50 research outputs found

    Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: Comparison with two commercial antivenoms

    Get PDF
    Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atr-ox from Antioquia and Choco (Colombia). The following antivenoms were used: a) polyvalent (crotaline) antivenom produced by Institute Clodomiro Picado (Costa Rica), b) monovalent antibothropic antivenom produced by Institute Nacional de Salud-INS (Bogota), and c) a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Choco. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 +/- 2 and 100 +/- 32 mu l antivenom/mg venom, respectively), suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Choco.Universidad de Costa Rica//UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Preclinical Evaluation of Caprylic Acid-Fractionated IgG Antivenom for the Treatment of Taipan (Oxyuranus scutellatus) Envenoming in Papua New Guinea

    Get PDF
    articulo (arbitrado) -- Universidad de Costa Rica, Instituto de Investigaciones Clodomiro Picado, 2011Background: Snake bite is a common medical emergency in Papua New Guinea (PNG). The taipan, Oxyuranus scutellatus, inflicts a large number of bites that, in the absence of antivenom therapy, result in high mortality. Parenteral administration of antivenoms manufactured in Australia is the current treatment of choice for these envenomings. However, the price of these products is high and has increased over the last 25 years; consequently the country can no longer afford all the antivenom it needs. This situation prompted an international collaborative project aimed at generating a new, low-cost antivenom against O. scutellatus for PNG. Methodology/Principal Findings: A new monospecific equine whole IgG antivenom, obtained by caprylic acid fractionation of plasma, was prepared by immunising horses with the venom of O. scutellatus from PNG. This antivenom was compared with the currently used F(ab’)2 monospecific taipan antivenom manufactured by CSL Limited, Australia. The comparison included physicochemical properties and the preclinical assessment of the neutralisation of lethal neurotoxicity and the myotoxic, coagulant and phospholipase A2 activities of the venom of O. scutellatus from PNG. The F(ab’)2 antivenom had a higher protein concentration than whole IgG antivenom. Both antivenoms effectively neutralised, and had similar potency, against the lethal neurotoxic effect (both by intraperitoneal and intravenous routes of injection), myotoxicity, and phospholipase A2 activity of O. scutellatus venom. However, the whole IgG antivenom showed a higher potency than the F(ab’)2 antivenom in the neutralisation of the coagulant activity of O. scutellatus venom from PNG. Conclusions/Significance: The new whole IgG taipan antivenom described in this study compares favourably with the currently used F(ab’)2 antivenom, both in terms of physicochemical characteristics and neutralising potency. Therefore, it should be considered as a promising low-cost candidate for the treatment of envenomings by O. scutellatus in PNG, and is ready to be tested in clinical trials.This study was supported by Vicerrectoría de Investigación, Universidad de Costa Rica (project 741-A9-003); the PNG Office of Higher Education, CTP Limited (Milne Bay Estates), and the Australian Venom Research Unit (University of Melbourne), which is funded by the Australian Government Department of Health and Ageing, the Australia Pacific Science Foundation and Snowy Nominees. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Poor Regenerative Outcome after Skeletal Muscle Necrosis Induced by Bothrops asper Venom: Alterations in Microvasculature and Nerves

