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Entanglement between a qubit and the environment in the spin-boson model
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The quantitative description of the quantum entanglement between a qubit and its environment is consid-
ered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is
calculated as a function ofa, the strength of the ohmic coupling to the environment, and«, the level
asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo
model. For«50, the entanglement increases monotonically witha, until it becomes maximal fora→12. For
fixed «.0, the entanglement is a maximum as a function ofa for a value,a5aM,1.
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Due to the promise of quantum computation there is c
rently considerable interest in the relationship between
tanglement, decoherence, entropy, and measurement. M
vated by quantum information theory several authors h
recently investigated entanglement in quantum many-b
systems@2,1,3,4#. It is often stated that decoherence or
measurement causes a system to become entangled wi
environment. The purpose of this paper is to make th
ideas quantitative by a study of the simplest possible mo
the spin-boson model@5,6#. This describes a qubit~two-level
system! interacting with an infinite collection of harmoni
oscillators that model the environment responsible for de
herence and dissipation. Specifically, we show how the
tanglement between a superposition state of the qubit and
environment changes as the coupling between the qubit
environment increases. One interesting result is that we
that the qubit becomes maximally entangled with the en
ronment when the couplinga approaches a particular finit
value (a→12). Furthermore, at this value the model unde
goes a quantum phase transition, which is consistent w
recent observations that often entanglement is largest
quantum critical points@2,1,3,4#.

The spin-boson model.The Hamiltonian is@5,6#
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i
l i~ai1ai

†!, ~1!

where D is the bare tunneling amplitude between the t
quantum-mechanical states↑ and↓, « is the level asymme-
try ~or bias!, v i are the frequencies of the oscillators, andl i
is the strength with which they couple to the two quantu
mechanical states. The effect of the oscillator bath is co
pletely determined by the spectral functionJ(v), defined
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below @5#. We will only consider the ohmic case, where it
has a linear dependence on frequency

J~v!5p(
i

l i
2d~v2v i !52pav

for v!vc , anda is the dimensionless dissipation streng
The cutoff frequencyvc@D. This model can describe th
decoherence of Josephson junction qubits, such as thos
cently realized experimentally@7#, due to voltage fluctua-
tions in the electronic circuit@8#, anda can be expressed in
terms of resistances and capacitances in the circuit an
this is an experimentally tunable parameter. Recent res
show it is possible to construct devices witha!1, the re-
gime required for quantum computation. However, wh
modeling measurements one hasa;1.

The dynamical properties of the model have been ext
sively studied. In particular, suppose the spin~qubit! is ini-
tially in a pure state which is a product state of up spin a
the environment state, then the coherent Rabi oscillati
that would be observed in the absence of coupling to
environment are modified as follows. One finds distinct b
havior for 0,a,1/2 ~damped coherent oscillations!, 1/2
,a,1 ~exponential decay!, and 1,a ~localization, i.e., the
spin remains in the up state! @5,6,9,15#.

Entropy of entanglement.We now consider a quantitativ
description of the entanglement of the qubit with the en
ronment. A good entanglement measure for a pure state is
von Neumann entropy or entropy of entanglement@10,11#

E~r!52Tr~r log2r!, ~2!

wherer is the reduced density matrix of the qubit. This is
two by two matrix given by

r5
1

2 S 11 (
a5x,y,z

^sa&saD , ~3!

where^sa& denotes the expectation value in the state of
terest. In this case Eq.~2! reduces to

E~r!52p1log2p12p2log2p2 , ~4!
©2003 The American Physical Society01-1
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wherep6 are the eigenvalues of the density matrix,

p65
1

2
~16u^sW &u!. ~5!

For «50 the only nonzero value of̂sa& is ^sx&. At T
50 it is given by

^sx&52
]E0

]D
, ~6!

whereE0 is the ground-state energy of the Hamiltonian~1!,
and use has been made of the Feynman-Hellmann theo
That the other values are zero can be seen by symmetr
follows. In general the Hamiltonian is invariant under t
reflection in spin space,sy→2sy . Hence, all eigenstate
must have a definite parity under this transformation. Th
^sy&52^sy& for all states and sôsy&50 at any tempera-
ture. For«50 the Hamiltonian is also invariant under th
joint transformationsz→2sz and ai→2ai and so ^sz&
50 at any temperature, provided there is no symme
breaking.

The challenge is now to evaluate the ground-state exp
tation valueŝ sx& and^sz&. For a.1/2 and particularly for
a;1 this is a highly nontrivial problem because in this r
gime nonperturbative effects become important@5,6#. How-
ever, we show how these expectation values can be evalu
using the numerical renormalization group~NRG! applied to
the equivalent anisotropic Kondo model.

Anisotropic Kondo Model.The above model is equivalen
to the anisotropic Kondo model~AKM !, defined by@12#

H5(
k,s

ekcks
† cks1

J'

2
~c0↑

† c0↓S21c0↓
† c0↑S1!

1
Ji

2
~c0↑

† c0↑2c0↓
† c0↓!Sz1gmBhSz . ~7!

