first PCR, however, number of cycles was reduced to 25. Successful amplification was
checked by electrophoresis on 1% agarose gels.
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Figure 1. Structure of the human NR3C1 and IGF2/H19 ICR. (A) Structure of the distal and proximal
promoters of the human NR3C1. Numbers (in orange) represent the sequence fragments that were
amplified in this study. (B) Structure of the IGF2/H19 ICR. Numbers (in orange) represent the
sequence fragments that were amplified in this study.

2.5.2. IGF2/H19 Imprinting Control Region (IGF2/H19 ICR)

One region including 10 CpGs (123bp; Chr11: 1999847–1999969) from the human
IGF2/H19 ICR was amplified (Figure 1B). The genomic position of each CpG is shown in
Table S1. Primers are shown in Table S2. PCR conditions are as for NR3C1 amplification.

https://www.urogene.org/methprimer/
https://www.urogene.org/methprimer/
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2.5.3. LINE1 Motifs

LINEs are retrotranposons with thousands of copies within the human genomes. A
significant portion of global DNA methylation is found in these loci and LINE methy-
lation may be considered a proxy for global methylation [54]. Amplification of many
LINE1 copies in parallel was performed with primers designed using a consensus se-
quence of most prominent LINE1 families. Primers were taken from Gries et al. [57]
(forward primer: TTATTAGGGAGTGTTAGATAGTGGG, reverse primer: CCTCTAAAC-
CAAATATAAAATATAATCT) and amplification performed as above.

2.6. Sequencing and Data Processing

In general, we applied a multiplex next-generation deep sequencing approach called
“BS Amplicon Sequencing” [34] combining the high sensitivity of BS pyrosequencing in
respect to the analyses of single or tight neighboring CpGs with the advantage of BS Sanger
sequencing, providing joint methylation information of all CpGs within PCR amplicons.
Moreover, this approach is highly cost and labor effective. Sequencing, demultiplexing,
data extraction, and methylation analysis for the single copy loci NR3C1 and IGF2/H19
ICR were performed as previously described in Agba et al. [34]. In short, sequences of
reads with correct primer and tag ends and expected size are aligned and CpG positions
inspected for harboring C (methylated) or T (unmethylated). Methylation was inferred
as C/C+T.

For the diverse LINE1 reads, alignment across the entire read length is error prone.
Therefore, we determined LINE1 methylation by inspecting each individual read se-
quence for harboring a CpG, and for each of the identified CpGs a motif of the structure
N10(CpG)N10 was inferred (N stands for A, C, G, or T). To quantify methylation, all
N10(CpG)N10 and corresponding N10(TpG)N10 motifs were counted in the entire dataset
(TpG is regarded as a signature for non-methylated CpG after BS conversion and amplifica-
tion). Three motifs were identified as the most common ones in all LINE1 reads. There-
fore, they (motif1: AGATAGTGGGYGTAGGTTAGTG, motif2: TTTGGAAAATYGGGT-
TATTTTT, motif3: ATTTGGGAAGYGTAAGGGGTTA) were selected for LINE1 methyla-
tion evaluation. Software tools were developed for the filtering of sequences according to
primer and tag integrity as well as for size (‘bucketer’), and for the extraction of sequence
motifs (‘sad’). Respective scripts (C++) can be downloaded from http://genome.leibniz-fli.
de/software/buck_sad/buck_sad.tgz.

All methylation rates are corrected for deamination efficiency, which was determined
by inspecting three putatively unmethylated CT positions in the NR3C1 and IGF2/H19
ICR amplicons.

2.7. Statistical Analyses

Correlation analyses were performed between the covariates (child: weight and
gestational age at birth, gender; mother: SCL-90 anxiety when the child is four years
of age), DNA methylation levels, and child behavioral problems. Pearson correlation
was performed.

Next, linear regression analyses were conducted to determine whether maternal
anxiety at trimesters 1, 2, and 3 had an effect on DNA methylation, and whether child’s sex
moderated the effect of maternal anxiety on child’s DNA methylation level.

