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This contribution considers the critical time increment (Dtcrit) to achieve stable simulations using partic-
ulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. TheDtcrit is
determined by considering the maximum vibration frequency of the system. Based on a series of para-
metric studies, Dtcrit is shown to depend on the particle mass (m), the maximum contact stiffness
(Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating Dtcrit to
m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios con-
sidered here, these can inform DEM analysts selecting appropriate Dtcrit values.
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1. Introduction

Particulate discrete element modelling (DEM) is well estab-
lished as a research tool in science in general, and in geomechanics
in particular; there has been a consistent increase in the number of
DEM-related publications published each year over the past
20–25 years [1,2]. Understandably the emphasis in DEM-related
publications has been on application of DEM to simulate physical
systems [3], and associated developmental work focussing on
implementation of contact models (e.g. [4]), simulating particle
crushing, boundary conditions, etc. As is the case with any numer-
ical method, such application orientated research should be sup-
ported by studies that examine the method itself, considering
issues relating to accuracy (e.g. [5]) and numerical stability (e.g.
[6,7]). This contribution specifically considers the issue of numeri-
cal stability, and applies eigenmode analyses to a database of DEM
simulations to show how the particle characteristics, packing and
stress level influence the critical time increment calculated from
consideration of the maximum eigenfrequency. The paper includes
a background section that discusses the issue of numerical stability
in particulate DEM prior to introducing the analysis approach
adopted. The results of the eigenmode analysis are then presented
and followed by an overall synthesis that considers the effect of
packing density, particle size distribution, particle inertia, coordi-
nation number and contact stiffness on the critical time increment.
2. Background

As outlined by Hanley and O’Sullivan [5] the second order
velocity-Verlet integration scheme has been adopted in a number
of DEM codes that are used in geomechanics applications including
LAMMPS [8], LIGGHTS [9] and YADE [10] and the commercial codes
PFC2D/3D use a related Verlet-based scheme [11]. This numerical
method is conditionally stable, i.e. it is only when the time incre-
ment used is less than a threshold value (the critical time step,
Dtcrit) that small perturbations in the initial data will give small
changes in the final solution (e.g. [12]). Two approaches are used
in the literature to determine Dtcrit for DEM simulations; the first
is based on the oscillation period of a single degree of freedom sys-
tem, while the second uses the Rayleigh wave speed.

In their initial description of the discrete element method Cun-
dall and Strack [13] estimated Dtcrit by considering a single degree
of freedom system of a massm connected to the ground by a spring
K, giving:

Dtcrit;SDOF ¼ 2
ffiffiffiffiffiffiffiffiffiffi
m=K

p
ð1Þ

Developing this idea, Hart et al. [14] suggest:

Dtcrit;Hart ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin

2Kmax

r
ð2Þ

where mmin is the minimum mass and Kmax is the largest normal or
tangential contact stiffness, a is a user specified parameter that
accounts for the presence of multiple contacts for each mass; Hart

et al. recommend a = 0.1, i.e. Dtcrit;Hart ¼ 0:14
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
. Using these ideas

and following a parametric study on monodisperse samples, Tsuji
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et al. [15] adopted Dtcrit;Tsuji ¼ p
5

ffiffiffi
m
K

p ¼ 0:63
ffiffiffi
m
K

p
. Simple DEM models

use linear contact models where a constant spring stiffness is
applied to all contacts and K is constant, however many researchers
use a Hertzian contact model that uses a non-linear force-
deformation relationship at the contacts to account for the variation
in contact area with contact force. Referring to Johnson [16], in the
contact normal direction the incremental (i.e. tangent) contact
spring stiffness (KN,Hertz) is then

KN;Hertz ¼ G
ffiffiffiffiffiffi
2~R

p
ð1� mÞ

ffiffiffi
d

p
ð3Þ

where G is the particle shear stiffness, m is the particle Poisson’s
ratio, d is the contact overlap and ~R ¼ 2R1R2

R1þR2
, R1 and R2 being the radii

of the two contacting particles. The dependency on d means there
will be a range of spring stiffnesses in a DEM model at any given
time and KN,max will vary during a simulation. This complicates
application of Eq. (1). Jensen et al. [17] report a modified version
of Eq. (1) that is considered in the LS-DYNA DEM code:

Dtcrit;Cundall ¼ 0:2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin
E

3ð1þ2mÞb

s
ð4Þ

where E is the particle Young’s modulus and b is a stiffness penalty
parameter that is typically between 0.1 and 0.001. Tu and Andrade
[18] argue that Dtcrit associated with rotational motion is critical
and so

Dtcrit;Tu ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mmin

5KT

s
¼ 1:2

ffiffiffiffiffiffiffiffiffiffi
mmin

KT

r
ð5Þ

where KT is the tangential spring stiffness.
In the PFC codes [19] a critical time step is found for each body

by considering both rotational and translational motion to be
uncoupled and calculating the ratios

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ktran

p
and

ffiffiffiffiffiffiffiffiffiffiffi
I=krot

p
where

m and I are the mass and moment of inertia respectively. The
translational and rotational stiffnesses (ktran and krot) are deter-
mined by considering the diagonal terms of the contact stiffness
matrix at each contact and then summing the contributions from
all the contacts assuming the degrees of freedom to be uncoupled.
The final critical time step is taken to be the minimum of all the
ratios

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ktran

p
and

ffiffiffiffiffiffiffiffiffiffiffi
I=krot

p
computed for all degrees of freedom

of all bodies. As individual contacts are considered this approach
can be applied to Hertzian contacts. Referring to Serra et al. [20],
who use a similar approach, this type of implementation is based
on Gerschgorin’s theorem as outlined by Underwood [21].

