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Using the Landau-Lifshitz-Bloch (LLB) equation for ferromagnetic materials, we derive analytic expressions

for temperature-dependent absorption spectra as probed by ferromagnetic resonance. By analyzing the resulting

expressions, we can predict the variation of the resonance frequency and damping with temperature and coupling

to the thermal bath. We base our calculations on the technologically relevant L10 FePt, parametrized from

atomistic spin dynamics simulations, with the Hamiltonian mapped from ab initio parameters. By constructing

a multimacrospin model based on the LLB equation and exploiting GPU acceleration, we extend the study to

investigate the effects on the damping and resonance frequency in μm-sized structures.

DOI: 10.1103/PhysRevB.90.094402 PACS number(s): 75.70.−i, 75.50.Bb, 75.50.Vv, 75.78.−n

I. INTRODUCTION

The magnetic properties of ferromagnetic structures such

as thin films, nanowires, and nanoparticles have been studied

extensively both experimentally [1,2] and theoretically [3,4].

The interest in these particles is driven by fundamental

features on the one hand and technological perspectives on

the other [5–7]. Ferromagnetic resonance (FMR), which has

been applied with great success to thin ferromagnetic films

in the past [8], can be used to measure important material

properties, such as the damping, gyromagnetic ratio, and

anisotropy constant. The temperature dependence of these

properties for large or complex structures is often difficult

to predict using analytical treatments, especially when tem-

perature effects are included [4,9]. As well as being difficult to

calculate analytically, temperature-dependent calculations of

(for example) FMR can be slow to converge. The convergence

can become particularly troublesome if thermal fluctuations

are accounted for. A specific motivation for this work is the

interest in L10 FePt materials, which is a promising candidate

for ultrahigh density magnetic recording [10,11].

The ability to tune magnetic properties such as the damping

is important, for example, in devices based on spin-transfer

torque where a low damping of a free layer is essential for

reducing the power consumption and can affect the signal-to-

noise ratio [12]. In some cases, such as in giant magnetoresis-

tive (GMR) read sensors, high damping is preferred to improve

thermal stability [13].

For technologies based on heat-assisted magnetic recording

(HAMR), understanding temperature effects and fluctuations

in strongly anisotropic materials will be crucially important.

In this paper, we present analytical and numerical calculations

of the material properties of strongly anisotropic materials at

elevated temperatures. We do so by utilizing the formalism

of the Landau-Lifshitz-Bloch (LLB) equation of motion for

ferromagnetic particles, which has an intrinsic temperature

dependence via various input functions. There are a number

of different approaches to calculating FMR and introducing

temperature effects. The work of Usadel [14] utilizes an ap-

proach based on the Landau-Lifshitz-Gilbert (LLG) equation

for nanoparticles whereby ensembles of atomic spins are

treated as a single macrospin, in the same manner as the

Landau-Lifshitz-Bloch equation. However, the work presented

in Ref. [14] does not take into account the contraction of

the magnetization length. As the LLG model does not take

into account the longitudinal relaxation of the magnetization,

which becomes important at elevated temperatures, there is a

requirement to use an approach such as the LLB to correctly

describe the temperature-dependent properties as we approach

the Curie temperature.

Other approaches for numerical determination of FMR

properties in systems where exchange between macrospins

is important, such as thin films or granular media, including

micromagnetic simulations such as that of Ref. [3]. In Ref. [3]

the study focuses on granular media with the exchange be-

tween macrospins within a grain and between grains taken into

account. The use of this kind of micromagnetic model is well

accepted at temperatures clearly below the Curie temperature

where the magnitude of the magnetization is determined

by the temperature. However, at higher temperatures the

susceptibility increases and due to thermal fluctuations the

magnetization locally cannot be regarded as constant [15].

The use of the LLB model is of greatest importance when

the susceptibility begins to increase and small variations in

temperature result in large changes in magnetization (around

T � 3TC/4) [16].

In the first part of the paper, we present the derivation of

the temperature-dependent analytic expression for the power

absorbed by the particle. This analytic expression allows

us to look at the effect of temperature on FMR curves

for single-domain particles. The temperature-dependent input

functions that enter into the LLB formalism have been

parametrized from atomistic spin dynamics with the exchange

parameters calculated directly from ab initio calculations [17].

We have tested the expressions with a single-spin and

multispin (with exchange) LLB numerical model, by showing

a number of resonance curves at different temperatures

against the derived expressions (without demagnetizing fields).

The analytic expressions for the damping and resonance
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frequency show the overall trend of the temperature-dependent

behavior.

In the second half of the paper, we extend the scope

of our analysis using a multimacrospin model based on

the LLB formalism with large number of exchange-coupled

macrospins. We present numerical calculations of FMR in

two-dimensional (2D) and three-dimensional (3D) structures

with the inclusion of demagnetizing effects and (stochastic)

thermal fluctuations. Specifically, we have investigated the

effects of the anisotropy constant and film thickness and

anisotropy on the measured damping in out-of-plane films

at high temperatures. Our findings show that, depending on

thickness or anisotropy, there is a competition between the de-

magnetizing and anisotropy energy that can modify the damp-

ing significantly. We have implemented this large-scale model

on the CUDA GPU platform so that even with the inclusion

of the stochastic thermal terms, it is possible to obtain good

averaging of the FMR power spectra.

There are limited experimental ferromagnetic studies of

chemically ordered FePt due to its large magnetocrystalline

anisotropy [18]. However, it is possible to perform so-called

optical FMR with the use of laser pulses [19]. In a theoretical

work by Butera [20], the resonance spectra were calculated

using a computational model for disordered nanoparticles of

FePt. This study showed that the measured damping depended

strongly on the amount of disorder. To our knowledge, there

are no systematic studies on the temperature dependence of the

properties such as damping due to the limited fields in typical

FMR setups; our results provide insight into this complex

issue.

