63 research outputs found

    Prothymosin α receptors on peripheral blood mononuclear cells

    Get PDF
    Abstract125I-Labeled prothymosin α (ProTα) was used to study the presence and characteristics of receptors for ProTα on human peripheral blood mononuclear cells (PBMC). The kinetics of 125I-ProTα binding to PBMC was fast at 37°C, whilst it required 50 min to reach equilibrium at 4°C and room temperature. Analysis of steady state binding data by the method of Scatchard and by unlabeled ProTα competition experiments identified two binding sites with an apparent equilibrium dissociation constant of 216–321 pM for the high-affinity receptor and of 11.4–21.1 nM for the low-affinity one; the sites per cell ranged from 1,479 to 1,519 and from 47,547 to 56,169, respectively. The kinetically derived equilibrium dissociation constant agreed with these data and showed no interaction between receptors

    Focused Ultrasound Stimulation as a Neuromodulatory Tool for Parkinson’s Disease::A Scoping Review

    Get PDF
    Non-invasive focused ultrasound stimulation (FUS) is a non-ionising neuromodulatory technique that employs acoustic energy to acutely and reversibly modulate brain activity of deep-brain structures. It is currently being investigated as a potential novel treatment for Parkinson’s disease (PD). This scoping review was carried out to map available evidence pertaining to the provision of FUS as a PD neuromodulatory tool. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews, a search was applied to Ovid MEDLINE, Embase, Web of Science and Cochrane Central Register of Controlled Trials on 13 January 2022, with no limits applied. In total, 11 studies were included: 8 were from China and 1 each from Belgium, South Korea and Taiwan. All 11 studies were preclinical (6 in vivo, 2 in vitro, 2 mix of in vivo and in vitro and 1 in silico). The preclinical evidence indicates that FUS is safe and has beneficial neuromodulatory effects on motor behaviour in PD. FUS appears to have a therapeutic role in influencing the disease processes of PD, and therefore holds great promise as an attractive and powerful neuromodulatory tool for PD. Though these initial studies are encouraging, further study to understand the underlying cellular and molecular mechanisms is required before FUS can be routinely used in PD

    Capsule growth in Cryptococcus neoformans is coordinated with cell cycle progression

    Get PDF
    UNLABELLED: The fungal pathogen Cryptococcus neoformans has several virulence factors, among which the most important is a polysaccharide capsule. The size of the capsule is variable and can increase significantly during infection. In this work, we investigated the relationship between capsular enlargement and the cell cycle. Capsule growth occurred primarily during the G1 phase. Real-time visualization of capsule growth demonstrated that this process occurred before the appearance of the bud and that capsule growth arrested during budding. Benomyl, which arrests the cells in G2/M, inhibited capsule growth, while sirolimus (rapamycin) addition, which induces G1 arrest, resulted in cells with larger capsule. Furthermore, we have characterized a mutant strain that lacks a putative G1/S cyclin. This mutant showed an increased capacity to enlarge the capsule, both in vivo (using Galleria mellonella as the host model) and in vitro. In the absence of Cln1, there was a significant increase in the production of extracellular vesicles. Proteomic assays suggest that in the cln1 mutant strain, there is an upregulation of the glyoxylate acid cycle. Besides, this cyclin mutant is avirulent at 37°C, which correlates with growth defects at this temperature in rich medium. In addition, the cln1 mutant showed lower intracellular replication rates in murine macrophages. We conclude that cell cycle regulatory elements are involved in the modulation of the expression of the main virulence factor in C. neoformans. IMPORTANCE: Cryptococcus neoformans is a pathogenic fungus that has significant incidence worldwide. Its main virulence factor is a polysaccharide capsule that can increase in size during infection. In this work, we demonstrate that this process occurs in a specific phase of the cell cycle, in particular, in G1. In agreement, mutants that have an abnormal longer G1 phase show larger capsule sizes. We believe that our findings are relevant because they provide a link between capsule growth, cell cycle progression, and virulence in C. neoformans that reveals new aspects about the pathogenicity of this fungus. Moreover, our findings indicate that cell cycle elements could be used as antifungal targets in C. neoformans by affecting both the growth of the cells and the expression of the main virulence factor of this pathogenic yeast.O.Z. is funded by grants SAF2008-03761 and SAF2011-25140 from the Spanish Ministry for Economics and Competitivity. R.G.-R. is supported by an FPI fellowship (reference BES-2009-015913) from the Spanish Ministry of Science and Innovation. N.T.-C. is supported by an FPI fellowship (reference BES-2012-051837) from the Spanish Ministry for Economics and Competitivity. A.C. is supported by NIH grants HL059842-3, A1033774, A1052733, and AI033142. R.J.B.C. is supported by T32 AI07506 (NIH/NIAID).S