To investigate whether the three genes mediated the relationship between exposure
to maternal anxiety and children’s behavior outcomes, we conducted mediation analyses
using bootstrapping, conducted with the SPSS procedure PROCESS macro [58]. The
mediator model was modeled using multiple regression models with children’s behavior as
the outcome; maternal anxiety at trimesters 1, 2, and 3 as predictors; and DNA methylation
levels of CpGs as mediators. The model of the mediation analysis is presented in Figure 2.
Path “a” is the effect of the predictor variable on the DNA methylation (mediator), path
“b” is the effect of the DNA methylation on the outcome variable controlling for the
predictor variable, path “c’ ” is the direct effect of the predictor variable on the outcome

http://genome.leibniz-fli.de/software/buck_sad/buck_sad.tgz
http://genome.leibniz-fli.de/software/buck_sad/buck_sad.tgz
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variable controlling for DNA methylation (mediator). The coefficient “a × b” represents
the “indirect” (or mediating) effect of the predictor variable on the outcome variable
through DNA methylation (mediator). Path c = c’ + ab, represents the total effect and is
derived by summing the direct and indirect effect. We tested the indirect effects (mediation
effect) of prenatal maternal anxiety on the child behavioral measures through each CpG
site by computing 95% bias-corrected bootstrap confidence intervals, in accordance with
Hayes [59]. The SPSS procedure PROCESS macro was used to conduct the analyses. Each
bootstrap resampled the initial sample 10,000 times. A mediation effect was considered
significant if 0 was not included in the bootstrap confidence interval.
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Figure 2. Theoretical model of the mediation analysis. Path a is the effect of the predictor variable
on the DNA methylation (mediator), path b is the effect of the DNA methylation on the outcome
variable controlling for the predictor variable, path c’ is the direct effect of the predictor variable on
the outcome variable controlling for DNA methylation (mediator). The coefficient a × b represents
the mediating effect of the predictor variable on the outcome variable through DNA methylation
(mediator). For the moderated mediations, the index of the moderated mediation effect was (Maternal
anxiety × Sex on Methylation) × (Methylation on outcomes) which tests whether the mediation is
significantly moderated.

All statistical analyses were performed using IBM (https://www.ibm.com) SPSS
version 22.0 for Windows using α = 0.05.

3. Results
3.1. Participants’ Characteristics; Descriptive Analysis

Descriptive statistics for gestational age at birth, maternal anxiety levels during the
three pregnancy trimesters and when child was four years of age, children’s birth outcomes,
and behavior outcomes at four years of age are presented in Table 1. Descriptive statistics
for children’s characteristics in boys and girls separately are presented in Table S3. There
were no significant differences between boys and girls for our predictor variables or
confounders. Descriptive statistics for DNA methylation levels are presented in Table S4.

Correlation of children’s behavioral measures with maternal anxiety during pregnancy
and with DNA methylation levels are shown in Table 2. Maternal anxiety during the second
trimester was significantly associated with children’s internalizing problems (p = 0.025) and
DSM oppositional defiant problems (p = 0.03). Maternal anxiety during the third trimester
was significantly associated with children’s DSM attention deficit/hyperactivity problems
(p = 0.026). Neither maternal anxiety during the first trimester nor methylation of any CpG
site was significantly associated with any children’s behavioral measures.

https://www.ibm.com
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Table 1. Descriptive statistics of the mothers and children.

Range Mean Std. Deviation

Mothers
Gestational age at birth (weeks) 36.570–42.290 39.613 1.154
Anxiety—Trimester 1 (SCL-90) 10.000–35.000 13.794 4.741
Anxiety—Trimester 2 (SCL-90) 10.000–31.000 13.072 3.721
Anxiety—Trimester 3 (SCL-90) 10.000–32.000 13.072 3.581

Anxiety when child was at age of 4 (SCL-90) 10.000–32.000 12.771 4.058
%

Children
Sex

Male 44.900
Female 55.100

Range Mean Std. Deviation

Children’s birth weight (g) 2605.000–4590.000 3427.360 408.427
Children’s behavior outcomes:
-Internalizing problems (CBCL) 0.000–26.000 7.256 6.012
-Externalizing problems (CBCL) 1.000–34.000 10.683 6.887
-DSM affective problems (CBCL) 0.000–10.000 1.841 1.815
-DSM anxiety problems (CBCL) 0.000–8.000 2.268 1.969

