10 research outputs found

    Green synthesis of p-Co3O4/n-ZnO composite catalyst with Eichhornia Crassipes plant extract mediated for methylene blue degradation under visible light irradiation

    No full text
    The water pollution due to industrial effluents causes a great health problem. Hence, it is important to treat wastewater before discharging to the environment. In this work, water hyacinth ( Eichhornia Crassipes ) plant extract mediated ZnO, CO _3 O _4 , and p-CO _3 O _4 /n-ZnO composite catalysts were synthesized by green co-precipitation routes. The resulting samples were characterized by x-ray diffractometer (XRD), scanning electron microscope (SEM), Fortier transform infrared (FT-IR), and with other instruments. The catalytic activities of ZnO, Co _3 O _4 , and Co _3 O _4 /ZnO were tested for MB dye degradation under visible light irradiation. The catalytic degradation of MB with p-CO _3 O _4 /n-ZnO composite catalyst was 95.5%; while 72% and 79% of MB dye was degraded by ZnO and Co _3 O _4 catalysts, respectively. The kinetic rate constants (k) in the degradation of MB dye with ZnO, Co _3 O _4 , and p-CO _3 O _4 /n-ZnO composite catalysts were also 0.014 min ^−1 , 0.018 min ^−1 , and 0.028 min ^−1 , respectively. The results showed that the presence of plant extract during the synthesis of the catalysts makes the catalyst more active and enhances the catalytic performances. Moreover, the formation of p-n junction in the p-CO _3 O _4 /n-ZnO catalyst also facilitates the photogenerated electron–hole separation and further enhances the catalytic efficiency. Hence, the formation of p-n junction is the key factor for enhancing the photodegradation of MB dye under visible light irradiation and the plant extract mediated catalyst synthesis also further improves its performance

    Microwave-Assisted Synthesis of CuO Nanoparticles Using Cordia africana Lam. Leaf Extract for 4-Nitrophenol Reduction

    No full text
    Copper-oxide-based nanomaterials play an important role as a low-cost alternative to nanoparticles of precious metals for the catalytic reduction of 4-nitrophenols. In this study, CuO nanoparticles were synthesized by a microwave-assisted method using Cordia africana Lam. leaf extract for reduction or stabilization processes. The synthesized CuO nanoparticles (NPs) were characterized using X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The analysis indicated that nanocrystals of the monoclinic CuO phase having a cluster of agglomerated morphology with a crystallite size of about 9 nm were synthesized. We also evaluated the catalytic performance of CuO NPs against 4-nitrophenol (4-NP) reduction. The catalyst has shown excellent performance completing the reaction within 12 min. Furthermore, the performance of CuO NPs synthesized at different pH values was investigated, and results indicated that the one synthesized at pH 7 reduced 4-NP effectively in shorter minutes compared to those obtained at higher pH values. The CuO NPs synthesized using Cordia africana Lam. leaf extract exhibited a better reducing capacity with an activity parameter constant of 75.8 min−1·g−1. Thus, CuO synthesized using Cordia africana Lam. holds a potential application for the catalytic conversion of nitroarene compounds into aminoarene

    Synthesis of Titanium Oxide Nanoparticles Using Root Extract of Kniphofia foliosa as a Template, Characterization, and Its Application on Drug Resistance Bacteria