    Equivalence regimes for geometric quantum discord and local quantum uncertainty

    Get PDF
    The concept of quantum discord aims at unveiling quantum correlations that go beyond those described by entanglement. Its original formulation [L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34, 6899 (2001); H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)] is difficult to compute even for the simplest case of two-qubits systems. Alternative formulations have been developed to address this drawback, such as the geometric measure of quantum discord [L. Chang and S. Luo, Phys. Rev. A 87, 062303 (2013)] and the local quantum uncertainty [D. Girolami, T. Tufarelli, and G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)] that can be evaluated in closed form for some quantum systems, such as two-qubit systems. We show here that these two measures of quantum discord are equivalent for 2×D dimensional bipartite quantum systems. By considering the relevant example of N00N states for phase estimation in lossy environments, we also show that both metrics of quantum discord quantify the decrease of quantum Fisher information of the phase estimation protocol. Given their ease of computation in 2×D bipartite systems, the geometric measure of quantum discord and the local quantum uncertainty demonstrate their relevance as computable measures of quantum discord.We acknowledge support from the Spanish Ministry of Economy and Competitiveness (“Severo Ochoa” program for Centres of Excellence in R&D No. SEV-2015-0522), from Fundacio Privada Cellex, from Fundacio Mir-Puig, and from Generalitat de Catalunya through the CERCA program. This work was partially funded through the EMPIR project 17FUN01-BeCOMe. The EMPIR initiative is cofunded by the European Union Horizon 2020 Research and Innovation Programme and the EMPIR participating states. A.V. acknowledges financial support from PREBIST that has received funding from the European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 754558. J.R.A. acknowledges funding by the European Union Horizon 2020 Research and Innovation Programme (Marie Sklodowska- Curie 765075-LIMQUET). R.J.L.M. thankfully acknowledges financial support by CONACyT under the project CB-2016-01/284372, and by Direcci n General de Asuntos del Personal Acad mico, Universidad Nacional Aut noma de M xico (DGAPA-UNAM), under the project UNAM-PAPIIT IN102920.Peer ReviewedPostprint (author's final draft

    Loss of MicroRNA-7 Regulation Leads to α-Synuclein Accumulation and Dopaminergic Neuronal Loss In Vivo

    Get PDF
    Abnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss. MicroRNA-7 (miR-7) regulates α-synuclein expression by binding to the 3' UTR of the Synuclein Alpha Non A4 Component of Amyloid Precursor (SNCA) gene and inhibiting its translation. We show that miR-7 is decreased in the substantia nigra of patients with PD and, therefore, may play an essential role in the regulation of α-synuclein expression. Furthermore, we have found that lentiviral-mediated expression of miR-7 complementary binding sites to stably induce a loss of miR-7 function results in an increase in α-synuclein expression in vitro and in vivo. We have also shown that depletion of miR-7 using a miR-decoy produces a loss of nigral dopaminergic neurons accompanied by a reduction of striatal dopamine content. These data suggest that miR-7 has an important role in the regulation of α-synuclein and dopamine physiology and may provide a new paradigm to study the pathology of PD

    Serum CD26 is related to histopathological polyp traits and behaves as a marker for colorectal cancer and advanced adenomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum CD26 (sCD26) levels were previously found diminished in colorectal cancer (CRC) patients compared to healthy donors, suggesting its potential utility for early diagnosis. Therefore we aimed to estimate the utility of the sCD26 as a biomarker for CRC and advanced adenomas in a high-risk group of patients. The relationship of this molecule with polyp characteristics was also addressed.</p> <p>Methods</p> <p>sCD26 levels were measured by ELISA in 299 symptomatic and asymptomatic patients who had undergone a colonoscopy. Patients were diagnosed as having no colorectal pathology, non-inflammatory or inflammatory bowel disease, polyps (hyperplastic, non-advanced and advanced adenomas) or CRC.</p> <p>Results</p> <p>At a 460 ng/mL cut-off, the sCD26 has a sensitivity and specificity of 81.8% (95% CI, 64.5-93.0%) and 72.3% (95% CI, 65.0-77.2%) for CRC regarding no or benign colorectal pathology. Clinicopathological analysis of polyps showed a relationship between the sCD26 and the grade of dysplasia and the presence of advanced adenomas. Hence, a 58.0% (95% CI, 46.5-68.9%) sensitivity detecting CRC and advanced adenomas was obtained, with a specificity of 75.5% (95% CI, 68.5-81.0%).</p> <p>Conclusions</p> <p>Our preliminary results show that measurement of the sCD26 is a non-invasive and reasonably sensitive assay, which could be combined with others such as the faecal occult blood test for the early diagnosis and screening of CRC and advanced adenomas. Additional comparative studies in average-risk populations are necessary.</p

    Declining extra-pair paternity with laying order associated with initial incubation behavior, but independent of final clutch size in the blue tit

    Get PDF
    Although functional explanations for female engagement in extra-pair copulation have been studied extensively in birds, little is known about how extra-pair paternity is linked to other fundamental aspects of avian reproduction. However, recent studies indicate that the occurrence of extra-pair offspring may generally decline with laying order, possibly because stimulation by eggs induces incubation, which may suppress female motivation to acquire extra-pair paternity. Here we tested whether experimental inhibition of incubation during the laying phase, induced by the temporary removal of eggs, resulted in increased extra-pair paternity, in concert with a later cessation of laying, in blue tits (Cyanistes caeruleus). As expected, experimental females showed a more gradual increase in nocturnal incubation duration over the laying phase and produced larger clutches than controls. Moreover, incubation duration on the night after the first egg was laid predicted how extra-pair paternity declined with laying order, with less incubation being associated with more extra-pair offspring among the earliest eggs in the clutch. However, incubation duration on this first night was unrelated to our experimental treatment and independent of final clutch size. Consequently, the observed decline in extra-pair paternity with laying order was unaffected by our manipulation and larger clutches included proportionally fewer extra-pair offspring. We suggest that female physiological state prior to laying, associated with incubation at the onset of laying, determines motivation to acquire extra-pair paternity independent of final clutch size. This decline in proportion of extra-pair offspring with clutch size may be a general pattern within bird species

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes

    Get PDF
    The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure
    corecore