6,699 research outputs found
Role of critical spin fluctuations in ultrafast demagnetization of transition-metal rare-earth alloys
Ultrafast magnetization dynamics induced by femtosecond laser pulses have
been measured in ferrimagnetic Co0.8Gd0.2, Co.74Tb.26 and Co.86Tb.14 alloys.
Using element sensitivity of X-ray magnetic circular dichroism at the Co L3, Tb
M5 and Gd M5 edges we evidence that the demagnetization dynamics is element
dependent. We show that a thermalization time as fast as 280 fs is observed for
the rare-earth in the alloy, when the laser excited state temperature is below
the compensation temperature. It is limited to 500 fs when the laser excited
state temperature is below the Curie temperature (Tc). We propose critical spin
fluctuations in the vicinity of TC as the mechanism which reduces the
demagnetization rates of the 4f electrons in transition-metal rare-earth alloys
whereas at any different temperature the limited demagnetization rates could be
avoided.Comment: 11 pages, 4 figure
Exponentially growing solutions in homogeneous Rayleigh-Benard convection
It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard
turbulence with periodic boundary conditions in all directions and a volume
forcing of the temperature field by a mean gradient, has a family of exact,
exponentially growing, separable solutions of the full non-linear system of
equations. These solutions are clearly manifest in numerical simulations above
a computable critical value of the Rayleigh number. In our numerical
simulations they are subject to secondary numerical noise and resolution
dependent instabilities that limit their growth to produce statistically steady
turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid
communication
MACOC: a medoid-based ACO clustering algorithm
The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository
Variational bounds on the energy dissipation rate in body-forced shear flow
A new variational problem for upper bounds on the rate of energy dissipation
in body-forced shear flows is formulated by including a balance parameter in
the derivation from the Navier-Stokes equations. The resulting min-max problem
is investigated computationally, producing new estimates that quantitatively
improve previously obtained rigorous bounds. The results are compared with data
from direct numerical simulations.Comment: 15 pages, 7 figure
Sustaining Educational Reforms in Introductory Physics
While it is well known which curricular practices can improve student
performance on measures of conceptual understanding, the sustaining of these
practices and the role of faculty members in implementing these practices are
less well understood. We present a study of the hand-off of Tutorials in
Introductory Physics from initial adopters to other instructors at the
University of Colorado, including traditional faculty not involved in physics
education research. The study examines the impact of implementation of
Tutorials on student conceptual learning across eight first-semester, and seven
second-semester courses, for fifteen faculty over twelve semesters, and
includes roughly 4000 students. It is possible to demonstrate consistently
high, and statistically indistinguishable, student learning gains for different
faculty members; however, such results are not the norm, and appear to rely on
a variety of factors. Student performance varies by faculty background -
faculty involved in, or informed by physics education research, consistently
post higher student learning gains than less-informed faculty. Student
performance in these courses also varies by curricula used - all semesters in
which the research-based Tutorials and Learning Assistants are used have higher
student learning gains than those semesters that rely on non-research based
materials and do not employ Learning Assistants.Comment: 21 pages, 4 figures, and other essential inf
Molar Entropy and Enthalpy of CO Adsorbed in Zeolites as Derived from VTIR Data: Role of Intermolecular Modes
Detailed analysis of recently reported variable-temperature IR (VTIR) spectra of carbon monoxide adsorbed in alkaline zeolites shows how, not only the corresponding values of standard adsorption enthalpy ((Formula presented.)) and entropy ((Formula presented.)) can be obtained, but also the thermodynamic values of molar entropy and enthalpy which characterize the adsorbed gas phase. In addition, it is shown that the so obtained molar entropy data can lead to new insights into soft molecular modes, which would be hardly accessible by conventional IR spectroscopic techniques
How Lightning Tortuosity Affects the Electromagnetic Fields by Augmenting Their Effective Distance
A novel approach for developing the electromagnetic fields from a lightning return stroke which follows a tortuous path will be presented. The proposed model is unique in that it recognizes that the symmetrical tortuosity of lightning directly impacts the observable distance r, which in turn, alters the resulting electromagnetic fields. In the literature, lightning return stroke models typically employ the assumption that the cloud-to-ground path is straight. Although this assumption yields fairly consistent results across an array of varying approaches, it does not account for lightning\u27s natural physical appearance. Furthermore, straight-line models only account for the cloud-to-ground discharges and do not address branching and/or cloud-to-cloud discharges which are far more common. In reality, the steps which make up the lightning channel\u27s initial descent are staggered or tortuous with respect to each other. Given this fact, the upward traveling current wavefront which follows this prescribed path will exhibit the same characteristics. In doing so, each current segment, which forms along its respective step, induces electromagnetic fields with angular aggregates that propagate outward from their origin. This, in turn, will generate spatial points where there are fields of higher and lower intensities. The results presented in this paper will show how the effective observable distance due to symmetrical tortuosity alters the resulting electromagnetic fields. Furthermore, it will be shown that as the observable distance r is increased, results from the proposed model closely resemble the straight-line model which strongly suggests that symmetrical tortuosity is only influential at relatively close distances
Haematological and pathological findings of pigs experimentally inoculated with a Chilean isolate of porcine reproductive and respiratory syndrome virus
The aims of this study were to characterize the haematological and bone marrow changes, gross and microscopic lesions of pigs
experimentally inoculated with the Chilean isolate of porcine reproductive and respiratory syndrome virus. Twelve 3-week-old pigs
were divided in 4 groups of 3, one of which corresponded to the negative control group sacrificed at 0 days post-inoculation (dpi),
and the 3 remaining groups corresponded to the inoculated pigs sacrificed at 7, 14 and 21 dpi. For each sampling period blood was
collected for complete haemograme and at the necropsy time gross lesions were registered and samples for both bone marrow smears
and histopathology were taken. The results of this study revealed haematological alterations characterized by a significant reduction
(P<0.05) in the haematocrit and a significant increase (P<0.05) in the total leukocyte count associated with an increase in the
monocytes and baciliforms. The bone marrow did not show significant variations in the ratio of myeloid to erythroid cells (P>0.05).
At the same time, the gross lesions were mild and mainly characterized by the presence of conjunctivitis, periocular edema and a
slight increase in the size of the lymph nodes. Microscopic lesions were characterized by the presence of interstitial pneumonia,
depletion and necrosis in lymphoid organs, rhinitis, hepatitis, myocarditis and non-purulent encephalitis. These findings suggest that
the Chilean isolate of the vPRRS to a strain with a low virulenc
Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination.
Permanent damage to white matter tracts, comprising axons and myelinating oligodendrocytes, is an important component of brain injuries of the newborn that cause cerebral palsy and cognitive disabilities, as well as multiple sclerosis in adults. However, regulatory factors relevant in human developmental myelin disorders and in myelin regeneration are unclear. We found that AXIN2 was expressed in immature oligodendrocyte progenitor cells (OLPs) in white matter lesions of human newborns with neonatal hypoxic-ischemic and gliotic brain damage, as well as in active multiple sclerosis lesions in adults. Axin2 is a target of Wnt transcriptional activation that negatively feeds back on the pathway, promoting β-catenin degradation. We found that Axin2 function was essential for normal kinetics of remyelination. The small molecule inhibitor XAV939, which targets the enzymatic activity of tankyrase, acted to stabilize Axin2 levels in OLPs from brain and spinal cord and accelerated their differentiation and myelination after hypoxic and demyelinating injury. Together, these findings indicate that Axin2 is an essential regulator of remyelination and that it might serve as a pharmacological checkpoint in this process
- …