19 research outputs found

    An Aspergillus nidulans β-mannanase with high transglycosylation capacity revealed through comparative studies within glycosidase family 5.

    No full text
    β-Mannanases are involved in the conversion and modification of mannan-based saccharides. Using a retaining mechanism, they can, in addition to hydrolysis, also potentially perform transglycosylation reactions, synthesizing new glyco-conjugates. Transglycosylation has been reported for β-mannanases in GH5 and GH113. However, although they share the same fold and catalytic mechanism, there may be differences in the enzymes' ability to perform transglycosylation. Three GH5 β-mannanases from Aspergillus nidulans, AnMan5A, AnMan5B and AnMan5C, which belong to subfamily GH5_7 were studied. Comparative studies, including the GH5_7 TrMan5A from Trichoderma reesei, showed some differences between the enzymes. All the enzymes could perform transglycosylation but AnMan5B stood out in generating comparably higher amounts of transglycosylation products when incubated with manno-oligosaccharides. In addition, AnMan5B did not use alcohols as acceptor, which was also different compared to the other three β-mannanases. In order to map the preferred binding of manno-oligosaccharides, incubations were performed in H2 (18)O. AnMan5B in contrary to the other enzymes did not generate any (18)O-labelled products. This further supported the idea that AnMan5B potentially prefers to use saccharides as acceptor instead of water. A homology model of AnMan5B showed a non-conserved Trp located in subsite +2, not present in the other studied enzymes. Strong aglycone binding seems to be important for transglycosylation with saccharides. Depending on the application, it is important to select the right enzyme

    The Crystal Structure of Tyrosinase from <i>Verrucomicrobium spinosum</i> Reveals It to Be an Atypical Bacterial Tyrosinase

    No full text
    Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active “core domain” of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a “gatekeeper” residue. Our findings raise questions concerning the evolutionary origin of vsTyr

    The Crystal Structure of Thermotoga maritima Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site

    No full text
    Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to deoxyribonucleotides, the building blocks for DNA synthesis, and are found in all but a few organisms. RNRs use radical chemistry to catalyze the reduction reaction. Despite RNR having evolved several mechanisms for generation of different kinds of essential radicals across a large evolutionary time frame, this initial radical is normally always channelled to a strictly conserved cysteine residue directly adjacent to the substrate for initiation of substrate reduction, and this cysteine has been found in the structures of all RNRs solved to date. We present the crystal structure of an anaerobic RNR from the extreme thermophile Thermotoga maritima (tmNrdD), alone and in several complexes, including with the allosteric effector dATP and its cognate substrate CTP. In the crystal structure of the enzyme as purified, tmNrdD lacks a cysteine for radical transfer to the substrate pre-positioned in the active site. Nevertheless activity assays using anaerobic cell extracts from T. maritima demonstrate that the class III RNR is enzymatically active. Other genetic and microbiological evidence is summarized indicating that the enzyme is important for T. maritima. Mutation of either of two cysteine residues in a disordered loop far from the active site results in inactive enzyme. We discuss the possible mechanisms for radical initiation of substrate reduction given the collected evidence from the crystal structure, our activity assays and other published work. Taken together, the results suggest either that initiation of substrate reduction may involve unprecedented conformational changes in the enzyme to bring one of these cysteine residues to the expected position, or that alternative routes for initiation of the RNR reduction reaction may exist. Finally, we present a phylogenetic analysis showing that the structure of tmNrdD is representative of a new RNR subclass IIIh, present in all Thermotoga species plus a wider group of bacteria from the distantly related phyla Firmicutes, Bacteroidetes and Proteobacteria

    A simple goniometer-compatible flow cell for serial synchrotron X-ray crystallography

    No full text
    Serial femtosecond crystallography was initially developed for room-temperature X-ray diffraction studies of macromolecules at X-ray free electron lasers. When combined with tools that initiate biological reactions within microcrystals, time-resolved serial crystallography allows the study of structural changes that occur during an enzyme catalytic reaction. Serial synchrotron X-ray crystallography (SSX), which extends serial crystallography methods to synchrotron radiation sources, is expanding the scientific community using serial diffraction methods. This report presents a simple flow cell that can be used to deliver microcrystals across an X-ray beam during SSX studies. This device consists of an X-ray transparent glass capillary mounted on a goniometer-compatible 3D-printed support and is connected to a syringe pump via lightweight tubing. This flow cell is easily mounted and aligned, and it is disposable so can be rapidly replaced when blocked. This system was demonstrated by collecting SSX data at MAX IV Laboratory from microcrystals of the integral membrane protein cytochrome c oxidase from Thermus thermophilus, from which an X-ray structure was determined to 2.12 Å resolution. This simple SSX platform may help to lower entry barriers for non-expert users of SSX

    The Crystal Structure of <i>Thermotoga maritima - Fig 1 </i> Class III Ribonucleotide Reductase Lacks a Radical Cysteine Pre-Positioned in the Active Site

    No full text
    <p>a) The radical generation and transfer pathways of all three classes of RNR are thought to converge on a completely conserved cysteine residue that transfers it to the substrate. The class I, II and III enzymes are coloured mauve, pink and gold respectively. The finger loops of all three classes and the C-terminal loop of the class III RNRs, as exemplified by the enzyme from bacteriophage T4, are shown in cartoon representation. The position of the glycyl radical in class III is marked by a sphere. The two hydrogen-bonded Tyr residues that end the proton-coupled electron transfer chain (PCET) in class I are shown in mauve, with the terminal oxygen atom shown as a sphere. The 5’-deoxyadenosine moiety generated by cleavage of the C-Co bond in AdoCbl by class II RNRs is shown with the 5’-C atom shown as a pink sphere. The GDP substrate bound to the class II enzyme is shown as sticks with the C3’ atom marked with a gray sphere. b) Overall structure of the tmNrdD dimer. The left-hand monomer is coloured grey while the right-hand monomer is coloured as a spectrum from deep blue at the N-terminus to deep red at the C-terminus. The allosteric effector dATP and the substrate CTP are shown in space-filling representation. c) Comparison of the structures of tmNrdD and the previously determined structure of NrdD from bacteriophage T4 [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0128199#pone.0128199.ref009" target="_blank">9</a>]. The T4 structure is coloured dark blue and tmNrdD is coloured red. d) Depiction of the active site area where the tips of the finger loop (blue) and the C-terminal loop (orange) meet. The position of the glycyl radical is marked by an orange sphere and Ile359 at the tip of the finger loop by a blue sphere. The substrate CTP is shown in stick representation. The Zn-binding domain is shown in yellow.</p

    Unlabelled phylogenetic tree for the NrdDh class of NrdD sequences.

    No full text
    <p>The characteristic sequence motifs for each of the subgroups NrdDh1-4 are shown, along with the phyla. For more details, including the presence of other RNR classes in the genomes of the organisms, see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0128199#pone.0128199.s006" target="_blank">S6 Fig</a>.</p
    corecore