    No full text
    Biogenic methods of synthesis of nanoparticles (NPs) using plant extracts have been given a great attention due to its nontoxicity and environmental friendliness. In this study, TiO2 NPs were synthesized from titanium tetrabutoxide and extract of root of Kniphofia foliosa. NPs of TiO2 were biosynthesized at different volume compositions of titanium tetrabutoxide to the plant extract with a ratio of 1 : 2, 1 : 1, and 2 : 1, respectively. These green synthesized NPs of TiO2 were characterized by thermogravimetric analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDS), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and Fourier transform infrared (FTIR) spectroscopy. TGA/DTA analysis has confirmed that the synthesized NPs of TiO2 were stable above the temperature of 500°C. The sharp and intense peaks at 2θ values of 25.3, 38.0, 47.9, 53.2, 54.8862, 62.7, 70.2, and 75.0 have confirmed formation of crystalline NPs of TiO2 in the sample of 1 : 1 and 2 : 1 ratios, and less crystalline samples for TiO2 NPs prepared in a 1 : 2 ratio. Comparison between FT-IR absorption bands of the plant extract and that of calcined NPs of TiO2 confirmed the purity of synthesized nanomaterials, except unavoidable adsorption of moisture on the surface of TiO2 NPs in an open air. The antibacterial activity of biosynthesized TiO2 NPs and that of ethanolic root extract of Kniphofia foliosa was investigated via the disc diffusion method against human pathogen bacteria strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Streptococcus pyogenes. Among the different ratios, TiO2 (1 : 1) NP shows better performance towards Gram-negative bacteria due to its smaller average crystalline size and uniform morphology observed in SEM image relative to the other two ratios of TiO2 NPs. Antibacterial activity of the ethanolic root extract of Kniphofia foliosa itself showed better performance towards Gram-negative bacteria than NPs of TiO2 that might be due to antibacterial activity of residue of ethanol left with the plant extract

    Microwave-Assisted Synthesis of rGO-ZnO/CuO Nanocomposites for Photocatalytic Degradation of Organic Pollutants

    No full text
    Nanomaterial-based catalytic conversion of hazardous organic pollutants into benign substances is one of the green methods employed for wastewater treatment. This study demonstrates the fabrication of (rGO-ZnO)/CuO nanocomposites (NCs) via a microwave (MW)-assisted method for (photo)catalytic application. The crystal structure, optical, morphological, and electrochemical characteristics were examined using X-ray diffraction (XRD), spectroscopic, microscopic, and electrochemical techniques. The analysis indicated that rod-like (rGO-ZnO)/CuO NCs having a nanoscale diameter with enhanced light absorption and well-matched band positions between rGO-ZnO and CuO were formed. Furthermore, the catalytic reduction of 4-nitrophenol (4-NP) and photocatalytic degradation of methylene blue (MB) tests showed remarkable results with rate constants of 0.468 min−1 for 4-NP reduction within 8 min and 0.02213 min−1 for MB degradation within 105 min. Thus, the artful decoration of ZnO nanorods (NRs) with CuO into the (rGO-ZnO)/CuO NCs interface is an effective strategy for fabricating highly efficient photocatalysts

    Photocatalytic activity of the biogenic mediated green synthesized CuO nanoparticles confined into MgAl LDH matrix

    No full text
    Abstract The global concern over water pollution caused by organic pollutants such as methylene blue (MB) and other dyes has reached a critical level. Herein, the Allium cepa L. peel extract was utilized to fabricate copper oxide (CuO) nanoparticles. The CuO was combined with MgAl-layered double hydroxides (MgAl-LDHs) via a co-precipitation method with varying weight ratios of the CuO/LDHs. The composite catalysts were characterized and tested for the degradation of MB dye. The CuO/MgAl-LDH (1:2) showed the highest photocatalytic performance and achieved 99.20% MB degradation. However, only 90.03, 85.30, 71.87, and 35.53% MB dye was degraded with CuO/MgAl-LDHs (1:1), CuO/MgAl-LDHs (2:1), CuO, and MgAl-LDHs catalysts, respectively. Furthermore, a pseudo-first-order rate constant of the CuO/MgAl-LDHs (1:2) was 0.03141 min−1 while the rate constants for CuO and MgAl-LDHs were 0.0156 and 0.0052 min−1, respectively. The results demonstrated that the composite catalysts exhibited an improved catalytic performance than the pristine CuO and MgAl-LDHs. The higher photocatalytic performances of composite catalysts may be due to the uniform distribution of CuO nanoparticles into the LDH matrix, the higher surface area, and the lower electron and hole recombination rates. Therefore, the CuO/MgAl-LDHs composite catalyst can be one of the candidates used in environmental remediation

    Ti-doped Bi2(O,S)3 bimetal oxysulfide for highly efficient catalytic reduction of organic dyes and heavy metal pollutants in the dark