-DSM pervasive developmental problems (CBCL) 0.000–14.000 3.378 2.765
-DSM attention deficit/hyperactivity problems (CBCL) 0.000–9.000 3.494 2.281

-DSM oppositional defiant problems (CBCL) 0.000–12.000 3.866 2.562

Notes. SCL-90 = Symptom Check List – 90; CBCL = Child Behavioral Checklist; DSM = Diagnostic and Statistical Manual of Mental
Disorders; The cutoff for the SCL-90 anxiety subscale for “above average/high” for anxiety is 15 [55].

Table 2. Correlation of children’s behavioral measures with maternal anxiety during pregnancy and with DNA methyla-
tion levels.

CBCL Subscales

Internalizing
Problems

Externalizing
Problems

DSM
Affective
Problems

DSM Anxiety
Problems

DSM Pervasive
Developmental

Problems

DSM Attention
Deficit/Hyperactivity

Problems

DSM
Oppositional

Defiant Problems

Anxiety—
Trimester 1

(SCL-90)
0.052 0.053 0.108 −0.009 0.026 0.037 0.121

Anxiety—
Trimester 2

(SCL-90)
0.254 a 0.195 0.173 0.197 0.203 0.176 0.245 b

Anxiety—
Trimester 3

(SCL-90)
0.154 0.205 0.037 0.071 0.161 0.252 c 0.203

LINE1_motif1 −0.061 0.051 −0.026 −0.038 −0.059 −0.014 0.087
LINE1_motif2 −0.126 0.078 −0.003 −0.097 −0.139 0.116 0.021
LINE1_motif3 −0.013 0.103 0.039 −0.037 0.008 0.067 0.123
NR3C1-CpG1 −0.008 −0.165 −0.026 −0.082 −0.028 −0.144 −0.105
NR3C1-CpG2 −0.042 −0.175 0.045 −0.100 −0.111 −0.177 −0.092
NR3C1-CpG3 −0.017 −0.151 0.019 −0.057 −0.086 −0.149 −0.085
NR3C1-CpG4 −0.016 −0.179 −0.009 −0.045 −0.044 −0.193 −0.136
NR3C1-CpG5 −0.057 0.029 −0.070 −0.135 −0.053 −0.065 0.006
NR3C1-CpG6 −0.079 −0.038 −0.090 −0.024 −0.070 −0.040 −0.088
NR3C1-CpG7 −0.143 −0.015 −0.147 −0.174 −0.064 −0.019 −0.052
NR3C1-CpG8 −0.106 −0.051 0.012 0.033 −0.100 −0.032 −0.023
NR3C1-CpG9 −0.076 0.014 −0.005 −0.157 −0.067 −0.084 0.081
NR3C1-CpG10 0.059 0.196 0.005 −0.168 0.066 0.010 0.201
IGF2/H19 ICR