II. LANDAU-LIFSHITZ-BLOCH EQUATION

The LLB equation for magnetic macrospins describes the

time evolution of an ensemble of atomic spins and allows

for relaxation of the magnitude of the magnetization. The

equation was originally derived by Garanin [21] within a

mean-field approximation from the classical Fokker-Planck

equation for atomistic spins interacting with a heat bath.

The resulting LLB equation has been shown to be able

to describe linear domain walls, a domain-wall type with

nonconstant magnetization length. These results are consistent

with measurements of the domain-wall mobility in yttrium iron

garnet (YIG) crystals close to the Curie point (Tc) [22] and

with atomistic simulations [23]. Furthermore, the predictions

for the longitudinal and transverse relaxation times have

been successfully compared with atomistic simulations [24].

Consequently, we use this equation in the following for

the thermodynamic simulations of macrospins. The use

of the LLB formalism has the advantage over traditional

micromagnetics that it automatically allows for changes in

the modulus of the magnetization. In theory, it is indeed

possible to calculate temperature-dependent FMR using the

atomistic spin dynamics (ASD) model, however, such an

approach would be extremely computationally expensive. This

computational expense in the ASD model arises because,

for FMR calculations, large system sizes are required to

reduce the effects of thermal noise. While large systems

are possible to calculate, the FMR calculations also require

averaging over many cycles of the driving field, up to hundreds

of nanoseconds. These two restrictions combined means

that this method is not suitable, even with GPU accelera-

tion or a (for example, MPI) distributed memory solution

[25].

A further challenge for accurate calculation of magnetic

properties is the accounting of the long-ranged exchange in

materials such as FePt. Through proper parametrization of the

LLB equation [17], one can account for such long-ranged

interactions in the so-called multiscale approach [17]. Via

this multiscale approach we can then bridge the gap between

electronic-structure calculations to large-scale (of the order

of micrometres) calculations of material properties. With this

in mind, the LLB model is then ideally placed to describe

temperature-dependent ferromagnetic resonance.

The LLB equation, without the stochastic term, can be

written in the form

ṁ = −γ [m × Heff] +
γα‖

m2
(m · Heff)m

−
γα⊥

m2
[m × [m × Heff]]. (1)

Aside from the usual precession and relaxation terms, the LLB

equation contains another term which controls longitudinal

relaxation [second term in Eq. (1)]. Hence, m is a spin

polarization which is not assumed to be of constant length and

even its equilibrium value me(T ) is temperature dependent.

The value of m is equal to the ratio of the magnetization of

the macrospin normalized by the magnetization at saturation

(M/MsV ). α‖ and α⊥ are dimensionless longitudinal and

transverse damping parameters (defined below) and γ is the

gyromagnetic ratio taken to be the free-electron value. The

transverse damping parameter in this equation is related to

what is usually measured in experiments (the Gilbert damping

αg) by the expression

αg =
α⊥

m
. (2)

The LLB equation is valid for finite temperatures and even

above Tc, although the damping parameters and effective fields

are different in the two regions. Throughout this paper, we

are only interested in the case T � Tc with the damping

parameters [21] α‖ = 2λT
3Tc

and α⊥ = λ(1 − T
3Tc

). The single-

particle free energy (without demagnetizing fields) is given

by

f = −BM0
s mz +

M0
s

2χ̃⊥

(

m2
x + m2

y

)

+
M0

s

8χ̃‖m2
e

(

m2 − m2
e

)2
,

(3)

and the effective fields Heff = − 1
Ms0

δf

δm
given by [21]

Heff = B + HA +
1

2χ̃‖

(

1 −
m2

m2
e

)

m, (4)

where B represents an external magnetic field and the

anisotropy field HA is given by

HA = −(mxex + myey)/χ̃⊥. (5)

Here, the susceptibilities χ̃l are defined by χ̃l = ∂ml/∂Hl ,

where Hl is the l = ‖,⊥. In these equations, λ is a microscopic

parameter which characterizes the coupling of the individual,
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atomistic spins with the heat bath. The anisotropy field HA

[Eq. (5)] defines a hard axis in the x and y planes, essentially

giving a uniaxial anisotropy in the z direction. This allows

the anisotropy field to be defined in terms of the transverse

susceptibility [17] (χ⊥) and gives the correct scaling of the

anisotropy [26].

For the purpose of testing the model, we use a thermal bath

coupling constant of λ = 0.05, consistent with Ref. [18]. There

are differing values of the damping constant in the literature,

for example, for granular FePt Becker et al. measured a

damping constant of 0.1 using an optical FMR technique,

whereas Alvarez et al. found a value of 0.055 using standard

FMR in a broad frequency range [18]. It should be pointed out

here that while λ is a coupling to the thermal bath equivalent

to that used in atomistic spin dynamics, it is assumed to be

temperature independent.

At this point, we should take some time to define the

different constants related to the damping and their differences.

The parameters λ, α⊥, α‖, and αg correspond to the thermal

bath coupling, the temperature-dependent transverse and

longitudinal damping parameters, and the damping parameter

that one would measure experimentally, respectively. The

thermal bath coupling is temperature independent and is a

phenomenological parameter that is the same as that used

in atomistic spin dynamics. The transverse and longitudinal

damping parameters that enter into the LLB equation define

the relaxation rates of the transverse and longitudinal magne-

tization components. Finally, the parameter αg is equal to the

perpendicular damping (α⊥) that enters into the equation of

motion, divided by the magnetization and is what one would

find in an FMR measurement from the linewidth.

For the application of this equation, one has to know a

priori the spontaneous equilibrium magnetization me(T ) and

the perpendicular [χ̃⊥(T )] and parallel [χ̃‖(T )] susceptibilities.

