17,516 research outputs found
Dynamics for holographic codes
We describe how to introduce dynamics for the holographic states and codes
introduced by Pastawski, Yoshida, Harlow and Preskill. This task requires the
definition of a continuous limit of the kinematical Hilbert space which we
argue may be achieved via the semicontinuous limit of Jones. Dynamics is then
introduced by building a unitary representation of a group known as Thompson's
group T, which is closely related to the conformal group in 1+1 dimensions. The
bulk Hilbert space is realised as a special subspace of the semicontinuous
limit Hilbert space spanned by a class of distinguished states which can be
assigned a discrete bulk geometry. The analogue of the group of large bulk
diffeomorphisms is given by a unitary representation of the Ptolemy group Pt,
on the bulk Hilbert space thus realising a toy model of the AdS/CFT
correspondence which we call the Pt/T correspondence.Comment: 40 pages (revised version submitted to journal). See video of related
talk: https://www.youtube.com/watch?v=xc2KIa2LDF
Limited phase deviation frequency multiplier phase modulator, appendix e final report
Limited phase deviation frequency multiplier phase modulator - application to radio frequency test console equipmen
Measuring the Galaxy Cluster Bulk Flow from WMAP data
We have looked for bulk motions of galaxy clusters in the WMAP~7 year data.
We isolate the kinetic Sunyaev-Zeldovich (SZ) signal by filtering the WMAP Q, V
and W band maps with multi-frequency matched filters, that utilize the spatial
properties of the kinetic SZ signal to optimize detection. We try two filters:
a filter that has no spectral dependence, and a filter that utilizes the
spectral properties of the kinetic and thermal SZ signals to remove the thermal
SZ bias. We measure the monopole and dipole spherical harmonic coefficients of
the kinetic SZ signal, as well as the modes, at the locations of 736
ROSAT observed galaxy clusters. We find no significant power in the kinetic SZ
signal at these multipoles with either filter, consistent with the CDM
prediction. Our limits are a factor of ~ 3 more sensitive than the claimed bulk
flow detection of~\citet{2009ApJ...691.1479K}. Using simulations we estimate
that in maps filtered by our matched filter with no spectral dependence there
is a thermal SZ dipole that would be mistakenly measured as a bulk motion of
km/s. For the WMAP data the signal to noise ratio obtained
with the unbiased filter is almost an order of magnitude lower.Comment: 31 pages, 25 figures. Added an appendix with more discussion of
previous results. Some discussion added to answer the referee's comment
Perspectives on subnational carbon and climate footprints: A case study of Southampton, UK
Sub-national governments are increasingly interested in local-level climate change management. Carbon- (CO2 and CH4) and climate-footprints—(Kyoto Basket GHGs) (effectively single impact category LCA metrics, for global warming potential) provide an opportunity to develop models to facilitate effective mitigation. Three approaches are available for the footprinting of sub-national communities. Territorial-based approaches, which focus on production emissions within the geo-political boundaries, are useful for highlighting local emission sources but do not reflect the transboundary nature of sub-national community infrastructures. Transboundary approaches, which extend territorial footprints through the inclusion of key cross boundary flows of materials and energy, are more representative of community structures and processes but there are concerns regarding comparability between studies. The third option, consumption-based, considers global GHG emissions that result from final consumption (households, governments, and investment). Using a case study of Southampton, UK, this chapter develops the data and methods required for a sub-national territorial, transboundary, and consumption-based carbon and climate footprints. The results and implication of each footprinting perspective are discussed in the context of emerging international standards. The study clearly shows that the carbon footprint (CO2 and CH4 only) offers a low-cost, low-data, universal metric of anthropogenic GHG emission and subsequent management
Microbial oxidation of arsenite in a subarctic environment: diversity of arsenite oxidase genes and identification of a psychrotolerant arsenite oxidiser
Background: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold environments (i.e. < 10°C).
Results: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples (which differed in arsenite concentration) collected from one biofilm. 'Species' (sequence) richness did not differ between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth phase and to grow at a broad range of temperatures (4-25°C). Its arsenite oxidase was constitutively expressed and functioned over a broad temperature range.
Conclusions: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the ability to grow below 10°C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation in moderate to cold climates
Resumption of mass accretion in RS Oph
The latest outburst of the recurrent nova RS Oph occurred in 2006 February. Photometric data presented here show evidence of the resumption of optical flickering, indicating re-establishment of accretion by day 241 of the outburst. Magnitude variations of up to 0.32 mag in V band and 0.14 mag in B band on time-scales of 600–7000 s are detected. Over the two-week observational period, we also detect a 0.5 mag decline in the mean brightness, from V≈ 11.4 to 11.9, and record B≈ 12.9 mag. Limits on the mass accretion rate of [inline image] are calculated, which span the range of accretion rates modelled for direct wind accretion and Roche lobe overflow mechanisms. The current accretion rates make it difficult for thermonuclear runaway models to explain the observed recurrence interval, and this implies average accretion rates are typically higher than seen immediately post-outburst
Solitary waves on a ferrofluid jet
The propagation of axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet subjected to a magnetic field is investigated. An azimuthal magnetic field is generated by an electric current flowing along a stationary metal rod which is mounted along the axis of the moving jet. A numerical method is used to compute fully-nonlinear travelling solitary waves and predictions of elevation waves and depression waves by Rannacher & Engel (2006) using a weakly-nonlinear theory are confirmed in the appropriate ranges of the magnetic Bond number. New nonlinear branches of solitary wave solutions are identified. As the Bond number is varied, the solitary wave profiles may approach a limiting configuration with a trapped toroidal-shaped bubble, or they may approach a static wave (i.e. one with zero phase speed). For a sufficiently large axial rod, the limiting profile may exhibit a cusp
- …