-CpG1 −0.054 −0.055 −0.002 −0.094 −0.067 −0.137 −0.020

IGF2/H19 ICR
-CpG2 −0.091 −0.037 −0.039 −0.129 −0.104 −0.119 −0.001

IGF2/H19 ICR
-CpG3 −0.070 −0.041 −0.023 −0.124 −0.087 −0.105 0.005

IGF2/H19 ICR
-CpG4 −0.057 −0.041 −0.041 −0.107 −0.072 −0.093 −0.007

IGF2/H19 ICR
-CpG5 −0.090 −0.062 −0.046 −0.123 −0.092 −0.104 −0.021

IGF2/H19 ICR
-CpG6 −0.072 −0.008 −0.014 −0.116 −0.106 −0.076 0.028

IGF2/H19 ICR
-CpG7 −0.089 −0.044 −0.042 −0.147 −0.116 −0.123 0.009

IGF2/H19 ICR
-CpG8 −0.073 −0.021 −0.006 −0.129 −0.103 −0.107 0.036

IGF2/H19 ICR
-CpG9 −0.072 −0.037 −0.081 −0.155 −0.101 −0.079 −0.009

IGF2/H19 ICR
-CpG10 −0.092 −0.059 −0.111 −0.160 −0.113 −0.128 −0.018

Note. Pearson collection coefficients were shown. Significant values were labeled with a (p = 0.025), b (p = 0.03), and c (p = 0.026).
SCL-90 = Symptom Check List–90; CBCL = Child Behavioral Checklist; DSM = Diagnostic and Statistical Manual of Mental Disorders.
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Gestational age at birth was significantly (p < 0.05) associated with maternal anxi-
ety during the second trimester, DNA methylation of NR3C1-CpG8, and DSM attention
deficit/hyperactivity problems. Maternal anxiety at four years of age was significantly
(p < 0.05) associated with maternal anxiety during pregnancy (first, second, and third
trimester) and children’s behavioral outcomes (see Table S5). Therefore, gestational age at
birth and maternal anxiety at four years of age were controlled for in each model.

3.2. Association of Maternal Anxiety with Child’s Buccal DNA Methylation Level

Maternal anxiety during the third trimester was significantly associated with the
methylation level of four CpGs from NR3C1 after controlling for gestational age at birth
and maternal anxiety when the child was four years of age: NR3C1-CpG3 (β = 0.272,
p = 0.020), CpG5 (β = 0.338, p = 0.005), CpG6 (β = 0.271, p = 0.023), and CpG10 (β = 0.345,
p = 0.004). Higher maternal anxiety predicted higher NR3C1 methylation level, explaining
6.7% of the variance of methylation level for NR3C1-CpG3, 10.3% for NR3C1-CpG5, 6.6%
for NR3C1-CpG6, and 10.7% for NR3C1-CpG10. There was no effect of maternal anxiety in
the third trimester on other CpGs of NR3C1, or of anxiety in the first and second trimester
on any of the CpG of NR3C1.

For the 10 CpGs from IGF2/H19 ICR and LINE1 motifs 1, 2, and 3, no significant
association was found between maternal anxiety (first, second, and third trimester) and
methylation levels.

3.3. Interaction Effect of Sex on the Association between Maternal Anxiety and Child’s Buccal
DNA Methylation Level

Trimmed results of the linear regressions are presented in Tables 3–5. Sex moderated
the effect of maternal anxiety during third trimester on DNA methylation levels; i.e.,
we observed significant interaction effects of sex on the association between maternal
anxiety during the third trimester and DNA methylation level of IGF2/H19-CpG1, 4, and 6,
explaining 5.4% (Table 3), 6.1% (Table 4), and 5.9% (Table 5) of the variance, respectively.
As shown in Figure 3A–C, for boys, there was a negative association between maternal
anxiety during the third trimester and the methylation level of IGF2/H19 CpGs, with
higher maternal anxiety predicting lower methylation levels. However, for girls, there
was a positive association between maternal anxiety during the third trimester and the
methylation level of IGF2/H19 CpGs, with higher maternal anxiety predicting higher
methylation levels. There were no sex interactions in the third trimester on other CpGs of
IGF2/H19, or on the effect of maternal anxiety in the first and second trimester on any of
the CpG of IGF2/H19.

Additionally, a significant sex × maternal anxiety during the second trimester-interaction
effect on LINE1 motif2 DNA methylation was found, explaining 9.9% of the variance (Table 6).
As shown in Figure 3D, higher maternal anxiety in the second trimester was associated with
greater methylation in boys, but lower methylation in girls. This interaction effect was only
significant at maternal anxiety scores of 13.42 or higher; at lower levels, there were no sex
differences observed. Furthermore, there was no interaction effect of maternal anxiety with
sex in the second trimester on other CpGs of LINE1 motif 1, or of anxiety in the first and third
trimester on any of the CpG of LINE1 motifs. There were no significant sex interactions for
DNA methylation of any NR3C1 CpGs.
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Table 3. Linear regression model of methylation level of IGF2/H19-CpG1.

