219 research outputs found

    Langmuir wave linear evolution in inhomogeneous nonstationary anisotropic plasma

    Full text link
    Equations describing the linear evolution of a non-dissipative Langmuir wave in inhomogeneous nonstationary anisotropic plasma without magnetic field are derived in the geometrical optics approximation. A continuity equation is obtained for the wave action density, and the conditions for the action conservation are formulated. In homogeneous plasma, the wave field E universally scales with the electron density N as E ~ N^{3/4}, whereas the wavevector evolution varies depending on the wave geometry

    Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability

    Full text link
    We show that the phenomenon of modulational instability in arrays of Bose-Einstein condensates confined to optical lattices gives rise to coherent spatial structures of localized excitations. These excitations represent thin disks in 1D, narrow tubes in 2D, and small hollows in 3D arrays, filled in with condensed atoms of much greater density compared to surrounding array sites. Aspects of the developed pattern depend on the initial distribution function of the condensate over the optical lattice, corresponding to particular points of the Brillouin zone. The long-time behavior of the spatial structures emerging due to modulational instability is characterized by the periodic recurrence to the initial low-density state in a finite optical lattice. We propose a simple way to retain the localized spatial structures with high atomic concentration, which may be of interest for applications. Theoretical model, based on the multiple scale expansion, describes the basic features of the phenomenon. Results of numerical simulations confirm the analytical predictions.Comment: 17 pages, 13 figure

    How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    Full text link
    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical Masers and their environments

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint

    Modulational and Parametric Instabilities of the Discrete Nonlinear Schr\"odinger Equation

    Get PDF
    We examine the modulational and parametric instabilities arising in a non-autonomous, discrete nonlinear Schr{\"o}dinger equation setting. The principal motivation for our study stems from the dynamics of Bose-Einstein condensates trapped in a deep optical lattice. We find that under periodic variations of the heights of the interwell barriers (or equivalently of the scattering length), additionally to the modulational instability, a window of parametric instability becomes available to the system. We explore this instability through multiple-scale analysis and identify it numerically. Its principal dynamical characteristic is that, typically, it develops over much larger times than the modulational instability, a feature that is qualitatively justified by comparison of the corresponding instability growth rates

    Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media

    Full text link
    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.Comment: Review article, will be published in Journal of Optics B, special issue on Optical Solitons, 6 figure

    Modulational instability of bright solitary waves in incoherently coupled nonlinear Schr\"odinger equations

    Get PDF
    We present a detailed analysis of the modulational instability (MI) of ground-state bright solitary solutions of two incoherently coupled nonlinear Schr\"odinger equations. Varying the relative strength of cross-phase and self-phase effects we show existence and origin of four branches of MI of the two-wave solitary solutions. We give a physical interpretation of our results in terms of the group velocity dispersion (GVD) induced polarization dynamics of spatial solitary waves. In particular, we show that in media with normal GVD spatial symmetry breaking changes to polarization symmetry breaking when the relative strength of the cross-phase modulation exceeds a certain threshold value. The analytical and numerical stability analyses are fully supported by an extensive series of numerical simulations of the full model.Comment: Physical Review E, July, 199

    Generalized Whittle-MatEˊ\acute{\text{E}}rn random field as a model of correlated fluctuations

    Full text link
    This paper considers a generalization of Gaussian random field with covariance function of Whittle-Mateˊ\acute{\text{e}}rn family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Mateˊ\acute{\text{e}}rn family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Mateˊ\acute{\text{e}}rn field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this article we show that generalized Whittle-Mateˊ\acute{\text{e}}rn field provides a more flexible model for wind speed data.Comment: 22 pages, 10 figures, accepted by Journal of Physics
    corecore