Where a Hertizan contact model is used, a number of authors
argue that estimates of Dtcrit based on Eq. (1) are not valid. For
example Boac et al. [22] and Li et al. [23] argue that this approach
is inapplicable because the contact model is non-linear. Thornton
[24] cited [25] to suggest that the Rayleigh wave speed determines
the time step. Li et al. [23] give the following expression for the
Rayleigh time step (TR) (also cited in [17,22,26]):

TR ¼
pR

ffiffiffi
q
G

q
0:1631mþ 0:8766

ð6Þ

where q is the particle density. Li et al. and Boac et al. [22] specify
that R is the average particle radius (Rave); when the same expres-
sion is given by Kremmer and Favier [27] and Kafui et al. [28], R
is taken to be the minimum particle radius (Rmin). Li et al. [23] jus-
tify this approach for estimating the critical time increment by
arguing that it can be assumed that all of the energy in the system
is transferred by Rayleigh waves, while Guo et al. [29] explain that
this approach considers the time taken for a Rayleigh wave to pass a
sphere in a single time increment.
As noted by Burns and Hanley [7] it is clear that application of
these different approaches will give different time step values.
Whichever approach is used it seems that users view the calcu-
lated Dtcrit values to be an estimate. As already stated Hart et al.
[14] and Tsuji et al. [15] use experience/empirical considerations
to apply a factor to Eq. (1). Boac et al. [30] state that in practice
some fraction of TR is used, and suggest this fraction should be
0.2–0.4, with the higher number being more suited to lower coor-
dination numbers. Jensen et al. [17] state that for stability the min-
imum of the critical time increment calculated using TR, and Eq. (4)
should be multiplied by a factor of 0.2 (they also consider a third
approach that takes particle velocity into account). Itasca [19]
apply a default factor of 0.8 to their calculated Dtcrit and this factor
can also be user-specified.

Note that while Thornton [24] also considered artificially
increasing the particle density (density scaling) to increase the crit-
ical time step, this has consequences for the inertial number and
the maximum strain rate that can be applied while maintaining
quasi static conditions [31,32] and so density scaling is neither
used nor recommended here.

3. Eigenvalue analysis

Stability of explicit time integration approaches applied to
multi-degree of freedom systems is also a concern in dynamic
finite element analysis. Belytschko et al. [12] state that for a system
of constant strain elements

Dtcrit;CS ¼ 2
xmax

6 min
ele

2
xele

¼ min
ele

lele
cele

ð7Þ

where xmax is the maximum frequency of the linearized system,
xele is the frequency of element ele, lele is a characteristic length
of element ele and cele is the current wave speed in element ele.
Eq. (7) clearly links to the approaches used to determine Dtcrit;
DEM analysts are implicitly relating the ratio

ffiffiffiffiffiffiffiffiffiffi
m=K

p
to xele, while

consideration of the Rayleigh wave speed relates to the ratio lele
cele
.

There is however a basic conceptual difference in the two
approaches; the Cundall/Hart SDOF-based approach considers the
system to be comprised of rigid bodies connected by springs, while
the Rayleigh-wave-based approach considers the particles them-
selves to be elastic.

O’Sullivan and Bray [6] argued that the particles in a DEM sim-
ulation are analogous to the nodes in a finite element model, while
the contacts are roughly equivalent to the elements. This concep-
tual model of a granular material is used in implicit discrete ele-
ment method formulations such as the particulate form of
discontinuous deformation analysis (DDA) as outlined in [11].
O’Sullivan and Bray [6] outlined that if it is assumed that linear sta-
bility analysis also holds for non-linear cases, then the maximum
stable time increment (Dtcrit) is a function of the eigenvalues of
the current stiffness matrix (e.g. [36,37]). As acknowledged by Tu
and Andrade [18], the maximum frequency, xmax, is related to
the maximum eigenvalue (kmax) of the M�1K matrix as

xmax ¼
ffiffiffiffiffiffiffiffiffi
kmax

p
ð8Þ

O’Sullivan and Bray estimated the maximum eigenvalue of the
system using the following expression which is an extension of
Rayleigh’s theorem ([36]):

kmax 6 kelemax ð9Þ

where kelemax is the maximum eigenvalue of the Mele�1Kele matrix for
element ‘‘ele”, (Mele = element mass matrix, Kele = element stiffness
matrix). An estimate for the critical time increment can then be
made by applying Eq. (7), once kelemax is known, and O’Sullivan and
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Bray [6] presented expressions for element stiffness matrices for
various lattice configurations. O’Sullivan and Bray considered each
contact to be an element and assumed the mass assigned to the
contact to be simply the particle mass divided by the coordination
number. For the lattice packings they considered both the mass and
the particle coordination numbers were uniform. O’Sullivan and
Bray showed that Dtcrit reduced with increasing coordination num-
ber and that considering the rotational degree of freedom reduced
Dtcrit. Their data indicated that for 3D analyses
Dtcrit;OSB 6 0:17

ffiffiffiffiffiffiffiffiffiffi
m=K

p
; this supports the recommendation of Hart

et al. [14] given in Eq. (2), but is significantly lower than the values
recommended by Tsuji [15] and Tu and Andrade [18]. While O’Sul-
livan and Bray adopted an analytical approach, its general applica-
tion must be revisited for a few reasons (i) they estimated the
eignenvalues rather than directly calculating them (ii) they consid-
ered lattice packings and so their estimates not be generally appli-
cable (iii) they made a very simple assumption in calculating the
mass matrix.