In this work, these are calculated separately from a Langevin

dynamics simulation of an atomistic spin model, however,

it is possible to calculate these properties from mean-field

calculations [27]. We use a model for FePt which was

introduced earlier and which is meanwhile well established

in the literature [26,28–30]. Since this model was derived

from first principles, a direct link is made from spin-dependent

density functional theory calculations, via a spin model, to our

macrospin simulations. The calculation of these parameters is

discussed in more detail in Ref. [17].

III. ANALYTIC SOLUTION FOR THE FMR ABSORBED

POWER SPECTRUM P(ω)

The focus of this section is on the derivation of an analytical

solution for the power spectrum P (ω) using the LLB equation

for a single macrospin. The power P (ω) absorbed in an FMR

experiment is given by [4]

P (ω) =

〈

M ·
∂B

∂t

〉

= −
ω

2π

∫ 2π/ω

0

MSV mxḂxdt, (6)

where V is the volume of the macrospin, M is the magnetiza-

tion (MsV m), and ω is the frequency of the driving field. The

right-hand side of Eq. (6) assumes that the time-varying field is

applied in the x direction with the static applied field in z. The

time dependence of the x component of the magnetization

can be derived from Eq. (1). Using the assumptions that

m2 is constant and mx as well as my are small leads to the

approximation mz ≈ m. Under this assumption, Eq. (1) can be

written in linearized form. Together with the linearized form

of the effective field, the solution of the resonance frequency

ω0 and transverse relaxation time τ can be obtained (for full

details see Appendix A):

ω0(T ) = γ

(

Bz +
m(T )

χ̃⊥(T )

)

, (7)

τ (T ) =
m(T )

λ
[(

1 − T
3Tc

)

ω0(T ) − 2
3
γ T

Tc
H z

eff(T )
] . (8)

Here, m = me + χ̃‖Bz is an approximation written to first

order of the susceptibility for the purposes of the analytic

calculation. In the zero-temperature case under the conditions

that α = α⊥, α‖ = 0, and m = me = 1, ω0 and τ are the

same as for the Landau-Lifshitz-Gilbert (LLG) equation ω0 =

γ (Bz + 1
χ̃⊥

) and τ = 1
λω0

.

The analysis of Eqs. (7) and (8) shows that there is little

variation of the measured damping αg with the applied field as

one would expect [31]. Also, at low temperature, as expected,

the measured damping is equal to the input coupling to the

thermal bath λ. The temperature dependence of αg shows that

(for a chosen value of λ) there is an increase with temperature,

diverging at the Curie point. In a recent paper [31], the

measured damping as a function of applied field (up to 7 T)

was shown to be almost independent of temperature. In the

same study, the damping was measured at two temperatures:

170 and 290 K. Between these two temperatures the damping

was shown to be around 0.1 with a slight increase as one would

expect.

Figure 1 shows the analysis of Eqs. (7) and (8) for the

physical input parameters for FePt. In the figure the measured

damping is calculated as αg = 1/ω0τ and is shown to increase

with temperature, diverging at the Curie point. The contours

show lines of constant damping explicitly. This demonstrates

that if one assumes no temperature dependence of the thermal

bath coupling λ, the measured damping will not be constant.

0.50.4

0.3

0.2

αg=0.1

α
g

0.75

0.50

0.25

0.00

λ

0.20

0.15

0.10

0.05

0.00

T [K]

6005004003002001000

λ

T [K]

α
g

FIG. 1. (Color online) Analytically derived Gilbert damping as a

function of temperature and the intrinsic coupling to the thermal bath

λ, valid for a single macrospin without demagnetizing effects. For

each value of λ the damping is shown to increase with temperature

consistent with other works [24,31]. The lines are contours of constant

measured damping.
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The value of λ shown on the y axis of Fig. 1 is a

temperature-independent parameter. As mentioned above, this

parameter is equivalent to the coupling/damping parameter

used in atomistic spin dynamics models. The general approach

for atomistic spin dynamics models is to use a constant value

of λ which governs the rate of energy transfer to the bath [32].

The overall damping measured in the atomistic model is

determined by this rate of energy transfer but is also affected

by the presence of spin-wave interactions in the system. The

measured damping in atomistic spin dynamics is larger than

the coupling to the thermal bath (at elevated temperatures) due

to spin-wave broadening.

The LLB equation for a single spin contains the parallel

and perpendicular damping constants (α⊥ and α‖). These

values depend on λ (the microscopic coupling to the bath)

and intrinsically give a temperature-dependent damping that

was derived via the Fokker-Planck equation for the interacting

atomistic spins [21].

The solution of the resulting inhomogeneous differential

equation (A4) combined with Eq. (6) leads us to the analytic

solution for the power absorbed during ferromagnetic reso-

nance as a function of the frequency of the driving field:

P (ω,T ) =
MsV ω2

4

γα⊥B2
0

1
τ 2 + (ω − ω0)2

, (9)

where the temperature dependence comes from ω0 and τ [see

Eqs. (7) and (8)] and B0 is the amplitude of the driving field.

In the zero-temperature case, this solution reduces to that from

the LLG equation. In Fig. 2 (shown and discussed below) the

temperature dependence of the analytic solution enters via the

temperature-dependent input functions of the LLB equation.

The FMR equation given by Eq. (9) (and shown analytically

in Fig. 2) uses the functions for FePt that were presented in

Ref. [17], however, similar functions could be calculated using

mean-field theory [27].

The analytic solution given by Eq. (9) can be compared to

the numerical results, by integration of the LLB equation and

using Eq. (6). By applying an alternating driving field in the x

direction and numerically averaging Eq. (6) until convergence

we can compare the results of a single spin to the analytic

expression. For FePt, there is a strong uniaxial exchange

anisotropy, therefore, in the absence of any static applied field

650K
500K
300K
100K

0K

ω/γ [T]

P
/M

s
V

[T
2
s]

2520151050

1.2×10−4

8.0×10−5

4.0×10−5

0

FIG. 2. (Color online) Power spectrum vs frequency in a 1-T

applied field. The data points are from LLB simulations for a single

macrospin and the solid lines are given by Eq. (9).

we still see a very strong FMR line for single-domain particles.

