536 research outputs found

    Scaling of Entanglement Entropy in the Random Singlet Phase

    Full text link
    We present numerical evidences for the logarithmic scaling of the entanglement entropy in critical random spin chains. Very large scale exact diagonalizations performed at the critical XX point up to L=2000 spins 1/2 lead to a perfect agreement with recent real-space renormalization-group predictions of Refael and Moore [Phys. Rev. Lett. {\bf 93}, 260602 (2004)] for the logarithmic scaling of the entanglement entropy in the Random Singlet Phase with an effective central charge c~=c×ln⁡2{\tilde{c}}=c\times \ln 2. Moreover we provide the first visual proof of the existence the Random Singlet Phase thanks to the quantum entanglement concept.Comment: 4 pages, 3 figure

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. II. Determinant Representation for the Dynamic Correlation Functions

    Full text link
    We have obtained a determinant representation for the time- and temperature-dependent field-field correlation function of the impenetrable Lieb-Liniger gas of anyons through direct summation of the form factors. In the static case, the obtained results are shown to be equivalent to those that follow from the anyonic generalization of Lenard's formula.Comment: 16 pages, RevTeX

    Characterizing and measuring multipartite Entanglement

    Get PDF
    A method is proposed to characterize and quantify multipartite entanglement in terms of the probability density function of bipartite entanglement over all possible balanced bipartitions of an ensemble of qubits. The method is tested on a class of random pure states.Comment: 7 pages, 5 figures. Submitted to "International Journal of Quantum Information

    Cold atoms in non-Abelian gauge potentials: From the Hofstadter "moth" to lattice gauge theory

    Get PDF
    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs nn internal states of atoms and laser assisted state sensitive tunneling. Thus, dynamics are communicated by unitary n×nn\times n-matrices. By experimental control of the tunneling parameters, the system can be made truly non-Abelian. We show that single particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex ``moth''-like structure. We discuss the possibility to employ non-Abelian interferometry (Aharonov-Bohm effect) and address methods to realize matter dynamics in specific classes of lattice gauge fields.Comment: 5 pages, 3 figure

    One-Dimensional Impenetrable Anyons in Thermal Equilibrium. IV. Large Time and Distance Asymptotic Behavior of the Correlation Functions

    Full text link
    This work presents the derivation of the large time and distance asymptotic behavior of the field-field correlation functions of impenetrable one-dimensional anyons at finite temperature. In the appropriate limits of the statistics parameter, we recover the well-known results for impenetrable bosons and free fermions. In the low-temperature (usually expected to be the "conformal") limit, and for all values of the statistics parameter away from the bosonic point, the leading term in the correlator does not agree with the prediction of the conformal field theory, and is determined by the singularity of the density of the single-particle states at the bottom of the single-particle energy spectrum.Comment: 26 pages, RevTeX

    Exact relationship between the entanglement entropies of XY and quantum Ising chains

    Full text link
    We consider two prototypical quantum models, the spin-1/2 XY chain and the quantum Ising chain and study their entanglement entropy, S(l,L), of blocks of l spins in homogeneous or inhomogeneous systems of length L. By using two different approaches, free-fermion techniques and perturbational expansion, an exact relationship between the entropies is revealed. Using this relation we translate known results between the two models and obtain, among others, the additive constant of the entropy of the critical homogeneous quantum Ising chain and the effective central charge of the random XY chain.Comment: 6 page

    Entanglement evolution after connecting finite to infinite quantum chains

    Full text link
    We study zero-temperature XX chains and transverse Ising chains and join an initially separate finite piece on one or on both sides to an infinite remainder. In both critical and non-critical systems we find a typical increase of the entanglement entropy after the quench, followed by a slow decay towards the value of the homogeneous chain. In the critical case, the predictions of conformal field theory are verified for the first phase of the evolution, while at late times a step structure can be observed.Comment: 15 pages, 11 figure

    Accretion Disks Around Young Objects. II. Tests of Well-Mixed Models with Ism Dust

    Get PDF
    We construct detailed vertical structure models of irradiated accretion disks around T Tauri stars with interstellar medium dust uniformly mixed with gas. The dependence of the structure and emission properties on mass accretion rate, viscosity parameter, and disk radius is explored using these models. The theoretical spectral energy distributions (SEDs) and images for all inclinations are compared with observations of the entire population of Classical T Tauri stars (CTTS) and Class I objects in Taurus. In particular, we find that the median near-infrared fluxes can be explained within the errors with the most recent values for the median accretion rates for CTTS. We further show that the majority of the Class I sources in Taurus cannot be Class II sources viewed edge-on because they are too luminous and their colors would be consistent with disks seen only in a narrow range of inclinations. Our models appear to be too geometrically thick at large radii, as suggested by: (a) larger far-infrared disk emission than in the typical SEDs of T Tauri stars; (b) wider dark dust lanes in the model images than in the images of HH30 and HK Tau/c; and (c) larger predicted number of stars extincted by edge-on disks than consistent with current surveys. The large thickness of the model is a consequence of the assumption that dust and gas are well-mixed, suggesting that some degree of dust settling may be required to explain the observations.Comment: 41 pages, 13 figures, accepted in Ap

    Off-diagonal correlations in one-dimensional anyonic models: A replica approach

    Full text link
    We propose a generalization of the replica trick that allows to calculate the large distance asymptotic of off-diagonal correlation functions in anyonic models with a proper factorizable ground-state wave-function. We apply this new method to the exact determination of all the harmonic terms of the correlations of a gas of impenetrable anyons and to the Calogero Sutherland model. Our findings are checked against available analytic and numerical results.Comment: 19 pages, 5 figures, typos correcte

    One-dimensional anyons with competing δ\delta-function and derivative δ\delta-function potentials

    Full text link
    We propose an exactly solvable model of one-dimensional anyons with competing δ\delta-function and derivative δ\delta-function interaction potentials. The Bethe ansatz equations are derived in terms of the NN-particle sector for the quantum anyonic field model of the generalized derivative nonlinear Schr\"{o}dinger equation. This more general anyon model exhibits richer physics than that of the recently studied one-dimensional model of δ\delta-function interacting anyons. We show that the anyonic signature is inextricably related to the velocities of the colliding particles and the pairwise dynamical interaction between particles.Comment: 9 pages, 2 figures, minor changes, references update
    • …
    corecore