With the original motivation of studying the dynamic response
of granular materials a method was developed to construct the glo-
bal mass and stiffness matrices for a DEM sample [38]; this method
is applied here to directly calculate the eigenvalues for 3D DEM
samples. For the 3D analyses considered here, each particle has 3
translational degrees of freedom and 3 rotational degrees of free-
dom and so the diagonal mass matrix (M) includes the mass (m)
and rotational inertia (I) values for each particle. Here the local
contact stiffness matrix was created using the data available in
the DEM model. The local contact stiffness matrix is a 12 � 12 ele-
ment matrix; expressions for this matrix are given in the PFC man-
ual [11] and the entries depend on the particle coordinates and
contact stiffnesses. The element contact stiffness matrix, �kij, con-
necting particles (nodes) i and j is created in the global coordinate
system and the degrees of freedom associated with node i are given
by [ui;x, ui;y, ui;z, hi;x, hi;y, hi;z] where ui;s is the translational displace-
ment in direction s and hi;s is the rotation about axis s. The corre-
sponding terms along the diagonal of the nodal mass matrix are
[mmmII I] where m and I are the particle mass and rotational iner-
tia, respectively. For clarity a representative element stiffness
matrix for a contact normal orientated along the x-axis is given
here as:
As there is no torsional resistance at the contacts where the
simplified Hertz-Mindlin model considered here is used, the terms
in knxij relating to the hi;x and hj;x degrees of freedom are zero. Once
the kij terms are known the global stiffness matrix (K) can be cre-
ated using conventional stiffness matrix assembly techniques
described in e.g. [33,34,35].

For the analyses presented here, the parameters required to
construct the local stiffness matrix (particle coordinates, contact
orientations and contact overlap) were obtained from the DEM
sample configurations as described below. The normal spring stiff-
nesses were calculated using Eq. (3) and for the simplified Hertz-
Mindlin (HM) model used here the tangential stiffness was:

KT ¼ 2ð1� mÞ
2� m

KN ð11Þ

For a sample composed of Np particles, there are 6 � Np degrees
of freedom; for the systems considered here K consisted of up to
355,098 � 355,098 elements. Where applicable, the particle–
boundary contacts were also included in K.

The eigenvalue decomposition was achieved by solving:

ðK� kMÞ/ ¼ 0 ð12Þ
where k are the eigenvalues and / are the eigenvectors; each eigen-
value ki is associated with a particular eigenvector /i, and there are
6 � Np eigenvalues. Here, built-in MATLAB functions (MathWorks,
2015) were used to obtain the eigenvalues and eigenvectors. As
before Eq. (7) relates xmax and kmax and

Dtcrit;eig ¼ 2
xmax

: ð13Þ
4. Validation

Two approaches were adopted to validate the implemented
eigenvalue decomposition approach. In the first case lattice pack-
ings were considered and the calculated Dtcrit,eig values were com-
pared with the values given by O’Sullivan and Bray [6]. O’Sullivan
and Bray assumed KN = KT, however for the more general case of
KN – KT, for the simple cubic packing when rotational degrees of
freedom are omitted:
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Dtcrit ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
4kN þ 8kT

r
ð14Þ

and when rotation is included

Dtcrit ¼ min 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
4kN þ 8kT

r
;2

ffiffiffiffiffiffiffiffiffiffiffi
m

20kT

r� �
ð15Þ

Eqs. (14) and (15) reduce to the expressions in O’Sullivan and
Bray when KN = KT. Referring to Fig. 1, a DEM model was created
to consider a simple cubic (SC) sample with 2272 spherical parti-
cles and a HM contact model (D = 2.54 mm, m = 1.913 � 10�5 kg,
q = 2230 kg/m3, interparticle friction coefficient (l) = 0.2,
G = 25 GPa and m = 0.2) with mixed periodic and rigid wall bound-
aries, subject to an isotropic stress of p0 = 100 kPa. This stress state
was attained via servo controlled compression involving all 6
boundaries. Rotation was included in the DEM analyses. Once the
sample had equilibrated the contact data were extracted; for this
homogeneous sample these data were uniform giving
KN = 1.34 � 106 and KT = 1.19 � 106 N/m at each contact. The con-
tact data were used to form the global stiffness matrix, K, and sub-
sequent eigenvalue decomposition gave Dtcrit,eig = 1.79 � 10�6s.
This compared with a value of 1.79 � 10�6 s obtained using Eq.
(15).

A face-centered cubic (FCC) sample was also considered, where
only translational motion was considered

Dtcrit ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
8kN þ 16kT

r
ð16Þ

A DEM model of 3200 spherical particles with a FCC packing
was then created with the same material parameters as for the
cubic sample and rotation was deactivated in the DEM model.
The sample configuration was similar to that illustrated in Fig. 1a
for the SC case. An isotropic stress state of p0 = 100 kPa was applied
via servo-control as before. As the packing differed from the SC
case so too did the contact forces and so extracting the contact data
gave KN = 9.50 � 105 N/m and KT = 8.44 � 105 N/m at each contact.
Eigenvalue analysis gave Dtcrit,eig = 2.31 � 10�6s, this value is
slightly larger than the value obtained by application of Eq. (16),
which gave Dtcrit = 1.94 � 10�6 s. Detailed examination could not
provide a clear explanation for the difference values. When rota-
tion is included
Fig. 1. DEM simulation of isotropic compression to provide contact data to validat
Representative sample configuration (Simple cubic (SC) sample with 2272 spheres) and
Dtcrit ¼ min 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
8kN þ 16kT

r
;2

ffiffiffiffiffiffiffiffiffiffiffi
m

40kT

r� �
ð17Þ

(Note that Eq. (17) does not reduce to the expression in O’Sullivan
and Bray as there is an error in the original paper). The DEM simu-
lation of the 3200 sphere FCC sample was repeated including rota-
tion, the contact data were extracted to populate K and the
subsequent eigenvalue analysis gave Dtcrit,eig = 1.51 � 10�6 s, which
is very close to the value of 1.51 � 10�6 s obtained using Eq. (17).