Predictor Variable β R R2 ∆R2 F ∆F

0.157 0.025 0.946
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001

0.175 0.031 0.006 0.783 0.470
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001
Maternal anxiety (third trimester) −0.002

0.176 0.031 0.000 0.582 0.013
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001
Maternal anxiety (third trimester) −0.002

Sex 0.002

0.291 0.085 0.054 1.336 4.246 a

Gestational age at birth 0.000
Postnatal maternal anxiety 0.001

Maternal anxiety (third trimester) −0.007
Sex −0.119

Maternal anxiety (third trimester) × sex 0.009

Note. Significant value was labeled with a (p = 0.043). β: Beta coefficients; R: Correlation coefficient; R2: R squared; ∆R2: change in R
squared; F: F-score; ∆F: change in F-score.

Table 4. Linear regression model of methylation level of IGF2/H19-CpG4.

Predictor Variable β R R2 ∆R2 F ∆F

0.133 0.018 0.680
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001

0.148 0.022 0.004 0.551 0.307
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001
Maternal anxiety (third trimester) −0.001

0.152 0.023 0.001 0.430 0.087
Gestational age at birth 0.001

Postnatal maternal anxiety 0.001
Maternal anxiety (third trimester) −0.001

Sex 0.004

0.291 0.085 0.061 1.329 4.836 a

Gestational age at birth 0.000
Postnatal maternal anxiety 0.001

Maternal anxiety (third trimester) −0.007
Sex −0.125

Maternal anxiety (third trimester) × sex 0.010

Note. Significant value was labeled with a (p = 0.031). β: Beta coefficients; R: Correlation coefficient; R2: R squared; ∆R2: change in R
squared; F: F-score; ∆F: change in F-score.
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Table 5. Linear regression model of methylation level of IGF2/H19-CpG6.

Predictor Variable β R R2 ∆R2 F ∆F

0.169 0.029 1.101
Gestational age at birth 0.001

Postnatal maternal anxiety 0.000

0.169 0.029 0.000 0.725 0.003
Gestational age at birth 0.001

Postnatal maternal anxiety 0.000
Maternal anxiety (third trimester) 0.000

0.169 0.029 0.000 0.536 0.000
Gestational age at birth 0.001

Postnatal maternal anxiety 0.000
Maternal anxiety (third trimester) 0.000

Sex 0.000

0.297 0.088 0.059 1.390 4.697 a

Gestational age at birth 0.001
Postnatal maternal anxiety 0.000

Maternal anxiety (third trimester) −0.005
Sex −0.134

Maternal anxiety (third trimester) × sex 0.011

Note. Significant value was labeled with a (p = 0.034). β: Beta coefficients; R: Correlation coefficient; R2: R squared; ∆R2: change in R
squared; F: F-score; ∆F: change in F-score.

Table 6. Linear regression model of methylation level of LINE1-motif2.

Predictor Variable β R R2 ∆R2 F ∆F

0.137 0.019 0.724
Gestational age at birth 0.000

Postnatal maternal anxiety 0.000

0.149 0.022 0.003 0.567 0.268
Gestational age at birth 0.000

Postnatal maternal anxiety 0.001
Maternal anxiety (second trimester) 0.000

0.211 0.045 0.022 0.846 1.738
Gestational age at birth 0.000

Postnatal maternal anxiety 0.001
Maternal anxiety (second trimester) 0.000

Sex −0.006

0.379 0.143 0.099 2.445 8.424 a

Gestational age at birth 0.000
Postnatal maternal anxiety 0.000

Maternal anxiety (second trimester) 0.003
Sex 0.049

Maternal anxiety (second trimester) × sex −0.004

Note. Significant value was labeled with a (p = 0.005). β: Beta coefficients; R: Correlation coefficient; R2: R squared; ∆R2: change in R
squared; F: F-score; ∆F: change in F-score.
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Figure 3. Scatter plots represent sex interaction. Blue squares indicate male and orange circles indicates female. Dashed
blue line represents the fitting line in males and orange in females. X-axis represents the maternal anxiety score and Y-axis
represents the beta-value of DNA methylation. (A–C) For boys, there was a negative association between maternal anxiety
during the third trimester and the methylation level of IGF2/H19 CpGs; for girls, there was a positive association between
maternal anxiety during the third trimester and the methylation level of IGF2/H19 CpGs. (D) For second trimester maternal
anxiety level of 13.42 or higher there was a significant difference in DNA methylation level of LINE1 motif 2 between boys
and girls (p < 0.05). Green line indicates the value of 13.42.

