503 research outputs found

    Who benefits most from participating in chronic disease self-management programs?

    Full text link
    Objectives: To quantify the benefits that people receive from participating in self-management courses and identify subgroups that benefit most.Research Design: People with a wide range of chronic conditions attending self-management courses (N=1,341 individuals) were administered the generic Health Education Impact Questionnaire (HEI-Q). Data were collected before the first session (baseline) and at the end of courses (follow-up) resulting in 842 complete responses. The median (interquartile range) age was 64 (54 to 73) years and most participants were female (75%). Outcomes were categorized as Substantial improvement (Effect Size, ES &ge; 0.5), Minimal/No change (ES -0.49 to 0.49) and Substantial decline (ES &le; -0.5).Results: On average, one third of participants reported substantial benefits after attending a self-management course. Proportions of participants reporting substantial benefits ranged from 49% in Skill and technique acquisition to 27% in Health service navigation. Stratification by gender, age and education showed that younger participants were more likely to benefit, particularly young women. No further subgroup differences were observed.Conclusions: Given that the health of people with chronic diseases tends to decline, this evaluation is reassuring in that about one third of participants coming from a wide range of backgrounds receive substantial improvements in their self-management skills.<br /

    Entanglement between a qubit and the environment in the spin-boson model

    Get PDF
    The quantitative description of the quantum entanglement between a qubit and its environment is considered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is calculated as a function of α\alpha, the strength of the ohmic coupling to the environment, and ϵ\epsilon, the level asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo model. For ϵ=0\epsilon=0, the entanglement increases monotonically with α\alpha, until it becomes maximal for αlim1\alpha \lim 1^-. For fixed ϵ>0\epsilon>0, the entanglement is a maximum as a function of α\alpha for a value, α=αM<1\alpha = \alpha_M < 1.Comment: 4 pages, 3 figures. Shortened version restricted to groundstate entanglemen

    Financial rogue waves

    Full text link
    The financial rogue waves are reported analytically in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These solutions may be used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.Comment: 4 papges, 2 figures, Final version accepted in Commun. Theor. Phys., 201

    Hydrodynamics of domain growth in nematic liquid crystals

    Full text link
    We study the growth of aligned domains in nematic liquid crystals. Results are obtained solving the Beris-Edwards equations of motion using the lattice Boltzmann approach. Spatial anisotropy in the domain growth is shown to be a consequence of the flow induced by the changing order parameter field (backflow). The generalization of the results to the growth of a cylindrical domain, which involves the dynamics of a defect ring, is discussed.Comment: 12 revtex-style pages, including 12 figures; small changes before publicatio

    Hydroclimate variability was the main control on fire activity in northern Africa over the last 50,000 years

    Get PDF
    North Africa features some of the most frequently burnt biomes on Earth, including the semi-arid grasslands of the Sahel and wetter savannas immediately to the south. Natural fires are fuelled by rapid biomass production during the wet season, its desiccation during the dry season and ignition by frequent dry lightning strikes. Today, fire activity decreases markedly both to the north of the Sahel, where rainfall is extremely low, almost eliminating biomass over the Sahara, and to the south where forest biomes are too wet to burn. Over the last glacial cycle, rainfall and vegetation cover over northern Africa varied dramatically in response to gradual astronomically-forced insolation change, changes in atmospheric carbon dioxide levels, and abrupt cooling events over the North Atlantic Ocean associated with the reorganisation of Meridional Overturning Circulation (MOC). Here we report the results of a study into the impact of these climate changes on fire activity in northern African over the last 50,000 years (50 kyr). Our reconstructions come from marine sediments with strong age control that provide an uninterrupted record of charcoal particles exported from the African continent. We studied three sites on a latitudinal transect along the northwest African margin between 21 and 9°N. Our sites exhibit a distinct latitudinal relationship between past changes in rainfall and fire activity. At the southernmost site (GeoB9528-3, 9°N), fire activity decreased during intervals of increasing humidity, while our northernmost site (ODP Site 658, 21°N) clearly demonstrates the opposite relationship. The site in the middle of our transect, offshore of the present day southern Sahel today (GeoB9508-5, 15°N), exhibits a “Goldilocks” relationship between fire activity and hydroclimate, wherein charcoal fluxes peak under intermediate rainfall climate conditions and are supressed by transition to more arid or more humid conditions. Our results are remarkably consistent with the predictions of the intermediate fire-productivity hypothesis developed in conceptual macroecological models and supported by empirical evidence of modern day fire activity. Feedback processes operating between fire, climate and vegetation are undoubtedly complex but temperature is suggested to be the main driver of temporal change in fire activity globally, with the precipitation-evaporation balance perhaps a secondary influence in the Holocene tropics. However, there is only sparse coverage of Africa in the composite records upon which those interpretations are based. We conclude that hydroclimate (not temperature) exerted the dominant control on burning in the tropics of northern Africa well before the Holocene (from at least 50 ka)

    Entanglement of two-mode Bose-Einstein condensates

    Get PDF
    We investigate the entaglement characteristics of two general bimodal Bose-Einstein condensates - a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and thus the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled case.Comment: 11 pages, 8 figures, submitted to Physical Review A, to be presented at the third UQ Mathematical Physics workshop, Oct. 4-6; changes made in response to referee comment

    Mixtures of Bosonic and Fermionic Atoms in Optical Lattices

    Full text link
    We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field theory, and present numerical studies of finite systems. The Bosonic and Fermionic density distributions and the onset of quantum phase transitions to demixing and to a Bosonic Mott--insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasi--degenerate ground states is related to a breaking of the mirror symmetry in the lattice.Comment: 11 pages, 8 figures; added discussions; conclusions and references expande

    The role of plasma-atom and molecule interactions on power \& particle balance during detachment on the MAST Upgrade Super-X divertor

    Get PDF
    First quantitative analysis of the detachment processes in the MAST Upgrade Super-X divertor show an unprecedented impact of plasma-molecular interactions involving molecular ions (likely D2+D_2^+), resulting in strong ion sinks, leading to a reduction of ion target flux. This starts to occur as the ionisation source detaches from the target, leading to a build-up of molecules below the ionisation source who get excited, resulting in Molecular Activated Recombination (MAR) and Dissociation (MAD). The particle sinks in the divertor chamber exceed the ion sources in the middle of the detached operational regime before electron-ion recombination (EIR) starts to occur, demonstrating the strong capabilities for particle exhaust in the Super-X Configuration. MAD is the dominant volumetric neutral atom creation mechanism and results in significant power losses. This, combined with electron-impact excitation preceding ionisation, are the dominant power loss mechanisms in the divertor chamber. As the plasma becomes more deeply detached, EIR starts to occur and electron temperatures below 0.2 eV are achieved. Even at such low electron temperature conditions, MAR is observed to be an important ion sink mechanism, which suggests the presence of highly vibrationally excited molecules in the cold detached regime. The total radiative power loss is consistent with extrapolations of spectroscopic inferences to hydrogenic radiative power losses, which suggests that intrinsic impurity radiation, despite the carbon walls, is minor. These observations are observed in Ohmic L-mode, ELM-free H-mode and type I ELMy H-mode discharges

    Rapid parallel adaptation to anthropogenic heavy metal pollution

    Get PDF
    The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, species’ capacities to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonised isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the evolutionary history of geographically proximate mine and coastal population pairs and found largely independent colonisation of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpinning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and, therefore, difficult to predict from genomic data
    corecore