Throughout the calculations we use a driving field amplitude

(B0) of 0.005 T and a static applied field (Bz) of 1 T. The Curie

temperature for our system was assumed to be 660 K [17], the

saturation magnetization used was Ms = 1 047 785 JT−1 m−3.

The anisotropy field at 0 K is equal to 1/χ̃⊥(0 K) and is

equal to 15.69 T, i.e., a value of the anisotropy constant

K (via HA = 2K/Ms) of 8.2 × 106 Jm−3. The temperature

dependence of the transverse susceptibility via Eq. (5) scales

the anisotropy with M2.1 as shown in Ref. [26]. In the second

part of the paper, we have scaled the anisotropy constant at 0 K

by a given amount to give a different value of the anisotropy

constant used.

The reason for using a static applied field and varying the

frequency of the driving field is for computational efficiency. In

the second part of this work, we have simulated a large number

of macrospins coupled via exchange and magnetostatics,

which is computationally very expensive. To obtain good

averages of the absorbed power during FMR we require a

large number of cycles of the driving field. The use of driving

frequencies around 10–60 GHz would drastically increase the

simulation time, particularly for the low-temperature (high-

resonance-field) simulations. Therefore, the simulation time

for higher frequencies is lower, increasing as it is reduced. The

use of a higher-frequency driving field would overcome the

computational problem, however, a large static applied field

(particularly at low temperature) would be required to drive

the system to resonance. Both the high frequency and the high

field would be very difficult to obtain experimentally. The

expression for the FMR power [Eq. (9)] can also be presented

in the form P (Bz). We have shown the analytic curves for this

representation in Appendix B, although the quantities derived,

such as damping, from the curves in either representation

should be consistent.

We integrate the LLB equation using the Heun numerical

scheme with a 5-fs time step. The input functions [me(T ),

χ⊥,‖(T ), and A(T )] that were used for FePt [as used in Eq. (9)]

were calculated from atomistic spin dynamics [17] and the

functional forms are polynomial fits [33]. The exact functions

can be found in Ref. [33], specifically on pages 143 and 144

and are the same as those in Figs. 1, 2, and 3 of Ref. [17].

Figure 2 shows the calculated absorbed power as a function

of frequency for a range of temperatures using the single-spin

LLB model. As we can see from Fig. 2, there is a large decrease

in the resonance frequency, given by Eq. (7), which we would

expect to occur because of the decrease in the anisotropy field.

The analytic solution agrees perfectly with the numeric model,

except as we approach the Curie temperature. This is because

in the analytical treatment we approximate the magnetization

in a field Bz to depend on the parallel susceptibility (m = me +

χ̃‖Bz) which diverges as we approach the Curie temperature.

This point has been discussed in Appendix A and is an error

in the analytic treatment only, not in the form of the LLB

equation.

The reduction in the anisotropy with temperature shown

in Fig. 2 is represented by a reduction in the resonance

frequency in the P (ω) representation. As we have shown in

Appendix B, in the P (Bz) representation, the resonance field

increases with temperature. Both of these representations are

consistent with the expected decrease in temperature and are in
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qualitative agreement with other works, for example, the

experimental works of Schulz and Baberschke [34] for the case

of perpendicular films with the field applied perpendicular to

the film. The work of Antoniak [35] on FePt nanoparticles, as

well as the theoretical work of Usadel [14] using an LLG-based

model for (dipole) interacting nanoparticles, show a similar

increase in the resonance field with temperature (reduction in

the resonance frequency).

IV. MULTIMACROSPIN NUMERICAL RESULTS

In the following section, we introduce the stochastic LLB

equation that takes into account thermal fluctuations. As well

as the normal terms in the LLB described by Eq. (4), we

also include exchange coupling between the macrospins and

the magnetostatic fields. The LLB equation with stochastic

thermal terms included is written for each spin i in the form

ṁi = −γ
[

mi × Hi
eff

]

+ ζ i,‖ −
γα⊥

m2
i

[

mi ×
[

mi

×
(

Hi
eff + ζ i,⊥

)]]

+
γα‖

m2
i

(

mi · Hi
eff

)

mi . (10)

The stochastic fields ζ i,⊥ and ζ i,‖ have zero mean and the

variance [16]

〈

ζ
η

i,⊥(0)ζ θ
j,⊥(t)

〉

=
2kBT (α⊥ − α‖)

|γ |MsV α2
⊥

δijδηθδ(t),

(11)
〈

ζ
η

i,‖(0)ζ θ
j,‖(t)

〉

=
2|γ |kBT α‖

MsV
δijδηθδ(t),

where ‖ is the additive noise, and η and θ represent the

Cartesian components. As well as the stochastic field, the

exchange is also included in the form

Hi
ex =

A(T )

m2
e

2

M0
s �2

∑

j∈neigh(i)

(mj − mi), (12)

where A(T ) is the exchange stiffness, � is the cell length, and

M0
s is the saturation magnetization. It should be pointed out

that the inclusion of the stochastic term into the LLB equation

leads to a slightly reduced TC as compared to the LLB without

the stochastic term [16].

Figure 3 shows the power spectrum as a function of fre-

quency for multimacrospin calculations (coupled by exchange)

for a system size of (100 nm)3 with a unit-cell discretization of

(6.25 nm)3 (i.e., 16 × 16 × 16 macrospins), though we have

checked unit-cell sizes down to (3.125 nm)3 (32 × 32 × 32

macrospins), i.e., below the typical domain-wall size of 4–

6 nm. The solid lines are the analytical solution (9). The

macrospin lattice is represented as a simple cubic arrangement

with only nearest-neighbor interaction taken into account and

is the same for all simulations involving many macrospins.