Further validation of the approach was taken by considering the
triaxial compression of a FCC sample. An expression relating the
peak strength of this sample to the interparticle friction coefficient
(l) was derived by Thornton [39]. Referring to Fig. 2a and b, two
sets of DEM simulations were carried out. Both used a sample of
192 particles on a FCC lattice surrounded by periodic boundary
conditions at all sides with the particle properties given above
and an interparticle friction of l = 0.2. For the first series of simu-
lations rotation was suppressed. In both cases an isotropic stress of
p0 = 100 kPa was applied using servo-controlled compression
involving all 3 pairs of periodic boundaries. The sample was then
subject to quasi-static triaxial compression, where one normal
stress (r0

zz = r0
1) was increased while maintaining the orthogonal

normal stresses constant (i.e., r0
yy = r0

xx = r0
3) using servo control

involving the two pairs of lateral boundaries (positioned at xmin

and xmax and ymin and ymax). A strain rate of _ezz = 0.002 s�1 was used
so that the inertial number I calculated according to [32] was
7.59 � 10�7; as I < 1 � 10�3 a quasi-static condition was achieved.
Four simulation time increments (Dtsim) were considered:
2.0 � 10�6 s, 2.21 � 10�6 s, 2.22 � 10�6 s and 2.4 � 10�6 s. The
Dtsim values were selected to be slightly larger than and slightly
smaller than the Dtcrit,eig which was calculated to be
2.31 � 10�6 s for p0 = 100 kPa. The energy balance of the system
was also traced, by summing the various contributions to energy
including strain energy, kinetic energy, frictional dissipation and
boundary work (input energy). Ideally the net energy, Enet (=strain
energy + kinetic energy + frictional dissipation � boundary work),
should be 0. For the case where Dtsim = 2.4 � 10�6 s is used the
highly erratic response associated with numerical instability is
absent, however energy is clearly not conserved (Fig. 2d). Referring
to the load:deformation response given in Fig. 2c, where a
Dtsim = 2.22 � 10�6 s is used, the simulation is not obviously unsta-
e the eigenvalue decomposition method to estimate the critical time steps. (a)
(b) flow chart for DEM simulation.



Fig. 2. Triaxial compression of FCC sample to validate eigenvalue decomposition method to estimate Dtcrit. (a) Graphical representation of sample, (b) simulation flow chart,
(c) stress-strain response for translation only, (d) energy balance for translation only, (e) stress-strain response when rotation is allowed, and (f) energy balance when rotation
is allowed.
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ble; however, the peak stress ratio (r1/r3) is underestimated and
again energy is clearly not conserved (Fig. 2d). However, when
Dtsim was reduced to 2.21 � 10�6 s, i.e. 96% of Dtcrit,eig, the peak
stress ratio is accurately captured and there is no noticeable differ-
ence in the stress-strain response when Dtsim is further reduced to
2.0 � 10�6 s. Referring to Fig. 2d for both cases of
Dtsim = 2.0 � 10�6 s or 2.21 � 10�6 s the net energy is of the order
of �10�9 J is small compared with the total energy in the system
of the order of �10�4 J. The simulations were repeated for the case
where rotation was allowed; in this case four Dtsim values were
considered: 2 � 10�6 s, 1.5 � 10�6 s, 1.45 � 10�6 s and 1 � 10�6 s
and Dtcrit,eig = 1.51 � 10�6 s. For Dtsim = 2 � 10�6 s the stress-strain
response is not obviously unstable, but the peak value is underes-
timated and there is a significant error in the net energy. Referring
to Fig. 2e and f for the time increment just below the critical value,
i.e. for Dtsim = 1.5 � 10�6 s, the peak strength is underestimated by
0.1 and the energy balance is not satisfied. When Dtsim is reduced
to 1.45 � 10�6 s, i.e. to 96% of Dtcrit,eig, the peak value is accurately
captured and the energy balance is effectively satisfied
(Enet < 1� 10�7 J). The need to reduce the time increment to be
lower than the critical value calculated from eigenvalue decomposi-
tion of the (linearized) global stiffness matrix is acknowledged by
Belytschko et al. [12]; they state that the stable time step should
be multiplied by a factor between 0.8 and 0.98 to account for the
destabilizing effects of non-linearities. Empirically it seems that
use of Dtstable = 0.96Dtcrit,eig is appropriate for both simulation cases.
5. Results

Three series of DEM simulations are considered here, and the
simulation parameters are summarized in Tables 1–3. In all cases
the simulations used a simplified Hertz-Mindlin (HM) contact
model and a modified version of the LAMMPS code [8]. The simu-
lations examined the effect of particle size, stress level and particle
size distribution on the maximum eigenvalue and hence the criti-
cal time increment in DEM simulations.

As detailed in Table 1, and illustrated in Fig. 3a the first set of
simulations considered cubic, isotropic samples of randomly
placed monodisperse spheres enclosed by periodic boundaries on
all sides. Referring to Fig. 3b, a series of five simulations were run
in which the particle diameter (D) was systematically increased
from 0.1 mm to 10 mm. Each sample contained 10,000 particles.
Initially the samples were generated as non-contacting clouds of
randomly placed particles; then a servo controlled compression
was used to isotropically compress each sample to a mean effective
stress of p0 = 50 kPa with l = 0.1. A Young’s modulus of 70 GPa,
Poisson’s ratio of 0.3 and particle density of 2670 kg/m3 were used,
giving a shear modulus of 27 GPa. For these simulations Dtsim ran-
ged from 4.44 � 10�7 s to 4.44 � 10�9 s. In all cases once the sam-
ples had equilibrated under the prescribed stress the contact data
were extracted to form K and eigenvalue decomposition was car-
ried out to determine Dtcrit,eig. Referring to Fig. 3c there is a linear
relationship between Dtcrit,eig and D when all other simulation
parameters are unchanged. The distributions of per-particle coor-
dination numbers are almost identical for the 5 cases considered
Table 1
Monodisperse simulations.