3.4. Mediation Effect of DNA Methylation Level on the Association between Prenatal Maternal
Anxiety and Child Behavioral Measures

As maternal anxiety during the third trimester was positively associated with the
methylation level of NR3C1-CpG3, 5, 6, and 1, we further tested whether the methylation
level of these CpGs could mediate the effect of maternal anxiety on children’s behav-
ioral problems.

From the mediation model (Figure 4A), we observed that the methylation level
of NR3C1-CpG10 negatively mediated the effects of maternal anxiety during the third
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trimester on children’s anxiety (a × b = −0.0462). The higher maternal anxiety during
the third trimester, the greater the methylation of the NR3C1-CpG1, which in turn was
then associated with lower anxiety symptoms in the children. In other words, although
the direct effect (c’) of maternal anxiety on the children’s anxiety symptoms was positive
(higher maternal anxiety, higher children’s anxiety), the mediation via DNA methylation
of NR3C1-CpG10 seems to buffer the effect of maternal anxiety. The confidence interval
of the mediation was between −0.1306 and −0.0006 in which 0 was not included, i.e., the
mediation effect was significant (Table S6). However, when controlling for the covariates
gestational age at birth and maternal anxiety when the child was four years of age, the
mediation effect of DNA methylation of NR3C1-CpG10 disappeared (p = 0.1796).
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(A) The methylation level of NR3C1-CpG10 negatively mediated the effects of maternal anxiety during the third trimester
on children’s anxiety (95% CI = (−0.1306) − (−0.0006)). (B) The methylation level of NR3C1-CpG3 negatively mediated the
effects of maternal anxiety during the third trimester on children’s ADHD (95% CI = (−0.1190) − (−0.0019)).

Similarly, the methylation level of NR3C1-CpG3 negatively mediated the effects of ma-
ternal anxiety during the third trimester on children’s ADHD (a × b = −0.0360) (Figure 4B).
The higher maternal anxiety during the third trimester, the higher the methylation of the
NR3C1-CpG3, which was subsequently, associated with lower children’s ADHD traits. The
confidence interval was between −0.1190 and −0.0019 in which 0 was not included, i.e.,
the mediation effect was significant (Table S6). Again, when controlling for the covariates
gestational age at birth and maternal anxiety when the child was four years of age, the
significant effect disappeared (p = 0.1812). No significant mediation effect was found for
NR3C1-CpG5 and CpG6.

Next, we ran moderated-mediation analyses to explore whether the significant media-
tion effects were different between boys and girls (cf. theoretical model in Figure 2). None
of the moderated-mediation models with sex as a moderator were significant, indicating
that the mediation effects were not dependent on sex.

3.5. Sensitivity Analyses

To check whether our results were driven by a few extreme cases, we performed outlier
analyses in SPSS for scores on maternal anxiety during pregnancy and child behavioral
problems. Three extreme cases were detected for maternal anxiety and one extreme case for
child behavioral problems (n = 4 total outliers). Analyses were rerun without the outliers
and yielded similar results.

4. Discussion

The main goal of this study was to test whether maternal anxiety during pregnancy
could influence children’s behavioral measures at four years of age through epigenetic
mechanisms, and to elucidate the potential role of children’s sex. We proposed a model in
which methylation levels of selected candidate regions mediate the association between
maternal anxiety and child behavioral measures and in which this mediation could be de-
pendent on sex of the child. We observed that children exposed to higher maternal anxiety
during the third trimester had higher methylation levels of four CpGs from NR3C1 (i.e.,
CpG3, CpG5, CpG6, CpG10). We also observed that maternal anxiety during pregnancy
had an effect on the methylation levels of IGF2/H19-CpG1, 4, and 6 and LINE1 motif2,
with different directions of the effect for boys and girls. While we observed lower DNA
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methylation in IGF2/H19-CpG1, 4, and 6 in boys exposed to higher levels of maternal
anxiety in the third trimester, we observed higher DNA methylation in these locations for
girls. For LINE1 motif2, we observed opposite findings (higher methylation in boys, lower
methylation in girls). Furthermore, the methylation level of NR3C1-CpG10 and -CpG3
negatively mediated the effects of maternal anxiety during the third trimester on children’s
behavioral problems. However, the mediation effect disappeared when controlling for
gestational age at birth and maternal anxiety when child was at four years of age.