As discussed in the Introduction, we have also introduced

into our model demagnetizing effects to extend the analytic

study to more realistic materials. We have taken the approach

of that of Lopez-Diaz et al. used in the GPMAGNET soft-

ware [36]. In this approach, we write the magnetostatic field

in a (cubic) cell i (Hd,i) as

Hd,i = −Ms

∑

j

N(ri − rj ) · mj , (13)

650K
600K
500K
400K
300K
200K
100K
50K

ω/γ [T]

P
/M

s
V

[T
2
s]

20151050

1.4×10−4

1.2×10−4

1.0×10−4

8.0×10−5

6.0×10−5

4.0×10−5

2.0×10−5

0

FIG. 3. (Color online) Power spectrum vs frequency in a 1-T

applied field. The data points are from LLB simulations for many

exchange-coupled macrospins including the stochastic fields and

exchange and the solid lines are given by Eq. (9) (no magnetostatic

fields are included here).

where N is the 3 × 3 symmetric demagnetizing tensor. The

sum runs over all cells at positions ri,j . The demagnetizing

tensor is given by

N(ri − rj ) =
1

4π

∮

Si

∮

Sj

dSi · dS′
j

|r − r′|
, (14)

Si (Sj ) are the surface of cell i (j ), respectively, r and r′ are the

points on the surface i and j . This sum requires a summation

from all cells and requires integration over each of the surfaces

i and j , making it extremely computationally expensive. If

one were to perform the integration (14) numerically for

each surface of each cell, the calculation is extremely time

consuming and converges very slowly with the number of

mesh points on each surface. To that end, we have employed

the method of Newell [37], whereby the surface integration of

the cubes is calculated analytically as in the OOMMF code [38].

Some further details can be found in Appendix C.

V. FERROMAGNETIC RESONANCE IN

THIN FILMS OF FEPT

In this section, we present calculations of thin films of

FePt. We begin by looking at the effect of temperature on

the damping of 2-nm thin films using the stochastic form

of the LLB equation with demagnetizing fields [Eq. (13)].

We compare this to the results for the single-spin analytic

results. The thin films show a large increase in the predicted

damping over the analytic results due to the inclusion of the

demagnetizing term as we approach the Curie temperature.

The thickness dependence of the films is also calculated using

the multispin model, showing that at low temperatures there

is little variation in damping with film thickness though, at

temperatures approaching the Curie point, there is a large

reduction with increasing thickness.

For the thin films of FePt where we have included the

magnetostatic interactions into the system, the analytic form

of the resonance curves can no longer be fitted to the data.

We therefore extract the damping by fitting the following
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FIG. 4. (Color online) Ferromagnetic resonance curves in thin

films of FePt for a range of temperatures below the Curie temperature.

The points here are simulated data and the lines are the fits to Eq. (15).

The inset shows the ratio of the damping as measured in our 2D film

to the damping calculated analytically for a single macrospin. For low

temperatures, the two are equivalent, however, at higher temperatures

there is an enhanced damping in the thin films due to the effect of the

magnetostatic field.

expression to the FMR curves:

P (ω) = P0

ω2

(ωα̃g)2 + (ω − ω̃0)2
, (15)

where α̃g , P0, and ω̃0 are free-fitting parameters and we use the

tilde to distinguish the resonance frequency and damping from

the analytically derived values. The use of this fitting procedure

allows us to compare with experimental observations as this

would be the kind of analysis required to extract the damping

parameter (αg). For the single-spin calculations (as shown

in Sec. III), we have verified that the use of this expression

recovers the analytic value of the damping αg .

By systematically varying the anisotropy we have shown

that this increase in damping occurs when the demagnetizing

field dominates over the anisotropy term. Finally, this modifi-

cation in the damping is shown to affect the switching times

as we transition from one regime to another.

The x and y dimensions of the thin films in this section are

0.4 μm × 0.4 μm. The z dimension is initially one cell (2 nm)

thick, i.e., a 2D film. Our cell discretization is 2 nm × 2 nm ×

2 nm, below the domain-wall width. We apply the fields in the

same orientation as discussed above. The resonance curves

are shown on Fig. 4 for a range of temperatures for the 2D

(2-nm-thick) film. From each FMR curve we have used a

fitting procedure, as in Fig. 2, to calculate the damping in the

2D structures (solid lines). The inset of Fig. 4 shows then the

ratio of the damping that we calculate for the 2D structures to

the analytically derived damping for single-domain particles

in Sec. III. In the low-temperature limit, this ratio is consistent

with the analytic solution for a single macrospin (i.e., it is 1);

for high temperature, however, the damping is increased as the

demagnetizing effects start to dominate over the anisotropy.

Next, we consider the effects of film thickness on the

damping and resonance frequency. We increase the thickness

300 K
500 K
600 K

Thickness [nm]

α
g

18141062

0.13

0.11

0.09

0.07

0.05

18141062

14.0

12.0

10.0

8.0

6.0

4.0

Thickness

ω̃0/γ

α̃
g

[nm]

FIG. 5. (Color online) Damping as a function of film thickness

for a range of temperature. In the low-temperature regime, there is

a slight increasing damping as a function of thickness. As the Curie

temperature is approached, there is a large decrease in the damping

with film thickness. The inset shows the variation of the resonance

frequency with thickness. The resonance frequency shows an overall

increase over all temperatures due to the decrease in the effective

magnetostatic field.

of the film from 2 to 20 nm (1 to 10 cells) and calculate the

ferromagnetic resonance curve for each thickness (a maximum

of 400 000 cells for around 100 ns). The resulting FMR curves

were again analyzed to extract the damping and resonance

frequencies.

