457 research outputs found

    SLIDES: Do the Upper Basin States Have Enough Water to Grow?: Is There Enough Water to Go Around?

    Get PDF
    Presenter: Don A. Ostler, Upper Colorado River Commission. 24 slides

    SLIDES: Do the Upper Basin States Have Enough Water to Grow?: Is There Enough Water to Go Around?

    Get PDF
    Presenter: Don A. Ostler, Upper Colorado River Commission. 24 slides

    Ultrafast double magnetization switching in GdFeCo with two picosecond-delayed femtosecond pump pulses

    Get PDF
    The recently discovered thermally induced magnetization switching (TIMS) induced by single femtosecond laser pulses in ferrimagnetic GdFeCo alloys proceeds on the picosecond time-scale. The rate at which data can be changed for use of TIMS in technological devices is limited by the processes leading to thermal equilibrium. In the present work, we address the question of whether it is possible to further excite switching via TIMS well before thermal equilibrium between subsystems is reached. In particular, we investigate the conditions for double thermally induced magnetic switching by the application of two shortly delayed laser pulses. These conditions become relevant for potential applications as it sets both a limit to rewrite data and demonstrates the importance of spatial confinement of a heat pulse to bit size, as neighboring bits may be accidentally re-switched for spatially extended pulse spots. To demonstrate this effect, we theoretically study the switching behavior in a prototypical ferrimagnetic GdFeCo alloy as a function of composition. We use computer simulations based on thermal atomistic spin dynamics and demonstrate the possibility of inducing a second switching event well before thermal equilibrium is reached and define the conditions under which it can occur. Our theoretical findings could serve as a guidance for further understanding of TIMS as well as to act as a guide for future applications

    A multiscale model of the effect of Ir thickness on the static and dynamic properties of Fe/Ir/Fe films

    Get PDF
    The complex magnetic properties of Fe/Ir/Fe sandwiches are studied using a hierarchical multi-scale model. The approach uses first principles calculations and thermodynamic models to reveal the equilibrium spinwave, magnetization and dynamic demagnetisation properties. Finite temperature calculations show a complex spinwave dispersion and an initially counter-intuitive, increasing exchange stiffness with temperature (a key quantity for device applications) due to the effects of frustration at the interface, which then decreases due to magnon softening. Finally, the demagnetisation process in these structures is shown to be much slower at the interface as compared with the bulk, a key insight to interpret ultrafast laser-induced demagnetization processes in layered or interface materials

    Linking Legacies: Realising the Potential of the Rothamsted Long-Term Agricultural Experiments

    Get PDF
    Long-term agricultural experiments are used to test the effects of different farm management practices on agricultural systems over time. The time-series data from these experiments is well suited to understanding factors affecting soil health and sustainable crop production and can play an important role for addressing the food security and environmental challenges facing society from climate change. The data from these experiments is unique and irreplaceable. We know from the Rothamsted experience that the datasets available are valued assets that can be used to address multiple scientific questions, and the reuse and impact of the data can be increased by making the data accessible to the wider community. However, to do this requires active data stewardship. Long-term experiments are also available as research infrastructures, meaning external researchers can generate new datasets, additional to the routine data collected for an experiment. The publication of the FAIR data principles has provided an opportunity for us to re-evaluate what active data stewardship means for realising the potential of the data from our long-term experiments. In this paper we discuss our approach to FAIR data adoption, and the challenges for refactoring and describing existing legacy data and defining meaningful linkages between datasets

    Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures

    Get PDF
    The dynamics of magnetic vortex cores is of great interest because the gyrotropic mode has applications in spin torque driven magnetic microwave oscillators, and also provides a means to flip the direction of the core for use in magnetic storage devices. Here, we propose a new means of stimulating magnetization reversal of the vortex core by applying a time-varying strain gradient to planar structures of the magnetostrictive material Fe81Ga19 (Galfenol), coupled to an underlying piezoelectric layer. Using micromagnetic simulations we have shown that the vortex core state can be deterministically reversed by electric field control of the time-dependent strain-induced anisotropy

    Temperature-dependent ferromagnetic resonance via the Landau-Lifshitz-Bloch equation: Application to FePt

    Get PDF
    Using the Landau-Lifshitz-Bloch (LLB) equation for ferromagnetic materials, we derive analytic expressions for temperature dependent absorption spectra as probed by ferromagnetic resonance (FMR). By analysing the resulting expressions, we can predict the variation of the resonance frequency and damping with temperature and coupling to the thermal bath. We base our calculations on the technologically relevant L10_0 FePt, parameterised from atomistic spin dynamics simulations, with the Hamiltonian mapped from ab-initio parameters. By constructing a multi-macrospin model based on the LLB equation and exploiting GPU acceleration we extend the study to investigate the effects on the damping and resonance frequency in {\backslashmu}m sized structures

    Atomistic study on the pressure dependence of the melting point of NdFe12

    Get PDF
    We investigated, using molecular dynamics, how pressure affects the melting point of the recently theorised and epitaxially grown structure NdFe12. We modified Morse potentials using experimental constants and a genetic algorithm code, before running two-phase solid-liquid coexistence simulations of NdFe12 at various temperatures and pressures. The refitting of the Morse potentials allowed us to significantly improve the accuracy in predicting the melting temperature of the constituent elements

    Power Test Results of the First LHC Second Generation Superconducting Single Aperture 1m Long Dipole Models

    Get PDF
    Within the LHC magnet research and development programme, a series of single aperture 1m long models of second generation are presently being built and tested at CERN. The main features of these magnets are: five-block, two layer coils wound from 15mm wide graded NbTi cables, enlarged 56mm aperture and all-polyimide insulation. This paper reviews the power test data of magnets tested to date in both supercritical and superfluid helium. The results of the quench training, the initial location and propagation of quenches and their sensitivity to energy extraction are presented and discussed in terms of the design parameters and the aims of this short dipole model test program
    • …
    corecore