D (mm) Dtsim (s) TR (s) KN,max (N/m) Dtcrit,eig (s)

0.1 4.44 � 10�9 5.34 � 10�8 8.21 � 104 7.15 � 10�8

0.3 1.33 � 10�8 1.60 � 10�7 2.40 � 105 2.14 � 10�7

1 4.44 � 10�8 5.34 � 10�7 8.23 � 105 6.94 � 10�7

3 1.33 � 10�7 1.60 � 10�6 2.65 � 106 2.16 � 10�6

10 4.44 � 10�7 5.34 � 10�7 9.05 � 106 7.05 � 10�6
here as are the shapes of the contact force distributions. This find-
ing has a theoretical basis: from Hertzian contact mechanics and
effective medium theory (EMT) for a monodisperse sample (e.g.
Yimsiri and Soga [40]) it can be shown that K / D. As m / D3 then
Dtcrit / p m

K implies Dtcrit / D.
The second series of simulations again considered monodis-

perse spherical particles, with a sample configuration comprising
a rectangular parallelepiped, bounding the longer dimensions,
and two rigid wall boundaries contacting the smaller faces of the
sample as illustrated in Fig. 4a. In this case three sample types
were considered; samples with a face-centered cubic (FCC) lattice
packing and randomly packed dense and loose samples. The simu-
lation process is illustrated in Fig. 4b. In all cases typical properties
of borosilicate glass ballotini were considered so that the particle
density q = 2230 kg/m3, the Young’s modulus E = 60 GPa and parti-
cle Poisson’s ratio m = 0.2, giving the shear modulus G = 25 GPa, and
the particle diameter was 2.54 mm. These simulations were also
considered in a study of stress wave propagation by [38] and are
summarized in Table 2. As is often the case in DEM simulations
the packing density was controlled by varying the inter-particle
friction coefficient (l) used during isotropic compression so that
loose (l = 0.4) and dense (l = 0) randomly packed samples were
considered (denoted RLP and RDP, respectively). The RLP samples
had higher void ratios (e) and lower coordination numbers (CN)
than the RDP samples at the same confining pressure. The eigen-
value decomposition was performed for the FCC, RDP and RLP sam-
ples at four stress (p0) levels: 10 kPa, 100 kPa, 1 MPa and 10 MPa. In
all cases the tangential contact stiffness was activated by taking
l– 0 and assuming no-slip condition at all contacts (conservative
assumption). For each simulation once the sample attained equi-
librium at the prescribed stress level contact data were extracted
to populate K and an eigenvalue decomposition was then per-
formed. The resultant Dtcrit,eig values are given in Fig. 4c; the linear
correlation observed indicates that Dtcrit;eig / p0�1=6. This correlation
is expected as for a Hertzian contact model adopting the assump-
tions used in EMT: KN / p01=3 and Dtcrit / 1=

ffiffiffiffiffiffi
KN

p
. (Note that

KT / KN and so it also holds that Dtcrit / 1=
ffiffiffiffiffiffi
KT

p
). For the FCC sam-

ple, CN is invariant for the simulation set; however, for the RLP and
RDP samples, over the range of stresses considered, CN varied by
1.38 and 0.93, respectively.

For the third series of simulations, the particle size distribution
was systematically varied, while maintaining a constant minimum
particle size of 0.1 mm, as illustrated in Fig. 5 and detailed in
Table 3. Referring to Fig. 5a, 6 sample types, each with a linear par-
ticle size distribution were considered, so that the coefficient of
uniformity of the samples (Cu) was systematically varied, where
Cu = D60/D10 and X% of particles by mass are smaller than Dx.
Fig. 5b illustrates PSDs for 4 additional samples with bi-linear PSDs
with Cu = 1.5–1.6. The PSDs of each of the bi-linear samples follow
a linear PSD with Cu = 3 to a diameter DX, where X is specified by
the number in the sample name (D5 for BL5, D10 for BL10, etc.).
In this case a cubic periodic cell was used (Fig. 5c). The simulation
flow chart is given in Fig. 5d. The particles which were initially ran-
domly placed and non-contacting, were isotopically compressed to
a mean stress of p0 = 50 kPa. Up to three coefficient of frictions (l)
were used for each grading considered (i.e. l = 0.0, 0.1, and 0.3) to
give a range of void ratios, and the resultant samples are termed
‘‘dense”, ‘‘medium” and ‘‘loose”, respectively. As before, a simpli-
fied Hertz-Mindlin contact model was used with m = 0.3,
G = 27 GPa and q = 2670 kg/m following [41] and so applying Eq.
(1) with R = Rmin gives 1.07 � 10�7 s. Simulations were terminated
when the mean normal stress reached the target level and the
coordination number (the number of contacts per particle)
remained constant for 20,000 simulation cycles. In all cases l
was increased to 0.3 and the samples were allowed to equilibrate;



Table 2
Monodisperse Simulation – vary p0 .