    Get PDF
    artículo (arbitrado) -- Universidad de Costa Rica, Instituto de Investigaciones Clodomiro Picado. 2011Background: Viperid snakebite envenoming is characterized by prominent local tissue damage, including muscle necrosis. A frequent outcome of such local pathology is deficient skeletal muscle regeneration, which causes muscle dysfunction, muscle loss and fibrosis, thus provoking permanent sequelae that greatly affect the quality of life of patients. The causes of such poor regenerative outcome of skeletal muscle after viperid snakebites are not fully understood. Methodology/Principal Findings: A murine model of muscle necrosis and regeneration was adapted to study the effects of the venom and isolated toxins of Bothrops asper, the medically most important snake in Central America. Gastrocnemius muscle was injected with either B. asper venom, a myotoxic phospholipase A2 (Mtx), a hemorrhagic metalloproteinase (SVMP), or saline solution. At various time intervals, during one month, tissue samples were collected and analyzed by histology, and by immunocytochemical and immunohistochemical techniques aimed at detecting muscle fibers, collagen, endothelial cells, myoblasts, myotubes, macrophages, TUNEL-positive nuclei, and axons. A successful regenerative response was observed in muscle injected with Mtx, which induces myonecrosis but does not affect the microvasculature. In contrast, poor regeneration, with fibrosis and atrophic fibers, occurred when muscle was injected with venom or SVMP, both of which provoke necrosis, microvascular damage leading to hemorrhage, and poor axonal regeneration. Conclusions/Significance: The deficient skeletal muscle regeneration after injection of B. asper venom is likely to depend on the widespread damage to the microvasculature, which affects the removal of necrotic debris by phagocytes, and the provision of nutrients and oxygen required for regeneration. In addition, deficient axonal regeneration is likely to contribute to the poor regenerative outcome in this model.This study was supported by NeTropica (grant 2-N-2008), by Vicerrectoría de Investigación, Universidad de Costa Rica (project 741-A7-604). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Envenomations by Bothrops and Crotalus Snakes Induce the Release of Mitochondrial Alarmins

    Get PDF
    Skeletal muscle necrosis is a common manifestation of viperid snakebite envenomations. Venoms from snakes of the genus Bothrops, such as that of B. asper, induce muscle tissue damage at the site of venom injection, provoking severe local pathology which often results in permanent sequelae. In contrast, the venom of the South American rattlesnake Crotalus durissus terrificus, induces a clinical picture of systemic myotoxicity, i.e., rhabdomyolysis, together with neurotoxicity. It is known that molecules released from damaged muscle might act as ‘danger’ signals. These are known as ‘alarmins’, and contribute to the inflammatory reaction by activating the innate immune system. Here we show that the venoms of B. asper and C. d. terrificus release the mitochondrial markers mtDNA (from the matrix) and cytochrome c (Cyt c) from the intermembrane space, from ex vivo mouse tibialis anterior muscles. Cyt c was released to a similar extent by the two venoms whereas B. asper venom induced the release of higher amounts of mtDNA, thus reflecting hitherto some differences in their pathological action on muscle mitochondria. At variance, injection of these venoms in mice resulted in a different time-course of mtDNA release, with B. asper venom inducing an early onset increment in plasma levels and C. d. terrificus venom provoking a delayed release. We suggest that the release of mitochondrial ‘alarmins’ might contribute to the local and systemic inflammatory events characteristic of snakebite envenomations

    Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis

    Get PDF
    Citation: Herrera C, Macêdo JKA, Feoli A, Escalante T, Rucavado A, Gutiérrez JM, et al. (2016) Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Negl Trop Dis 10(4): e0004599. doi:10.1371/journal. pntd.0004599The time-course of the pathological effects induced by the venom of the snake Bothrops asper in muscle tissue was investigated by a combination of histology, proteomic analysis of exudates collected in the vicinity of damaged muscle, and immunodetection of extracellular matrix proteins in exudates. Proteomic assay of exudates has become an excellent new methodological tool to detect key biomarkers of tissue alterations for a more integrative perspective of snake venom-induced pathology. The time-course analysis of the intracellular proteins showed an early presence of cytosolic and mitochondrial proteins in exudates, while cytoskeletal proteins increased later on. This underscores the rapid cytotoxic effect of venom, especially in muscle fibers, due to the action of myotoxic phospholipases A2, followed by the action of proteinases in the cytoskeleton of damaged muscle fibers. Similarly, the early presence of basement membrane (BM) and other extracellular matrix (ECM) proteins in exudates reflects the rapid microvascular damage and hemorrhage induced by snake venom metalloproteinases. The presence of fragments of type IV collagen and perlecan one hour after envenoming suggests that hydrolysis of these mechanically/structurally-relevant BM components plays a key role in the genesis of hemorrhage. On the other hand, the increment of some ECM proteins in the exudate at later time intervals is likely a consequence of the action of endogenous matrix metalloproteinases (MMPs) or of de novo synthesis of ECM proteins during tissue remodeling as part of the inflammatory reaction. Our results offer relevant insights for a more integrative and systematic understanding of the time-course dynamics of muscle tissue damage induced by B. asper venom and possibly other viperid venoms.Universidad de Costa Rica/[741-B4-660]/UCR/Costa RicaUniversidad de Costa Rica/[741-B6-125]/UCR/Costa RicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Differential clinical characteristics and prognosis of intraventricular conduction defects in patients with chronic heart failure