Figure 5 shows the variation of the damping and resonance

frequency as a function of the thickness of the thin film.

The largest variation in the damping is shown close to

the Curie temperature (blue square, dotted line). For T =

500 K, there is a small increase in the damping with film

thickness when going from 2 to 4 nm. After 4 nm, the curve

shows little variation, consistent with the T = 300 K (red

circles, dotted-dashed line) line. The variation in the damping,

with film thickness, close to the Curie point will have a large

effect on the magnetization dynamics in heat-assisted magnetic

recording (for which FePt is a promising candidate), that

operates at elevated temperatures. The elevated temperatures

allow for the reduction in the anisotropy so that the field

generated by the write head of a hard disk drive (around 1–2 T)

is sufficient to reverse the magnetisation. This reduction in

damping for thick layers of FePt would lead to longer switching

times (as we show in the following), limiting the write times.

In Ref. [39], Liu et al. showed that the damping in a

magnetic tunnel junction consisting of a FeCoB free layer

increased with decreasing thickness. The mechanism was said

to be caused by spin pumping and nonlocal background effects.

Our results, while not calculated for FeCoB, show that it is

not required to invoke a mechanism via spin pumping but

can arise due to an interplay between the anisotropy and the

demagnetizing fields.

As well as looking at the effect of the film thickness on

the damping parameter, we have also performed a systematic

variation of the anisotropy constant. In FePt, the anisotropy

can be modified, for example, by inducing lattice distortion
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FIG. 6. (Color online) Dependence on the damping in FePt for a

range of anisotropy constants for three values of temperature (300 K,

blue circle points; 400 K, green triangle points; and 500 K, red

square points). In the lower anisotropy range the damping increases,

consistent with the results of Fig. 5. The lines are fits to exponential

decays to give a guide to the eye.

or chemical disorder [40]. For the 2-nm-thick films, we have

calculated the FMR spectra at three different temperatures

(300, 400, and 500 K) for a range of anisotropy values below

the bulk value (vertical dashed gray line in Fig. 5). From

these calculations we have measured the effective damping

parameters using the method described above. The overall

trend shows a decrease in the measured damping, the result of

which is shown in Fig. 6.

The overall trend in Fig. 6 shows a decrease in the

damping when the anisotropy becomes dominant over the

demagnetizing field, consistent with the results of Fig. 5.

Figure 7 shows the calculated switching times for four

temperatures (610, 620, 630, and 640 K) as a function of

the thickness of the film. To calculate the switching times,

we equilibrated the system at the temperature shown in the

figure, we then applied a field with a step function to 2 T to

reverse the magnetization in the z direction. The switching

times were then averaged over 25 runs per point. The errors in

the switching times are quite small, so 25 runs seems to be a

sufficient number to take a good average.

The thickness dependence of the switching times shown

in Fig. 7 is consistent with the calculations of the damping

presented in Fig. 5. As the thickness is increased, there is an

observed decrease in the damping which leads to the reduced

switching times seen in Fig. 7. It should be pointed out that the

field that we apply is not sufficient to switch the magnetization

below around 610 K, consistent with Ref. [41]. The large

reduction in the switching time seen for the T = 640 K case

is due to the fact that with the inclusion of the stochastic term

there is a slight reduction in the Curie temperature as shown

in Ref. [16].

VI. CONCLUSION

We have derived, using the LLB formalism, an analytic

solution to the power frequency spectrum for nanometer-sized,

single-domain ferromagnets during ferromagnetic resonance.

Using the technologically relevant FePt, this analytic solution

T=640 K
T=630 K
T=620 K
T=610 K

2018161412108642
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it
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g
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es
[p

s]

Thickness [nm]

FIG. 7. (Color online) Switching times for thin films of FePt of

differing thicknesses for a range of temperatures. Consistent with the

result of Fig. 5, the reduction in the damping with increasing film

thickness leads to an increase in the switching time. A Heaviside step

function of 2 T was applied to the field to reverse the magnetization

after equilibration and the runs were averaged over 25 realizations of

the random number seed. With the inclusion of the stochastic term

there is a reduced TC so the T = 640 K line is already above the

transition temperature.

agrees well with numerical simulations of both single-spin

and exchange-coupled multispin calculations including the

stochastic thermal term.

Analysis of the resulting FMR expressions for a single

macrospin show that the analytically derived damping is

consistent with those of extended thin films up to quite high

temperatures. At temperatures approaching TC, the anisotropy

decreases more rapidly than the magnetization. This leads

to a region where demagnetizing field dominates over the

anisotropy in the thin films. This means that our analytic

expressions for thin films of magnetically soft materials

would not hold, however, the analysis is still valid for single

macrospins (or small structures) of soft materials.

We have extended the calculations to include the thermal

stochastic term and demagnetizing effects to explore the

effect this plays on the temperature-dependent ferromagnetic

resonance curves. By calculating FMR spectra as a function

of film thickness, we have shown that there is an increased

damping for thinner films due to the interplay between the

demagnetizing fields and the anisotropy. For the thinner films,

there is more of a tendency for the magnetization to want to lie

in plane due to the demagnetizing field. For highly anisotropic

materials (shown here for FePt), this effect is more dominant

at elevated temperatures. We have verified that this increase

in damping can be explained by a change in the dominance of

the demagnetizing energy by varying the anisotropy constant

for the thin films. As the anisotropy constant is decreased the

damping increases, consistent with the results of varying the

film thickness.