    No full text
    A bismuth-titanium bimetal oxysulfide BiTiOS catalyst was prepared via hydrolysis and characterized by different testing techniques. This BiTiOS catalyst, forming the Ti-doped Bi2(O,S)3 phase, can format the oxygen vacancy, increase its electrochemically active surface sites, enhance the electron lifetime, and facilitate fast electron transfer. The BiTiOS catalyst exhibits good electrochemical performance and long-term stability due to its excellent catalytic reduction activity for toxic organic of p-nitrophenol, organic dyes of methyl orange, methylene blue, and rhodamine, and the heavy metal ion of Cr(VI) in the presence of NaBH4 in the dark. The BiTiOS catalyst with the best reduction activity was prepared at a molar ratio of n(Bi): n(Ti): n(TAA) at 1: 2: 4. The 100 mL for each 20 ppm MO, MB, RhB, and 4-NP was reduced entirely in 4, 4, 2, and 8 min, respectively. In comparison, the reduction of 100 mL of 50 ppm Cr(VI) took 22 min. The BiTiOS-2 catalyst, showing fast reduction efficiency and excellent stability and durability, is expected to have great potential in wastewater treatment

    g-C3N4–Co3O4 Z-Scheme Junction with Green-Synthesized ZnO Photocatalyst for Efficient Degradation of Methylene Blue in Aqueous Solution

    No full text
    A simple wet chemical ultrasonic-assisted synthesis method was employed to prepare visible light-driven g-C3N4-ZnO-Co3O4 (GZC) heterojunction photocatalysts. X-ray diffraction (XRD), scanning electromicroscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), ultraviolet (UV), and electrochemical impedance spectroscopy (EIS) are used to characterize the prepared catalysts. XRD confirms the homogenous phase formation of g-C3N4, ZnO, and Co3O4, and the heterogeneous phase for the composites. The synthesized ZnO and Co3O4 by using cellulose as a template show a rod-like morphology. The specific surface area of the catalytic samples increases due to the cellulose template. The measurements of the energy band gap of a g-C3N4-ZnO-Co3O4 composite showed red-shifted optical absorption to the visible range. The photoluminescence (PL) intensity decreases due to the formation of heterojunction. The PL quenching and EIS result shows that the reduction of the recombination rate and interfacial resistance result in charge carrier kinetic improvement in the catalyst. The photocatalytic performance in the degradation of MB dye of the GZC-3 composite was about 8.2-, 3.3-, and 2.5-fold more than that of the g-C3N4, g-C3N4-ZnO, and g-C3N4-Co3O4 samples. The Mott–Schottky plots of the flat band edge position of g-C3N4, ZnO, Co3O4, and Z-scheme g-C3N4-ZnO-Co3O4 photocatalysts may be created. Based on the stability experiment, GZC-3 shows greater photocatalytic activity after four recycling cycles. As a result, the GZC composite is environmentally friendly and efficient photocatalyst and has the potential to consider in the treatment of dye-contaminated wastewater

    Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light

    No full text
    Nowadays, water pollution is a major concern to the globe. For this reason, various research works has been done to access pure water thereby minimizing the effect of pollutants. In this work, the cobalt doped ZnO (Co-doped ZnO) via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue for different days and combined with zinc precursor was synthesized. The resulting catalyst powder samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and Ultraviolet–vis (UV–vis) spectroscopy, and microwave plasma atomic emission spectrometer (MP-AES). The catalysts were also tested for the photocatalytic degradation of methylene blue (MB) in the presence of H _2 O _2 under visible light irradiation. The best catalytic activity was gained by the 8th-days accumulation of cobalt ion onto the Eichhornia crassipes plant tissue and 99.6% of the dye was degraded within 45 min. However, 69.6, 65.7, 73.6, and 94.8% of MB dye was degraded by 1, 2, 4, and 6 days accumulations. Hence, removal of toxic heavy metal by using Eichhornia crassipes plant and recycling in the wastewater treatment gain is highly appreciated. Moreover, the Co-doped ZnO photocatalysts could enhance the photocatalytic activities due to suppressing of the electron and hole recombination and the porosity of the catalysts resulted from the Eichhornia crassipes plant after calcination
    corecore