The positive association between maternal anxiety and methylation of CpGs from
N3RC1 corroborates the findings of studies that reported increased methylation of NR3C1
in offspring prenatally exposed to maternal distress [32,33,36,40,60]. In some studies, it was
demonstrated that maternal distress early in gestation has effects on cognitive and behav-
ioral measures in the offspring, while other studies showed effects of maternal distress in
late pregnancy (reviewed in Van den Bergh et al. [19]). In the current study, effects of mater-
nal anxiety on DNA methylation level of NR3C1 were only observed in the third trimester.
This timing dependent relation is in line with the finding from Oberlander et al. [32], who
were the first to study the association between maternal depressive symptoms during
pregnancy and the methylation level of NR3C1 in cord blood in newborns. They also
reported a positive association between methylation of NR3C1 and maternal depressed
mood in the third trimester, but in other CpGs than in our study. These and our results
indicate that maternal mental health during pregnancy has the strongest effects on NR3C1
methylation at the end of pregnancy.

In animal studies, it was reported that vulnerability of the offspring to the influence of
prenatal exposure to stress is moderated by offspring sex [61–63]. In human studies, it has
been shown that prenatal factors could affect gene-specific epigenetic changes in offspring—
such as in IGF2/H19 [39], HSD11B2 [64,65], and exon 1F of NR3C1 [35,36]—in a sex-specific
manner. In the current study, we observed a significant interaction effect between maternal
anxiety and offspring sex on the methylation level of the CpGs of IGF2/H19 ICR and LINE1
motif2 but not of the CpGs of NR3C1. For IGF2/H19 ICR, we found a negative association
between maternal anxiety and methylation levels in boys (Figure 3A–C), in contrast to
a positive association in girls. Thus, we added evidence to the suggestion that maternal
anxiety during pregnancy can influence IGF2/H19 in a sex-specific manner [39]. The
IGF2 serves different biological functions—such as regulation of cell proliferation, growth,
migration, differentiation, and survival—and is differentially expressed in different tissues
and at different developmental periods. Although we did not examine the specific effects
of IGF2 DNA methylation, our data suggest that, in girls exposed in utero during third
trimester, methylation of IGF2—which could further lead to decreased IGF2 expression—
may be involved in offspring neurodevelopment shaping behavioral measures. However,
the interaction effect of sex only explained a small proportion of the variance (5.4%), and
more research is necessary before a firm conclusion can be drawn. Interestingly, maternal
anxiety in the second trimester was found to interact with sex on the methylation level of
LINE1 motif 2, suggesting a vulnerability of the epigenome to maternal anxiety not only at
the end of pregnancy which could also be sex-dependent and timing-dependent. Serving
as surrogate marker for global DNA methylation, LINE1 is the most abundant family of
non-long terminal repeat retrotransposons in the human genome, accounting for around
17% of the genome [66]. In order to inhibit the expression of these repetitive sequences, the
CpGs are normally highly methylated. They are also transposable, which means that their
production might lead to their insertion into other genomic areas, effectively silencing genes.
For instance, DNA methylation of LINE1 was reported to be associated with biomarkers
of metabolic health [67]. Moreover, Kile et al. [68] reported positive correlations between
the DNA methylation of LINE1 in maternal blood and that in umbilical cord blood of
her child. The failed proof of a moderating role through offspring sex on the association
between maternal anxiety and child behavior contradicts the study of Oberlander and
colleagues [32]; however, this study examined other CpGs of NR3C1 and only revealed a
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trend-level association between maternal depression and increased NR3C1 methylation for
female, but not male, infants.