Sample p0 (MPa) l e CN,mean CN,max Dtsim (s) TR (s) KN,max (N/m) Dtcrit,eig (s)

FCC 0.01 0 0.353 12.0 12 1.10 � 10�7 1.31 � 10�6 4.41 � 105 2.21 � 10�6

0.1 0.353 12.0 12 9.50 � 105 1.51 � 10�6

1 0.351 12.0 12 2.05 � 106 1.03 � 10�6

10 0.341 12.0 12 4.40 � 106 7.02 � 10�7

R0 0.01 0 0.545 5.96 11 1.08 � 106 2.21 � 10�6

0.1 0.544 6.08 11 2.35 � 106 1.51 � 10�6

1 0.539 6.36 12 4.78 � 106 1.02 � 10�6

10 0.516 6.93 12 9.62 � 106 7.02 � 10�7

R04 0.01 0.4 0.688 4.09 9 1.18 � 106 2.24 � 10�6

0.1 0.687 4.40 9 2.29 � 106 1.49 � 10�6

1 0.680 4.85 9 4.59 � 106 1.03 � 10�6

10 0.652 5.47 10 9.05 � 106 7.13 � 10�7

Table 3
Polydisperse simulations.

PSD shape Cu Number of particles l e CN,mean CN,max KN,max (N/m) Dtcrit,eig (s)

Linear 1 10,000 0.0 0.566 6.06 11 7.84 � 104 7.18 � 10�8

0.1 0.666 5.22 10 8.21 � 104 7.15 � 10�8

0.3 0.730 4.45 9 8.05 � 104 7.16 � 10�8

Linear 1.2 8262 0.0 0.558 5.99 12 9.94 � 104 5.99 � 10�8

0.1 0.651 5.17 12 9.61 � 104 5.69 � 10�8

0.3 0.714 4.32 10 1.03 � 105 6.06 � 10�8

Linear 1.5 9313 0.0 0.527 5.83 17 1.30 � 105 6.39 � 10�8

0.1 0.607 4.89 14 1.32 � 105 6.28 � 10�8

0.3 0.659 3.88 14 1.42 � 105 6.06 � 10�8

Linear 2 12,115 0.0 0.467 5.48 30 1.72 � 105 3.43 � 10�8

0.1 0.523 4.42 25 1.98 � 105 3.81 � 10�8

0.3 0.555 3.38 22 2.42 � 105 3.58 � 10�8

Linear 3 22,600 0.0 0.382 5.06 92 2.74 � 105 2.24 � 10�8

0.1 0.426 3.73 79 3.43 � 105 1.50 � 10�8

0.3 0.455 2.53 59 3.86 � 105 1.88 � 10�8

Linear 4.5 44,821 0.0 0.320 4.78 297 4.23 � 105 1.05 � 10�8

0.1 0.356 3.39 208 4.79 � 105 6.82 � 10�8

0.3 0.384 2.13 152 5.59 � 105 1.05 � 10�8

Linear 6 59,183 0.0 0.265 4.58 639 5.67 � 105 6.63 � 10�9

0.1 0.292 3.23 517 1.04 � 106 7.82 � 10�9

0.3 0.314 1.96 332 1.11 � 106 5.86 � 10�9

Bi-linear (BL5) 1.5 18,632 0.0 0.448 5.73 17 7.84 � 104 5.75 � 10�8

0.3 0.519 3.89 13 8.21 � 104 5.54 � 10�8

Bi-linear (BL10) 1.5 19,915 0.0 0.442 5.66 16 9.94 � 104 5.54 � 10�8

0.3 0.506 3.87 15 9.61 � 104 5.38 � 10�8

Bi-linear (BL15) 1.6 24,757 0.0 0.440 5.54 17 1.72 � 105 5.28 � 10�8

0.3 0.500 3.74 14 1.98 � 105 5.19 � 10�8

Fig. 3. Influence of particle inertia on Dtcrit,eig. (a) Simulation configuration, (b) simulation flow chart, and (c) variation in Dtcrit,eig with particle diameter for medium-dense
monodisperse samples at p0 = 50 kPa.
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Fig. 4. Monodisperse samples with particle diameter = 2.54 mm. (a) Simulation configuration: particles coloured by particle coordination number (CN), (b) simulation flow
chart, and (c) variation in Dtcrit,eig with mean effective stress (p0).

(a) (b)

(c) (d)

Fig. 5. Particle size distributions for polydisperse samples (a) linear gradings, (b) bi-linear gradings, (c) representative sample configuration (Cu = 3), and (d) simulation flow
chart.
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the contact data used to determine K were extracted at this point
for eigenvalue analysis. These simulations were also used to gener-
ate data for a study on void constriction sizes [42,43]. The version
of LAMMPS used for these simulations uses a fixed, user-defined
time step and so the simulation time step was determined by con-
sidering the relationships proposed by Hart et al. [14] given as Eq.
(2) above. The mass and stiffness of the smallest particle in the sys-
tem is used to calculate
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
. The Kmax value is predicted by con-

sidering the normal contact spring and assuming a maximum
permissible particle overlap of 5% of the smallest diameter (note
that in the simulations carried out here the actual overlaps do
not exceed 1%). The simulation time step was then

Dtsim ¼ 0:05
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
= 2.5 � 10�9 s.



Fig. 6. variation in Dtcrit,eig with Cu for polydisperse samples with Dmin = 0.1 mm.