    Get PDF
    Intraventricular conduction defects (IVCDs) can impair prognosis of heart failure (HF), but their specific impact is not well established. This study aimed to analyse the clinical profile and outcomes of HF patients with LBBB, right bundle branch block (RBBB), left anterior fascicular block (LAFB), and no IVCDs. Clinical variables and outcomes after a median follow-up of 21 months were analysed in 1762 patients with chronic HF and LBBB (n = 532), RBBB (n = 134), LAFB (n = 154), and no IVCDs (n = 942). LBBB was associated with more marked LV dilation, depressed LVEF, and mitral valve regurgitation. Patients with RBBB presented overt signs of congestive HF and depressed right ventricular motion. The LAFB group presented intermediate clinical characteristics, and patients with no IVCDs were more often women with less enlarged left ventricles and less depressed LVEF. Death occurred in 332 patients (interannual mortality = 10.8%): cardiovascular in 257, extravascular in 61, and of unknown origin in 14 patients. Cardiac death occurred in 230 (pump failure in 171 and sudden death in 59). An adjusted Cox model showed higher risk of cardiac death and pump failure death in the LBBB and RBBB than in the LAFB and the no IVCD groups. LBBB and RBBB are associated with different clinical profiles and both are independent predictors of increased risk of cardiac death in patients with HF. A more favourable prognosis was observed in patients with LAFB and in those free of IVCDs. Further research in HF patients with RBBB is warranted

    Snakebites in Colombia

    No full text

    Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia

    No full text
    We determined the neutralizing activity of 12 ethanolic extracts of plants against the edema-forming, defibrinating and coagulant effects of Bothrops asper venom in Swiss Webster mice. The material used consisted of the leaves and branches of Bixa orellana (Bixaceae), Ficus nymphaeifolia (Moraceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plant of Pleopeltis percussa (Polypodiaceae) and Trichomanes elegans (Hymenophyllaceae); rhizomes of Renealmia alpinia (Zingiberaceae), Heliconia curtispatha (Heliconiaceae) and Dracontium croatii (Araceae), and the ripe fruit of Citrus limon (Rutaceae). After preincubation of varying amounts of each extract with either 1.0 µg venom for the edema-forming effect or 2.0 µg venom for the defibrinating effect, the mixture was injected subcutaneously (sc) into the right foot pad or intravenously into the tail, respectively, to groups of four mice (18-20 g). All extracts (6.2-200 µg/mouse) partially neutralized the edema-forming activity of venom in a dose-dependent manner (58-76% inhibition), with B. orellana, S. orbicularis, G. panamensis, B. rosademonte, and D. croatii showing the highest effect. Ten extracts (3.9-2000 µg/mouse) also showed 100% neutralizing ability against the defibrinating effect of venom, and nine prolonged the coagulation time induced by the venom. When the extracts were administered either before or after venom injection, the neutralization of the edema-forming effect was lower than 40% for all extracts, and none of them neutralized the defibrinating effect of venom. When they were administered in situ (sc at the same site 5 min after venom injection), the neutralization of edema increased for six extracts, reaching levels up to 64% for C. limon
    corecore