106 research outputs found

    Upper abdominal body shape is the risk factor for postoperative pancreatic fistula after splenectomy for advanced gastric cancer: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postoperative pancreas fistula (POPF) is a major complication after total gastrectomy with splenectomy. We retrospectively studied the effects of upper abdominal shape on the development of POPF after gastrectomy.</p> <p>Methods</p> <p>Fifty patients who underwent total gastrectomy with splenectomy were studied. The maximum vertical distance measured by computed tomography (CT) between the anterior abdominal skin and the back skin (U-APD) and the maximum horizontal distance of a plane at a right angle to U-APD (U-TD) were measured at the umbilicus. The distance between the anterior abdominal skin and the root of the celiac artery (CAD) and the distance of a horizontal plane at a right angle to CAD (CATD) were measured at the root of the celiac artery. The CA depth ratio (CAD/CATD) was calculated.</p> <p>Results</p> <p>POPF occurred in 7 patients (14.0%) and was associated with a higher BMI, longer CAD, and higher CA depth ratio. However, CATD, U-APD, and U-TD did not differ significantly between patients with and those without POPF. Logistic-regression analysis revealed that a high BMI (≥25) and a high CA depth ratio (≥0.370) independently predicted the occurrence of POPF (odds ratio = 19.007, p = 0.002; odds ratio = 13.656, p = 0.038, respectively).</p> <p>Conclusion</p> <p>Surgical procedures such as total gastrectomy with splenectomy should be very carefully executed in obese patients or patients with a deep abdominal cavity to decrease the risk of postoperative pancreatic fistula. BMI and body shape can predict the risk of POPF simply by CT.</p

    In vitro and in vivo safety evaluation of Dipteryx alata Vogel extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Dipteryx alata </it>Vogel popularly known as "baru" is an important commercial leguminous tree species from the Brazilian Cerrado, which possess medicinal properties, besides its fruits consumption by animals and humans. The use of the "naturally occurring plants" as herbal remedies and foods mainly from leaves, seeds, flowers and roots of plants or extracts require precautions before ensuring these are safe and efficacious. The objective of this study was to evaluate the safety of <it>D. alata </it>barks extract.</p> <p>Methods</p> <p>Vegetal drugs of <it>D. alata </it>barks were submitted to quality control assays and further to the safety assays under 1) <it>in vitro </it>parameter by <it>Salmonella </it>(Ames) mutagenicity, and 2) <it>in vivo </it>parameter on the pregnancy of rats.</p> <p>Results</p> <p>The extract was non-mutagenic to any of the assessed strains TA97a, TA98, TA100 and TA102 even after metabolic activation (+S9). All <it>in vivo </it>parameters (reproductive ability evaluation, physical development of rat offsprings, and neurobehavioral development assays) showed no changes related to control group.</p> <p>Conclusion</p> <p><it>D. alata </it>barks extract is neither mutagenic by the Ames test nor toxic in the pregnancy of rats, with no physical-neurobehavioral consequences on the rat offsprings development.</p

    SPE-44 Implements Sperm Cell Fate

    Get PDF
    The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes) but is excluded from the transcriptionally silent X chromosome (which does not). The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system

    Disparate Impact of Butyroyloxymethyl Diethylphosphate (AN-7), a Histone Deacetylase Inhibitor, and Doxorubicin in Mice Bearing a Mammary Tumor

    Get PDF
    The histone deacetylase inhibitor (HDACI) butyroyloxymethyl diethylphosphate (AN-7) synergizes the cytotoxic effect of doxorubicin (Dox) and anti-HER2 on mammary carcinoma cells while protecting normal cells against their insults. This study investigated the concomitant changes occurring in heart tissue and tumors of mice bearing a subcutaneous 4T1 mammary tumor following treatment with AN-7, Dox, or their combination. Dox or AN-7 alone led to inhibition of both tumor growth and lung metastases, whereas their combination significantly increased their anticancer efficacy and attenuated Dox- toxicity. Molecular analysis revealed that treatment with Dox, AN-7, and to a greater degree, AN-7 together with Dox increased tumor levels of γH2AX, the marker for DNA double-strand breaks and decreased the expression of Rad51, a protein needed for DNA repair. These events culminated in increased apoptosis, manifested by the appearance of cytochrome-c in the cytosol. In the myocardium, Dox-induced cardiomyopathy was associated with an increase in γH2AX expression and a reduction in Rad51 and MRE11 expression and increased apoptosis. The addition of AN-7 to the Dox treatment protected the heart from Dox insults as was manifested by a decrease in γH2AX levels, an increase in Rad51 and MRE11 expression, and a diminution of cytochrome-c release. Tumor fibrosis was high in untreated mice but diminished in Dox- and AN-7-treated mice and was almost abrogated in AN-7+Dox-treated mice. By contrast, in the myocardium, Dox alone induced a dramatic increase in fibrosis, and AN7+Dox attenuated it. The high expression levels of c-Kit, Ki-67, c-Myc, lo-FGF, and VEGF in 4T1 tumors were significantly reduced by Dox or AN-7 and further attenuated by AN-7+Dox. In the myocardium, Dox suppressed these markers, whereas AN-7+Dox restored their expression. In conclusion, the combination of AN-7 and Dox results in two beneficial effects, improved anticancer efficacy and cardioprotection

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and σE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response

    Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses

    Full text link
    We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd
    corecore