8 research outputs found
Survey of the feeding management of giant anteaters (Myrmecophaga tridactyla) and tamanduas (Tamandua tetradactyla) in the EAZA ex‐situ programme
Feeding giant anteaters and tamanduas as insectivorous species provides a lot of challenges for zoological institutions. In the last decades an in-house mixture, called ‘Dortmund mixture’, was the most common feed used in giant anteaters and tamanduas in many countries within the European Association of Zoos and Aquaria ex-situ Programme (EEP). Some nutritional problems occurred due to imbalances in the diets. The more recent nutritional recommendations for both species advise an adapted and balanced complete feed formulated for insectivorous species due to different problems arising with an in-house mixed feed as Dortmund mixture. To objectify the present situation a questionnaire was designed and sent out to 78 institutions of the EEPs for giant anteater(s) and tamandua(s). The questionnaire was divided into different sections and asked for data on husbandry, health status, feeding, especially feed composition, feed supplementation and faecal consistency. It was completed by 45 institutions with data for 130 animals, 89 giant anteaters and 41 tamanduas. The data thus represent 54% and 59% of the EEP populations. For both species, a complete feed is mainly utilised. Especially institutions that have integrated anteaters and tamanduas into their facilities during the last 10 and 20 years, use a complete feed. Regarding the in-house mixtures, there are distinct differences, both in composition and amount of each ingredient used. The evaluation of the feeds used for enrichment, for example, shows a clear species difference. While in tamanduas mainly insects are used for this purpose, in giant anteaters it is mainly fruits and avocado. In contrast to the past, many anteaters today are fed an adapted complete feed. Surprisingly, concerning feeding supplements the use of fat-soluble vitamins and combined vitamin–mineral preparations is still common in both species. More effort needs to be put into enforcing current feeding recommendations, especially for the giant anteaters
First Outbreak of Callitrichid Hepatitis in Germany: Genetic Characterization of the Causative Lymphocytic Choriomeningitis Virus Strains
AbstractCallitrichid hepatitis (CH) is a highly fatal, rodent-borne zoonosis of New World primates (family Callitrichidae) caused by lymphocytic choriomeningitis virus (LCMV). It is unclear whether virulence in Callitrichidae is associated with specific genetic or phylogenetic markers of the virus as only a partial S RNA sequence of a single CH-associated isolate is known. In a period of 10 months, three pygmy marmosets (Cebuella pygmaea) and one Goeldi's monkey (Callimico goeldii) died from CH in a German zoo. LCMV was most likely transmitted by wild mice. Infection was associated with characteristic histopathological lesions in liver, brain, and lymphoid tissue. Virus sequences from all callitrichids and a captured mouse were ≥99.2% identical. LCMV strains from a pygmy marmoset and the Goeldi's monkey were isolated in cell culture and the 3.4-kb S RNA was completely sequenced. Both strains differed considerably in their genetic and phylogenetic characteristics from known LCMV strains, including the previously described CH-associated strain. These data show that CH is widespread and can be caused by distantly related LCMV strains
Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra)
Background: Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Methods: Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Results: Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Conclusions: Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans.This project was supported by CNPq and FAPESP
Occurrence of Babesia species in captive reindeer (Rangifer tarandus) in Germany
Two cases of acute babesiosis in captive reindeer (Rangifer tarandus) in two German zoos in 2009 and 2012 triggered this study to investigate the occurrence and species diversity of Babesia parasites infecting reindeer in different zoos and deer parks in Germany. Between June and December 2013, blood samples were taken from 123 clinically inapparent reindeer from 16 different facilities. Samples were tested for the presence of Babesia species DNA by conventional PCR and sequence analysis of part of the 18S rRNA gene. Also, Giemsa-stained smears of reindeer blood samples were examined for parasitaemia by light microscopy. The overall PCR-prevalence in blood samples was 23.6% (n=29). Comparison of sequenced amplicons with GenBank entries possibly revealed up to five different Babesia species: B. venatorum (n=19), B. capreoli (n=2) and B. capreoli-like (n=4), B. odocoilei-like (n=2) and B. divergens (n=1), while one sample turned out to be a Theileria sp. Out of the 16 facilities in the study, 12 housed at least one positive animal. In Giemsa-stained blood smears, intra-erythrocytic Babesia parasites were detected in samples of three reindeer from three locations. The high prevalence of Babesia infections implicates babesiosis to be a relevant infectious disease threat for captive reindeer in Germany. Consequently, reindeer with clinical signs compatible to those of acute babesiosis should either be tested for the presence of Babesia spp. DNA or blood smears should be examined for parasitaemia
Placentation in the anteaters <it>Myrmecophaga tridactyla</it> and <it>Tamandua tetradactyla</it> (Eutheria, Xenarthra)
Abstract Background Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Methods Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Results Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Conclusions Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans.</p
Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra)
Abstract
Background
Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context.
Methods
Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy.
Results
Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells.
Conclusions
Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans
RESEARCH Open Access Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla
Background: Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Methods: Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Results: Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Conclusions: Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans