221 research outputs found
Características dos agentes de mudança
Há duas linhas básicas ao longo deste trabalho que podem sumariá-lo. Uma é a dependência comum, entre diversos autores, do trabalho de Lippitt e outros (13) para definir o agente de mudança. A outra reflete o esforço deliberado de vários estudiosos no sentido de ir além do simples conhecimento do que é um agente de mudança, mediante o desempenho de seu papel, ou simplesmente sendo um deles. Dos cinco exemplos vistos sobre esforços para definir os agentes de mudança, E. Rogers (24) na área de desenvolvimento intercultural, Tichy (27) na área de transformação social, Beckhard (1) na área de desenvolvimento organizacional, Gross e outros (7) no setor de instituições educacionais, e Pincus e Minahan (19) no campo de serviço social, todos baseiam-se nos conceitos originais de Lippitt e outros
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning
Quantum correlations between the light and kilogram-mass mirrors of LIGO
Measurement of minuscule forces and displacements with ever greater precision
encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg
uncertainty principle. A limit to the precision with which the position of an
object can be measured continuously is known as the standard quantum limit
(SQL). When light is used as the probe, the SQL arises from the balance between
the uncertainties of photon radiation pressure imposed on the object and of the
photon number in the photoelectric detection. The only possibility surpassing
the SQL is via correlations within the position/momentum uncertainty of the
object and the photon number/phase uncertainty of the light it reflects. Here,
we experimentally prove the theoretical prediction that this type of quantum
correlation is naturally produced in the Laser Interferometer
Gravitational-wave Observatory (LIGO). Our measurements show that the quantum
mechanical uncertainties in the phases of the 200 kW laser beams and in the
positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint
quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that
quantum correlations will not only improve gravitational wave (GW)
observatories but all types of measurements in future
Sensitivity and performance of the Advanced LIGO detectors in the third observing run
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO), joined by the Advanced Virgo detector, began the third observing run, a year-long dedicated search for gravitational radiation. The LIGO detectors have achieved a higher duty cycle and greater sensitivity to gravitational waves than ever before, with LIGO Hanford achieving angle-averaged sensitivity to binary neutron star coalescences to a distance of 111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0% respectively. The improvement in sensitivity and stability is a result of several upgrades to the detectors, including doubled intracavity power, the addition of an in-vacuum optical parametric oscillator for squeezed-light injection, replacement of core optics and end reaction masses, and installation of acoustic mode dampers. This paper explores the purposes behind these upgrades, and explains to the best of our knowledge the noise currently limiting the sensitivity of each detector
Quantum correlations between light and the kilogram-mass mirrors of LIGO
The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects. Here we confirm experimentally the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements
Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run
On April 1st, 2019, the Advanced Laser Interferometer Gravitational-Wave
Observatory (aLIGO), joined by the Advanced Virgo detector, began the third
observing run, a year-long dedicated search for gravitational radiation. The
LIGO detectors have achieved a higher duty cycle and greater sensitivity to
gravitational waves than ever before, with LIGO Hanford achieving
angle-averaged sensitivity to binary neutron star coalescences to a distance of
111 Mpc, and LIGO Livingston to 134 Mpc with duty factors of 74.6% and 77.0%
respectively. The improvement in sensitivity and stability is a result of
several upgrades to the detectors, including doubled intracavity power, the
addition of an in-vacuum optical parametric oscillator for squeezed-light
injection, replacement of core optics and end reaction masses, and installation
of acoustic mode dampers. This paper explores the purposes behind these
upgrades, and explains to the best of our knowledge the noise currently
limiting the sensitivity of each detector.Comment: 27 pages, 11 figures. v2 edits: minor wording changes, author
additions, and grayscale-friendly figure
- …