Most studies on epigenetic regulation of NR3C1 expression have investigated the
promoter region upstream of rodent exon 17 and its human ortholog 1F. In this study, we
focused on two other regions of NR3C1: exon 1A and the 3’ CpG island shore between exon
1H and exon 2. We examined how CpGs from NR3C1 could mediate the effect of maternal
anxiety on children’s outcomes. Without controlling for the covariates (gestational age at
birth and maternal anxiety when child was at four years of age) CpG10 demonstrated a
significant negative mediation effect on the association between maternal anxiety (third
trimester) and children’s anxiety, and CpG3 demonstrated a significant negative mediation
effect on the association between maternal anxiety (third trimester) and children’s ADHD
at four years of age. Based on these results, we suggest that the effect of maternal anxiety
(third trimester) on children’s anxiety could be buffered by DNA methylation of the
two NR3C1 regions. Such a ‘protective’ role of DNA methylation was also observed in
previous studies [69,70]. Furthermore, a similar epigenetic mechanism was reported by a
group of researchers [71], showing that maternal adversities during pregnancy predicted
increased DNA methylation of oxytocin receptor gene in cord blood and suggesting that
activity of oxytocin receptor expression could provide a mechanism by which the newborn
adapts to a potentially challenging environment. Therefore, we could hypothesize that
the methylation of this NR3C1-CpG10 and -CpG3 both change NR3C1 gene expression,
and further protect the children from an at-risk behavior outcome, rather than explaining
how maternal anxiety predicts increased risk of behavioral problems in children via DNA
methylation. However, after controlling for the covariates gestational age at birth and
maternal anxiety, the significant mediation effects of prenatal maternal anxiety on children
behavioral measures disappeared. This suggests that both gestational age at birth and
concurrent maternal anxiety are important factors, which influences the epigenetic level of
buccal cells of children at four years of age. Therefore, concurrent maternal anxiety should
be considered in further studies [37].

Several limitations of our study should be mentioned. Although we showed changes
in the DNA methylation status of the selected regions, it remains unclear whether this
influences the expression of the corresponding genes as their expression levels were not
assessed. In other words, based on this data alone, we cannot evaluate whether the
DNA methylation changes observed are meaningful in altering child behavior directly. In
addition, as the saliva samples and child behavior questionnaires were taken at the same
time when the child was four years old, our results do not allow any definitive conclusions
about the direction of cause between DNA methylation and behavioral problems. Besides,
the sample size is limited; this may increase the chances of errors. Finally, our cohort
is relatively high functioning and includes only a few cases with clinical levels of child
behavioral problems. However, our study has major strengths as well: it is prospective,
includes all three trimesters, explores several candidate genes, and it is the first study
examining the mediating role of DNA methylation between prenatal anxiety and child
behavioral problems.

5. Conclusions

We provided data supporting an association between maternal anxiety during preg-
nancy and DNA methylation changes of candidate regions in buccal cells of four year olds.
Our findings add evidence to the moderating role of sex on the association of prenatal
maternal anxiety with children’s epigenetic profile. Results were only found in the third
trimester of pregnancy, indicating that advanced gestation may be a specifically vulnerable
period for epigenetic modification by maternal anxiety. Additionally, we found several
effects of sex of the child on changes of DNA methylation patterns in response to maternal
anxiety during pregnancy, underscoring the importance of sex of the child for epigenetic
processes early in life. Only weak evidence was found for a mechanistic role of child DNA
methylation on the association between prenatal exposure to maternal anxiety and child



Cells 2021, 10, 2421 16 of 19

behavioral measures at four years of age. Future gene expression studies should confirm
whether DNA methylation changes correspond with altered gene expression in children
exposed to maternal anxiety during pregnancy. The search for mechanisms to explain the
lasting effects of maternal distress during pregnancy on offspring’s behavioral measures
should therefore be continued and extended.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10092421/s1, Table S1: Genomic positions, Table S2: PCR conditions, Table S3: Descriptive
statistics for children’s characteristics in boys and girls, Table S4: Descriptive statistics for DNA
methylation levels, Table S5: Correlations, Table S6: Mediation effects.
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