Finally, we have shown that this reduction in the damp-

ing has an effect on the switching times. This conclusion

could have important consequences for heat-assisted magnetic

recording, which operates at elevated temperatures, and
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requires sufficiently thick grains to have sufficient material

for good readback of the magnetic signal.
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APPENDIX A: DETAILS OF ANALYTIC

DERIVATION OF P(ω)

This section gives some more detail regarding the derivation

of the key equations discussed in Sec. III. The linearized

equations of motion for the LLB equation (1) are written as

ṁx ≈ −γ
(

myH
z
eff − mH

y

eff

)

+
γ (α‖ − α⊥)

m

(

mxH
z
eff

)

+
γα⊥

m

(

mH x
eff

)

,

ṁy ≈ −γ
(

mH x
eff − mxH

z
eff

)

+
γ (α‖ − α⊥)

m

(

myH
z
eff

)

(A1)

+
γα⊥

m
(mH

y

eff),

ṁz = 0,

with the linearized effective fields then written as

H
x,y

eff = Bx,y −
mx,y

χ̃⊥

+
1

2χ̃‖

(

1 −
m2

m2
e

)

mx,y,

(A2)

Hz
eff = Bz +

1

2χ̃‖

(

1 −
m2

m2
e

)

m.

In equilibrium, the z component of the effective field vanishes,

Hz
eff = 0. Using the linearized form of m, m = me(1 + �m)

as well as m2 = m2
e(1 + 2�m), we arrive at an expression for

the z component of the applied magnetic field

Bz −
me�m + me�m2

χ̃‖

= 0.

Using the linearized form of this equation Bz −
me�m

χ̃‖
= 0

as well as the approximation �m = (m − me)/me, we have

an approximation for m during FMR that is both field and

temperature dependent:

m(T ,Bz) = χ̃‖(T )Bz + me(T ). (A3)

As is discussed in the main text, the approximation (A3)

leads to errors in the analytic treatment if the resonance

curve is calculated in an applied field. This is due to the

fact that the susceptibility diverges as we approach the Curie

temperature. This does not occur in the numerical simulations

and is only a problem in the analytic calculations due to the

above approximation (A3).

In order to calculate the resonance frequency (ω0) as well as

the transverse relaxation time (τ ) for the power spectrum P (ω),

one has to solve the linearized LLB equation [see Eq. (A1)].

Using the notation m̃ = mx + imy and H̃eff = H x
eff + iH

y

eff

leads to the differential equation

˙̃m

γ
= m̃

(

i +
α‖ − α⊥

m

)

H z
eff + m

(

α⊥

m
− i

)

H̃eff .

As can be easily seen from Eq. (A2), H̃eff is also m̃

dependent. Writing the effective field as H̃eff = B̃ + Am̃, with

A = − 1
χ̃⊥

+ 1
2χ̃‖

(1 − m2

m2
e
) and B̃ = Bx + iBy we arrive at an

inhomogeneous differential equation

˙̃m

γ
= m̃

[(

i +
α‖ − α⊥

m

)

H z
eff

]

+ m̃

[

m

(

α⊥

m
− i

)

A

]

+m

(

α⊥

m
− i

)

B̃. (A4)

In the first step, we solve the homogeneous part of the

differential equation (A4), using the ansatz m̃hom(t) = exp (ωt)

whose solution leads to the expressions for ω0 and τ :

ω0 = γ

(

Bz +
m

χ̃⊥

)

, (A5)

τ =
m

λ
[(

1 − T
3Tc

)

ω0 − 2
3
γ T

Tc
H z

eff

] . (A6)

In the next step, we solve the inhomogeneous differential

equation (A4) under the assumption that the applied magnetic

field B has the form B = [B0 exp(iωt),0,Bz], where B0 ≪ Bz.

These lead to the following simplification of the right-hand

side of Eq. (A4):

m

(

α⊥

m
− i

)

B̃ = m

(

α⊥

m
− i

)

B0 exp(iωt). (A7)

Using the ansatz m̃(t) = u(t)m̃hom(t) where u(t) is given by

u(t) =

∫ t

t0

m
(

α⊥

m
− i

)

B0 exp(iωt)

exp
(

− t
τ

)

exp(iω0t)
dt,

and assuming t0 = 0 and t → ∞, Eq. (A4) has the solution

m̃(t) =

(

−i + α⊥

m

)

γmB0

[

1
τ

− i(ω − ω0)
]

1
τ 2 + (ω − ω0)2

exp(iωt).

From this general solution, mx can easily be derived

mx =
γmB0

1
τ 2 + (ω − ω0)2

[(

α⊥

τm
− (ω − ω0)

)

cos(ωt)

+

(

1

τ
+

α⊥

m
(ω − ω0)

)

sin(ωt)

]

, (A8)

and substituted into the definition for the power spectrum P (ω)

[see Eq. (6)]. This leads to the analytic solution for the power

spectrum P (ω):

P (ω) =
MsV ω2

4

γα⊥B2
0

1
τ 2 + (ω − ω0)2

. (A9)

As we can see from Eq. (A9), the analytic solution for

the absorbed power depends on the magnetization, which in

turn depends on the longitudinal susceptibility. As mentioned

above, we approximate the magnetization in the presence

of an applied field [Eq. (A3)] in terms of the zero-field

susceptibility. Therefore, Eq. (A3) is only strictly correct in

the zero-field limit. Away from the critical temperature, the
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FIG. 8. (Color online) Equilibrium magnetization vs tempera-

ture in different applied fields. The (red) solid line represents the

zero-field equilibrium magnetization me gained from atomistic FePt

simulations, a fit to which defines the input function me(T ) [17].

The dashed (blue) and dotted (black) lines represent expression (A3)

for different applied fields. The symbols represent the equilibrium

magnetization in the presence of an applied field Bz = 0, 5, 10 T,

from the numerical simulations of a single macrospin without

demagnetizing, stochastic, or exchange fields.

zero-field susceptibility is small, therefore, in this limit the

approximation holds. As we approach the critical temperature,

the susceptibility diverges as we approach the phase transition.

This means that our analytic expression shows a deviation from

the numerically calculated result.

