1,171 research outputs found

    Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Cancer Metabolism

    Get PDF
    Tumors are metabolic entities wherein cancer cells adapt their metabolism to their oncogenic agenda and microenvironmental influences. Metabolically different cancer cell subpopulations collaborate to optimize nutrient delivery with respect to immediate bioenergetic and biosynthetic needs. They can also metabolically exploit host cells. These metabolic networks are directly linked with cancer progression, treatment, resistance, and relapse. Conversely, metabolic alterations in cancer are exploited for anticancer therapy, imaging, and stratification for personalized treatments. These topics were addressed at the 4th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bertinoro, Italy, on 19-21 October 2017

    The segregation of different submicroscopic imbalances underlying the clinical variability associated with a familial karyotypically balanced translocation

    Get PDF
    Abstract\ud \ud Background\ud About 7 % of karyotypically balanced chromosomal rearrangements (BCRs) are associated with congenital anomalies due to gene or regulatory element disruption, and cryptic imbalances on rearranged chromosomes. Rare familial BCRs segregating with clinical features are a powerful source for the identifying of causative genes due to the presence of several affected carriers.\ud \ud \ud Case presentation\ud We report on a karyotypically balanced translocation t(2;22)(p13;q12.2) associated with variable learning disabilities, and craniofacial and hand dysmorphisms, detected in six individuals in a three-generation family. Combined a-CGH, FISH and mate-pair sequencing revealed a ten-break complex rearrangement, also involving chromosome 5. As the consequence of the segregation of the derivative chromosomes der(2), der(5) and der(22), different imbalances were present in affected and clinically normal family members, thus contributing to the clinical variability. A 6.64 Mb duplication of a 5q23.2-23.3 segment was the imbalance common to all affected individuals. Although LMNB1, implicated in adult-onset autosomal dominant leukodystrophy (ADLD) when overexpressed, was among the 18 duplicated genes, none of the adult carriers manifested ADLD, and LMNB1 overexpression was not detected in the two tested individuals, after qRT-PCR. The ectopic location of the extra copy of the LMBN1 gene on chromosome 22 might have negatively impacted its expression. In addition, two individuals presenting with more severe learning disabilities carried a 1.42 Mb 2p14 microdeletion, with three genes (CEP68, RAB1A and ACTR2),which are candidates for the intellectual impairment observed in the previously described 2p14p15 microdeletion syndrome, mapping to the minimal overlapping deleted segment. A 5p15.1 deletion, encompassing 1.47 Mb, also detected in the family, did not segregate with the clinical phenotype.\ud \ud \ud Conclusion\ud The disclosing of the complexity of an apparently simple two-break familial rearrangement illustrates the importance of reconstructing the precise structure of derivative chromosomes for establishing genotype-phenotype correlations.This work was funded by FAPESP - Fundação de Amparo à Pesquisa do Estado\ud de São Paulo (Grants: CEPID-Human Genome and Stem Cell Research Center\ud 2013/08028-1; student fellowships 2011/14293-4 and 2013/01146-9); the Lundbeck\ud Foundation (2013–14290), the UCPH Programme for Interdisciplinary Research\ud (Global Genes, Local Concerns) and The Danish Council for Independent Research\ud - Medical Sciences (4183-00482B). The authors thank Mrs. Maria Raimunda L. S.\ud Pinheiro for technical support

    Optimizing a qPCR Gene Expression Quantification Assay for S. epidermidis Biofilms: A Comparison between Commercial Kits and a Customized Protocol

    Get PDF
    Staphylococcus epidermidis biofilm-related infections are a current concern within the medical community due to their high incidence and prevalence, particularly in patients with indwelling medical devices. Biofilm gene expression analysis by quantitative real-time PCR (qPCR) has been increasingly used to understand the role of biofilm formation in the pathogenesis of S. epidermidis infections. However, depending on the RNA extraction procedure, and cDNA synthesis and qPCR master mixes used, gene expression quantification can be suboptimal. We recently showed that some RNA extraction kits are not suitable for S. epidermidis biofilms, due to sample composition, in particular the presence of the extracellular matrix. In this work, we describe a custom RNA extraction assay followed by the evaluation of gene expression using different commercial reverse transcriptase kits and qPCR master mixes. Our custom RNA extraction assay was able to produce good quality RNA with reproducible gene expression quantification, reducing the time and the costs associated. We also tested the effect of reducing cDNA and qPCR reaction volumes and, in most of the cases tested, no significant differences were found. Finally, we titered the SYBR Green I concentrations in standard PCR master mixes and compared the normalized expression of the genes icaA, bhp, aap, psmβ1 and agrB using 4 distinct biofilm forming S. epidermidis strains to the results obtained with commercially available kits. The overall results demonstrated that despite some statistically, but not biologically significant differences observed, the customized qPCR protocol resulted in the same gene expression trend presented by the commercially available kits used

    Annual Meeting of the International Society of Cancer Metabolism (ISCaM): Cancer Metabolism

    Get PDF
    Tumors are metabolic entities wherein cancer cells adapt their metabolism to their oncogenic agenda and microenvironmental influences. Metabolically different cancer cell subpopulations collaborate to optimize nutrient delivery with respect to immediate bioenergetic and biosynthetic needs. They can also metabolically exploit host cells. These metabolic networks are directly linked with cancer progression, treatment, resistance, and relapse. Conversely, metabolic alterations in cancer are exploited for anticancer therapy, imaging, and stratification for personalized treatments. These topics were addressed at the 4th annual meeting of the International Society of Cancer Metabolism (ISCaM) in Bertinoro, Italy, on 19–21 October 2017
    • …
    corecore