M. Otsubo et al. / Computers and Geotechnics 86 (2017) 67–79 75
Referring to Fig. 6 the inferred Dtcrit,eig values vary with Cu,
despite having the same minimum particle diameter in all cases.
The data are presented on a semi-logarithmic scale and the non-
Fig. 7. Dtcrit,eig values for polydisperse samples with Dmin = 0.1 mm. (a) Variation in Dt
coordination number (CN,max), and (c) variation in Dtcrit,eig with KN,max � CN,max.
linear nature of the relationships indicates that there is not a sim-
ple correlation between Dtcrit and Cu. Referring to Eq. (2) above, if
the minimum mass is constant for all simulations, then Dtcrit
should depend on KN,max and, as illustrated in Fig. 7(a), Dtcrit is
indeed generally inversely proportional to KN,max. As noted above,
O’Sullivan and Bray [6] found that Dtcrit tended to decrease with
coordination number CN, and referring to Fig. 7b, plotting
Dtcrit,eig against the maximum per particle coordination number

CN,max indicates that generally Dtcrit;eig / C
�2
3

N;max. The dependency of
Dtcrit,eig on both KN,max and CN,max prompted a regression analysis
to determine the coefficients in an expression of the form
Dtcrit;eig ¼ AðKN;maxÞnðCN;maxÞm, giving n = �0.379 and m = �0.412.
Asm � n, Fig. 7c considers the variation inDtcrit,eig with the product
KN,maxCN,max and good agreement is obtained with the plot indicat-

ing Dtcrit;eig / ðKN;maxCN;maxÞ�0:4.
Considering all the DEM samples analyzed, the calculated

Dtcrit,eig were compared with selected estimates of Dtcrit using the
approaches documented in the literature as noted above. The TR
values determined for all the simulations were calculated by
applying Eq. (6) and Fig. 8a considers the variation in the ratio
Dtcrit,eig/TR with CN,max. Within the dataset considered here, for

the low polydispersity samples with CN,max < 15, Dtcrit;eig
TR

> 1 and
crit,eig with maximum normal contact stiffness (KN,max), (b) Dtcrit,eig with maximum



Fig. 8. Comparison of maximum coordination number with guidance given in literature (a) Variation in Dtcrit,eig/TR as a function of CN,max (b) Variation in Dtcrit,eig/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin=KN;max

p
as a function of CN,max (c) Variation in Dtcrit,eig/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmean=KN;max

p
as a function of CN,max
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use of TR = Dtcrit is generally appropriate at lower stress levels
(<1 MPa); for these samples Cu 6 1.5 and Rmax/Rmin < 2.6. (The data

points with Dtcrit;eig
TR

< 1 and CN,max < 15 are associated with stress

levels of 1 MPa or 10 MPa.) The time steps calculated using the

eigenvalue approach are compared with the ratio
ffiffiffiffiffiffiffiffiffiffi
mmin
KN;max

q
in Fig. 8b,

where the ratio Dtcrit;eig=
ffiffiffiffiffiffiffiffiffiffi
mmin
KN;max

q
is plotted against CN,max. These data

indicate that Dtcrit;Tsuji ¼ 0:63
ffiffiffiffiffiffiffiffiffiffi

m
KN;max

q
is only slightly unconservative

at low coordination number values, which would include the
monodisperse samples considered by Tsuji et al. [15], however it
significantly overestimates Dtcrit,eig for polydisperse samples with
maximum coordination numbers exceeding 10. For these polydis-
perse samples the Hart et al. [14] recommendation

Dtcrit;Hart ¼ 0:14
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
is more appropriate and the data presented

here indicate that it can be argued that Dtcrit;safe ¼ 0:1
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
. Inter-

estingly the scatter in the data is reduced if the ratio

Dtcrit;eig=
ffiffiffiffiffiffiffiffiffiffi
mmean
KN;max

q
is considered as illustrated in Fig. 8c possibly

reflecting the fact that the KN,max and CN,max are unlikely to be asso-
ciated with the smallest particles as the smallest particles have less
surface area to engage contacts and are more likely to transmit less
than average stresses [44]. However these data indicate that if
mmean is considered a more appropriate lower bound to the data

is then given by Dtcrit;safe ¼ 0:05
ffiffiffiffiffiffiffiffiffi
mmean
Kmax

q
. These observations on lower

limits to Dtcrit,safe are however empirical and may not be generally
applicable. They also significantly underestimateDtcrit at lower CN,-
max and in these cases use of this simple ratio-based approach that
neglects consideration of the contact conditions can lead to a sig-
nificant waste of computing time/resources. Burns and Hanley
[7] also noted the potential for erroneous calculation of Dtcrit to
lead to computational inefficiency. The overall observation that
the critical time increment depends on mass, contact spring stiff-
ness and the maximum coordination number supports the use of
more sophisticated approaches such as those based on Ger-
schgorin’s theorem adopted by Serra et al. [20] and Itasca [19] that
account for variations in coordination number.

Building on the correlations observed in Figs. 3c, 4c, 6, 7 and 8
all of the data presented here were combined to develop a simple
expression relating the critical time increment to parameters that
can be efficiently checked in a DEM simulation. Fig. 7c indicates

Dtcrit;eig / ðKN;maxCN;maxÞ�0:4 and this observation is combined with
the Hart et al. [14] recommendation by considering the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmin
KN;maxCN;max

q
. Referring to Fig. 9a and c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin

KN;maxCN;max

q
seems to give a



Fig. 9. Best-fit expressions for Dtcrit,eig based on current dataset (a) Variation in Dtcrit,eig, and correlation based on the minimum mass (mmin) with Cu (b) Variation in Dtcrit,eig,
and correlation based on mmean with Cu (c) Dtcrit,eig correlation using mmin (d) Dtcrit,eig correlation using mmean
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lower bound to the observed Dtcrit,eig; use of this expression may
however be overly conservative as it can give values as low as
0.2Dtcrit,eig. As was observed in Fig. 8c the scatter in the data is

reduced if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmean
KN;maxCN;max

q
is considered, however in this case the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmean
KN;maxCN;max

q
can be unconservative and over estimate Dtcrit,eig

(Fig. 9b and d). The data presented in Fig. 9 and the associated
ratios are likely useful to DEM analysts as they give estimates of
Dtcrit and illustrate the extent of the sensitivity of the critical time
step to the packing density as quantified by CN,max. It is important
to realize however that these data are limited in extent; a finite
number of DEM samples were considered and the generality of
the applicability of the expressions fitted to the data is not proven
as they are empirically-derived.