A plot of the magnetization as a function of temperature

using Eq. (A3) and data from numerical simulations can be

seen in Fig. 8. For small values of the applied field, this error

reduces as the susceptibility is defined for small changes in the

applied field.

Figure 8 shows the equilibrium magnetization (red solid

curve), initially calculated from atomistic spin dynamics

simulations [17], which is used as an input to the numeric

simulation. As well as the equilibrium magnetization, the fig-

ure also shows the magnetization as a function of temperature

in 5- and 10-T applied fields, which is of course not zero

at the (zero-field) Curie temperature. The dashed and dotted

line is the analytic solution to the magnetization (also in 5-

and 10-T fields), diverging across the Curie temperature. As

we can see, the magnetization in an applied field from the

analytic expression shows a diverging behavior as we approach

the Curie temperature because of the diverging susceptibility,

whereas the numerical simulations (points) show no such

divergence.

APPENDIX B: ANALYTIC FERROMAGNETIC

RESONANCE CURVES FOR FIXED FREQUENCY

As was pointed out in the main text, the experimentally

more easily accessible measurement involves keeping the driv-

ing frequency fixed (usually around 10–60 GHz) and varying

the applied magnetic field until the resonance condition is met.

The representation that we have used in our calculations and

the analytic solutions that we have shown in the main paper

keeps the applied field constant at 1.0 T in the z direction and

varies the frequency. The reason for using this representation

600K (× 3)
500K
300K
100K

0K

Bz [T]

P
/M

s
V

[T
2
s]

1614121086420

4×10−7

3×10−7

2×10−7

1×10−7

0

FIG. 9. (Color online) Power absorbed during ferromagnetic res-

onance for a fixed frequency of the driving field of 504.2 GHz as a

function of the applied field Bz. The curves are given by the analytic

solution [Eq. (9)] and are shown for a range of temperatures. There

is an increasing field required to drive the system to resonance. Note

that the T = 600 K curve has been scaled for clarity as shown in the

legend.

is that for the case of a large number of macrospins coupled

by exchange and demagnetizing fields, the variation of the

frequency is computationally more efficient. Therefore, to be

consistent between our results and the subsequent analysis

we also presented the analytic solutions and single macrospin

calculations (which would be easily calculated with a fixed

frequency) in the same representation [P (ω)].

It should be pointed out that experimentally measuring

FMR for FePt is quite difficult in general (as was pointed

out in Ref. [18]) it has not been possible (to our knowledge) to

measure FMR in ordered L10 FePt due to its high anisotropy,

particularly at low temperatures. As was also shown in

Ref. [19], the resonance frequency is in the hundreds of GHz

regime for FePt with a high degree of ordering. In Fig. 9,

we have shown Eq. (9) for a fixed frequency and varied the

applied field, essentially giving us P (Bz). Due to the extremely

large magnetocrystalline anisotropy in FePt, the use of driving

frequencies of 10–60 GHz would show negative resonance

fields (the field required to drive the system to resonance).

For our single macrospin analytic approximation at 0 K, the

frequency required to give zero resonance field would be just

below 450 GHz.

Figure 9 shows the results of the analytic solution [Eq. (9)]

for a fixed value of the driving frequency (ω = 504.2 GHz) as

a function of the applied field. The data are shown for a range

of temperatures and show that as the temperature is increased,

the value of the field required to drive the system to resonance

increases consistent with a reduction in the anisotropy as

seen in Refs. [14,34]. For room-temperature values of the

temperature, the field required to drive the system to resonance

is quite large (around 6 T). Note that the value of the driving

frequency of 504.2 GHz was chosen so that a reasonable

positive resonance field was required to drive the system to

resonance at lower temperatures. The data of Fig. 9 would

give a qualitatively similar result for a lower frequency but

with a shifted set of resonance fields shifted in the negative

field range.

094402-9



T. A. OSTLER, M. O. A. ELLIS, D. HINZKE, AND U. NOWAK PHYSICAL REVIEW B 90, 094402 (2014)

APPENDIX C: MAGNETOSTATIC FIELDS

For efficient calculation of the magnetostatic fields we write

the convolution (13) as

H
η

d,i =
∑

θ,j

W
ηθ

ij mθ
j , (C1)

where the greek symbols η, θ again denote Cartesian compo-

nents x,y,z and latin symbols i, j denote the lattice sites. W
ηθ

ij

are interaction matrices which only depend on the structure

of the material (cubic in this work). Since we are considering

a translationally invariant lattice, one can apply the discrete

convolution theorem and calculate the fields in Fourier space:

H
η

d,k =
∑

θ

W
ηθ

k mθ
k . (C2)

It should be pointed out here that we have absorbed the

prefactor Ms into the interaction matrix W
ηθ

ij . Furthermore,

to write the fields in terms of units of Tesla to be consistent

with the form of the fields above, we have multiplied Eq. (13)

by μ0. The Fourier transform of the interaction matrix only

has to be performed once and thus stored in memory.

There are a number of conditions that must be met in

order to utilize the convolution theorem. In terms of signal

processing theory, the interaction matrix is seen as the response

function and the magnetization data is the signal. We should

note that there are two conditions that must be satisfied to

utilize the convolution theorem. The first is that the signal

(spin system) must be periodic in space. The second is that

the range of the response function should be the same as the

signal [42]. The magnetic system is usually not periodic and

the demagnetizing effects are long ranging and cannot be cut

off at a reasonable distance due to the slow decay [42]. To solve

this, we simulate a finite system, therefore, to meet the above

requirements it is required that we zero pad the magnetization

configurations by doubling the size of each dimension and

adding zeros in the areas where there are no macrospins.

At each update of the demagnetizing field (every 10 fs), the

Fourier transform of the magnetization arrays is performed and

the resulting Fourier components convoluted with that of the

interaction matrix. The resulting product is back transformed

via an inverse Fourier transform to give the demagnetizing

fields in real space.
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