University of Colorado Law School

Colorado Law Scholarly Commons

Hard Times on the Colorado River: Drought, Growth and the Future of the Compact (Summer Conference, June 8-10)

2005

6-9-2005

SLIDES: Do the Upper Basin States Have Enough Water to Grow?: Is There Enough Water to Go Around?

Don A. Ostler

Follow this and additional works at: https://scholar.law.colorado.edu/hard-times-on-colorado-river

Part of the Hydraulic Engineering Commons, Hydrology Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Ostler, Don A., "SLIDES: Do the Upper Basin States Have Enough Water to Grow?: Is There Enough Water to Go Around?" (2005). *Hard Times on the Colorado River: Drought, Growth and the Future of the Compact (Summer Conference, June 8-10).*

https://scholar.law.colorado.edu/hard-times-on-colorado-river/18

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Don A. Ostler, *Do the Upper Basin States Have Enough Water to Grow?: Is There Enough Water to Go Around?*, *in* HARD TIMES ON THE COLORADO RIVER: DROUGHT, GROWTH AND THE FUTURE OF THE COMPACT (Natural Res. Law Ctr., Univ. of Colo. Sch. of Law, 2005).

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

DO THE UPPER BASIN STATES HAVE ENOUGH WATER TO GROW? Is There Enough Water To Go Around? By Don A. Ostler Upper Colorado River Commission

NEVADA

WYOMING

COLORADO

NEW MEXICO

CALIFORNIA

ARIZONA

1 16297

Colora do Diavar Commission

Calculated Virgin Flow of the Colorado River at Lee Ferry

- Period of record = 1896 to 2004
- Flow in million acre-feet
 - Minimum 5.6 maf
 - Average 14.8 maf
 - Maximum 24.5 maf

Upper Basin CRSP Storage Capacity (1000 Ac-Ft)

- Fontenelle 345
- Flaming Gorge 3749
- Blue Mesa
- Navajo
- Lake Powell
 Total

829 1,696 <u>24,322</u> 30,941

Recent Drought Impacts

- 5 consecutive years of extreme drought
- Powell inflow 51%, 62%, 59%, 25%, and 51% of average (2000 – 2004)
- Low point 33% capacity, 145 ft. below full – only 65ft above the power pool
- Recent improvement 108% of ave. runoff; +- 50 feet of rise
- Dry period may not be over!

Rapid Growth In the Colorado River Basin

- Nevada fastest growing state
- Arizona second fastest growing state
- Utah fourth fastest growing state
- Colorado and California expecting between 25% and 50% pop. Increase by 2030
- The number of people added to Ca is large

1922 Colorado River Compact

 Apportions 7,500,000 ac-ft/yr to both the Upper and Lower Basins

• Lower Basin given the right to increase consumptive use by 1,000,000 ac-ft/yr

1922 Colorado River Compact

 Provides that Mexico be supplied with water, first from surplus over 16maf; and borne equally by the Upper and Lower Basins if no surplus

 Upper Basin shall not cause the flow at Lee Ferry to be depleted below 75,000,000 ac-ft for any ten years

The Mexican Treaty of 1944

- Guarantees an annual delivery to Mexico of 1,500,000 ac–ft per year
- Provides an additional 200,000 ac-ft when there is a surplus
- Allows the USA to reduce deliveries during extraordinary drought in same proportion as USA uses are restricted

Upper Colorado River Basin Compact of 1948

- Divides Upper Basin water between States – 50,000 ac-ft to Arizona
 - -51.75% to Colorado X 7.45 = 3.86
 - -23.00% to Utah X7.45 = 1.71
 - -14.00% to Wyoming X7.45 = 1.04
 - -11.25% to New Mexico X7.45 = <u>0.84</u>

7.45maf ??

Is the water anticipated in the Colorado River Compact really there?

Million Ace Feet per Year Year

Estimated Virgin Flow at Lee Ferry

Upper Colorado River Commission

Drought Heightens Concern

- Prolonged drought impacts yield
- Completed 5 years of extreme drought
- Powell inflow ranged from 25% to 62%
- Powell fell to 33% capacity; 145 feet below full
- 65 feet above power pool
- Dry period may not be over yet!

1988 Hydrologic Determination

- Establishes safe annual yield of 6.0 maf
- Assumptions:
 - 8.23 delivery at Lee Ferry (7.5 + 0.750 maf)
 - Critical draw down period
 - Critical storage (maintain min power pool)
 - Acceptable risk level for stream flow 98.1%
 - Assumed shortage level 6%

How Much Water Are We Using Now? (year 2000 estimate in kaf)

• <u>State</u>	depletions % remaining		
 Colorado 	2,686	13%	
New Mexico	508	24	
Utah	953	30	
 Wyoming 	<u>570</u>	32	
Total	4,717		

Upper Basin Consumptive Use

Upper Colorado River Commission

Provided by: Eric Kuhn CRWCD

Estimate of Future Uses (maf) year 2060

• <u>State</u>	<u>2010</u>	<u>2030</u>	<u>2060</u>	<u>%left</u>
• Co.	2.87	2.97	3.079	0
• NM	0.594	0.664	0.677	-1
• Ut	1.095	1.190	1.322	3
• Wy	0.590	0.644	0.833	0
 total 		5.91????		

How To Increase The Firm Yield Calculation

- Change any of the assumptions –
- Does the compact require a delivery of 8.23 maf every year? No!
- Delivery of 7.5maf increases the yield to 6.77 maf
- Interpreting the Compact release volume is important to UB yield!

Lees Ferry Reconstruction, 1536-1997 5-Year Running Mean

Assessing the 1999-2004 drought in a multi-century context

Data analysis courtesy of David M. Meko From Woodhouse, Gray, and Meko, in prep, Updated Streamflow Reconstructions for the Upper Colorado River Basin.

Mean flow 1536-1997 14.74 maf

Conclusions

- Upper Basin uses are increasing
- Maximum uses estimated by 2060
- Assumptions used in the hydrologic determination will change the yield
- It is time to address the minimum compact delivery to the lower basin
- Tree ring science could change the yield