6. Conclusion

This contribution has extractedmass and contact stiffness infor-
mation from DEM simulations to construct system (global) mass
and stiffness matrices. Eigenvalue decomposition of these matrices
was used to determine the maximum frequency in the system
from which the critical time step could be directly determined.
The eigenvalue decomposition approach was validated by compar-
ison with the analytical expressions developed by O’Sullivan and
Bray [6] and simulations of triaxial compression of samples of uni-
form spheres with a face-centered cubic packing. To assess how a
DEM model’s characteristics affect the critical time increment
Dtcrit, three DEM datasets were considered (i) monodisperse sam-
ples at a constant mean effective stress but with varying particle
diameters (ii) monodisperse samples where the mean effective
stress was varied and (iii) polydisperse samples where the particle
size distribution was systematically varied at a constant mean
effective stress. The following conclusions are made:

1. Broadly three approaches to calculating Dtcrit are documented
in the literature. The first uses the oscillation period of a single
degree of freedom system as a basis to calculateDtcrit; while the
second, which is applied when a Hertzian contact model is used,
considers the Rayleigh wave speed. The third uses slightly more
complex implementations based on Gerschgorin’s theorem, and
can account for non-linear contact models and consider the
number of contacts involving each particle.

2. The results obtained by considering triaxial compression of a
face-centered cubic assembly and systematically varying the
DEM simulation time step support the recommendation of
Belytchko et al. [12] that the critical time increment obtained
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from the eigenvalue decomposition be multiplied by a factor
<0.9 to obtain a safe estimate of Dtcrit. These data also highlight
the benefits of tracing the energy balance in the numerical
model to identify instabilities.

3. Where the Hertzian contact model is used and the mean effec-
tive stress remains constant, the critical time step is directly
proportional to the particle diameter for monodisperse systems.
The validity of this observation based on eigenvalue decompo-
sition was confirmed by considering effective medium theory.

4. For monodisperse systems there can be a threefold variation in
Dtcrit over the range of stresses that might be considered in
geomechanical analyses (i.e. from 10 kPa to 10 MPa). This vari-
ation is not captured where the Rayleigh wave speed approach
is used to determine Dtcrit.

5. For the polydisperse systems with linear and bi-linear particle
size distributions considered here with Cu 6 6 there was a
twelve-fold variation in the calculated critical time increment
as the degree of polydispersity increased. This variation is not
captured where the Rayleigh wave speed approach is used to
determine Dtcrit using the minimum mass. From consideration
of these samples it is clear that Dtcrit depends on the contact
stiffness, minimum particle mass and the coordination number.
This confirms the analytical finding of O’Sullivan and Bray [6]
and supports the approach of Itasca [19] which includes a sum-
mation of contacts for each particle. It is interesting to note that
it is the maximum particle coordination number that specifi-
cally influences Dtcrit.

6. An overall synthesis of the data from the three series of simula-
tions indicates that using the Rayleigh wave speed approach
(TR) is valid only at low stress levels where the maximum coor-
dination number is less than 15. The relationship between the

calculated Dtcrit and the ratios
ffiffiffiffiffiffiffiffiffi
mmean
Kmax

q
and

ffiffiffiffiffiffiffiffi
mmin
Kmax

q
supports use

of the expression Dtcrit;safe ¼ 0:05
ffiffiffiffiffiffiffiffiffi
mmean
Kmax

q
or 0:1

ffiffiffiffiffiffiffiffi
mmin
Kmax

q
to give a con-

servative estimate of Dtcrit. Note however that where these
expressions are used in systems with low maximum coordina-
tion numbers they can result in very small time steps that are
over conservative and thus cause unnecessary increases in the
computational cost of DEM simulations; as researchers move
towards larger simulations and use large tier 1 and tier 0 high
performance computers there is potential for a significant
waste of resources and energy. Consequently the computational
overhead cost associated with using approaches based on Ger-
schgorin’s theorem to recalculate the critical time increment
on an ongoing basis during a simulation will be justified in
many cases.

7. Considering the dataset as a whole, it seems that expressions of

the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmin
KN;maxCN;max

q
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmean

KN;maxCN;max

q
can be used to approximate

Dtcrit. It is straightforward in a DEM code to track KN,max and CN,-
max and so these expressions in this form could adopted with no
significant computational cost. At the start of a simulation
when KN,max and CN,max are not known reasonable predictions
might be made or it might be possible to use TR with a conser-
vative ‘‘safety factor” to get an initial estimate. These expres-
sions also enable DEM analysts to better understand how the
characteristics of the particular system affect Dtcrit and the
computational cost of the simulations. Note however that these
expressions are empirical and were developed considering a
finite number of DEM simulations; the general applicability to
DEMmodels with characteristics that differ from those samples
considered here is not demonstrated.

8. The observations presented here are based on analysis of DEM
samples, rather than a theoretical/analytical study of stability.
The study is empirical, the results are developed from an anal-
ysis of selected DEM data sets and so the general applicability of
the quantitative correlations and observations to all DEM simu-
lations is unproven. The data clearly support the application
and development of approaches to calculate Dtcrit that can
account for the dependencies highlighted here. We acknowl-
edge that there may be a computational cost associated with
implementing such methods; however, as highlighted here
use of very simple approaches can result in simulations either
being unstable or having an unjustifiably high computational
cost.
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