714 research outputs found

    Empirical assessment of the critical time increment in explicit particulate discrete element method simulations

    Get PDF
    This contribution considers the critical time increment (〖∆t〗_crit) to achieve stable simulations using particulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. The 〖∆t〗_crit is determined by considering the maximum vibration frequency of the system. Based on a series of parametric studies, 〖∆t〗_crit is shown to depend on the particle mass (m), the maximum contact stiffness (Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating 〖∆t〗_crit to m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios considered here, these can inform DEM analysts selecting appropriate 〖∆t〗_crit values

    Empirical assessment of the critical time increment in explicit particulate discrete element method simulations

    Get PDF
    This contribution considers the critical time increment (〖∆t〗_crit) to achieve stable simulations using particulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. The 〖∆t〗_crit is determined by considering the maximum vibration frequency of the system. Based on a series of parametric studies, 〖∆t〗_crit is shown to depend on the particle mass (m), the maximum contact stiffness (Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating 〖∆t〗_crit to m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios considered here, these can inform DEM analysts selecting appropriate 〖∆t〗_crit values

    Single crystal field-effect transistors based on an organic selenium-containing semiconductor

    Full text link
    We report on the fabrication and characterization of single crystal field-effect transistors (FETs) based on diphenylbenzo diselenophene (DPh-BDSe). These organic field-effect transistors (OFETs) function as p-channel accumulation-mode devices. At room temperature, for the best devices, the threshold voltage is less than -7V and charge carrier mobility is nearly gate bias independent, ranging from 1cm2/Vs to 1.5 cm2/Vs depending on the source-drain bias. Mobility is increased slightly by cooling below room temperature and decreases below 280 K

    Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    Get PDF
    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested

    IAC 576 - cultivar de mandioca de mesa recomendada para Mato Grosso do Sul.

    Get PDF
    bitstream/item/24714/1/COT200380.pdfDocumento on-line

    Isolamento e seleção de rizóbios de solos de Mato Grosso Do Sul para inoculação em feijoeiro comum

    Get PDF
    bitstream/item/66207/1/32003.pdfFERTBI

    The influence of particle surface roughness on elastic stiffness and dynamic response

    Get PDF
    Discrete-element method (DEM) simulations of planar wave propagation are used to examine the effect of particle surface roughness on the stiffness and dynamic response of granular materials. A new contact model that considers particle surface roughness is implemented in the DEM simulations. Face-centred cubic lattice packings and random configurations are used; uniform spheres are considered in both cases to isolate fabric and contact model effects from inertia effects. For the range of values considered here surface roughness caused a significant reduction in stiffness, particularly at lower confining stresses. The simulations confirm that surface roughness effects can at least partially explain the value of the exponent in the relationship between stiffness and mean confining stress for an assembly of spherical particles. Frequency domain analyses showed that the maximum frequency transmitted through the sample is reduced when surface roughness is considered. The assumption of homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an overestimation of stiffness
    corecore