The first term represents a free electron conduction band
use a flat density of statesr051/2D0 per spin, with 2D0 the
bandwidth. The second and third terms represent the tr
verse and longitudinal parts of the exchange interaction
tween aS51/2 impurity and the local conduction-electro
spin density, and the last term represents a Zeeman term
a magnetic-field coupling only to the impurity spin. The co
respondence betweenH andHSB, established via bosoniza
tion @13,14#, implies «5gmBh, D/vc5r0J' , and a5(1
12d/p)2, where tand52pr0Ji/4. d is the phase shift for
scattering of electrons from a potentialJi/4 @5,15,13#. We
choosevc52D0 so thatD5J' . This equivalence has bee
used extensively to make predictions about the dynam
@15# and thermodynamics@14# of the ohmic spin-boson
model. The relevant low-energy scale for the thermodyna
ics is the Kondo scaleTK(J' ,Ji) which is identified with the
renormalized tunneling amplitudeD r of the spin-boson
model,

D r

vc
5S D

vc
D 1/(12a)

. ~8!
03430
m.
as

s,

y

c-

ted

e

s-
e-

for

s

-

We restrict ourselves in this paper to the longitudinal sec
of the AKM, i.e., to J',uJiu, where the simple paramete
correspondence between the models given above rem
valid to lowest order inD/vc5r0J' . For larger values of
D/vc , a will acquire a renormalization due to finiteD
5J' , as indicated by the scaling analysis of the AKM
Refs. @12,14#. This renormalization, however, is importan
mainly for the transverse sector of the AKM,J'.uJiu, which
we do not consider in this paper.

We turn now to the evaluation of^sx&. The equivalence
between models ensures that the AKM has~to within an
additive constant! the same ground-state energyE0 as that of
the spin-boson model. AtT50, we therefore find, in analogy
to Eq. ~6! applied to the AKM withD5J' , that

^sx&5^c0,↑
† c0,↓S21H.c.&, ~9!

i.e., ^sx& can be obtained from alocal static correlation func-
tion. Another way of seeing that this relation is valid, is
note that the unitary transformation in bosonization wh
transformsH into HSB also transforms (c0,↑

† c0,↓S21H.c.)
into sx of the spin-boson model~details of this mapping can
be found in Ref.@13# and in greater detail in Appendix A o
Ref. @14#!. The same unitary transformation on the AKM
transformŝ Sz& into sz/2 of the spin-boson model. The latte
can therefore be calculated directly within the AKM as
thermodynamic averagê2Sz&.

Method.The above local correlation function can be ca
culated from Wilson’s NRG method@16# which has been
shown to give very reliable results for quantum impur
models such as the AKM@17#. The approach used here a
lows in addition the calculation of local dynamical quan
ties, such as the dynamical susceptibili
^^c0,↑

† c0,↓S2;c0,↓
† c0,↑S1&& @18#. In outline ~see Ref.@16# for

the details!, the procedure consists of introducing a logarit
mic mesh ofk points kn5L2n,L.1 for the conduction
band and performing a unitary transformation of thecks such
that f 0s5(kcks is the first operator in a new basisf ns ,n
50,1, . . . , which tridiagonalizesHc5(kmekmckm

† ckm in k
space. The Hamiltonian~7! with the discretized form of the
kinetic energy is now diagonalized by the following iterativ
process: ~a! One defines a sequence of finite-si
Hamiltonians HN5(m(n50

N21jnL2n/2( f n11m
† f nm1H.c.)

1(J'/2)( f 0↑
† f 0↓S21 f 0↓

† f 0↑S1) 1 (Ji/2)( f 0↑
† f 0↑2 f 0↓

† f 0↓)Sz

for N>0 and jn→1 for n@1 @16#; ~b! The sequence o
HamiltoniansHN for N50,1, . . . isiteratively diagonalized
within a product basis of, typically, up to 1200 states for ea
iteration, up to a maximum valueN5Nm . This gives the
excitations and many-body eigenstates at a correspondin
of energy scalesvN defined by the lowest scalevN
5L2(N21)/2 in HN . The matrix elementŝmuOx,zun&N for
the operatorsOx5c0,↑

† c0,↓S2 andOz5Sz , required to calcu-
late^sx& and^sz&, are also calculated iteratively. The choic
of Nm depends on the Kondo scaleTK5D r and hence ona,
but for givena ~i.e., for givenJ' ,Ji) should be large enough
such thatvNm

!D r . A discretization parameterL51.5 was
used throughout and we checked that the above expecta
values remained unchanged on further increasingNm . This
1-2
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suggested that our approximation of using a finiteNm to
calculate the thermodynamic expectation values of the i
nite system is a very good one.

Symmetric case.For «50 anda,1 only ^sx& is nonva-
nishing. We show this in Fig. 1 atT50 versus dimensionles
dissipation strengtha in the range 0,a,1, and for several
values of the dimensionless tunneling amplitudeD/vc . The
limiting noninteracting valuê sx&→1 is recovered asa
→0. In the limitD/vc→0 it vanishes at the quantum critica
point of the spin-boson modela51 whereD r→0. For any
finite fixedD/vc , however, our use of the AKM implies tha
the critical behavior occurs atac.1 with ac→1 asJ'→0
~specifically, this critical behavior occurs at th
ferromagnetic-antiferromagnetic boundaryJ'52Ji). Fig-
ure 1 also shows theT50 entropy of entanglement of th
qubit. The entropy vanishes asa→0 and approaches it
maximum value asa→12 ~see also Ref.@20# for weak dis-
sipation results for E!. Fora.1, we are in the ferromagneti
sector of the AKM wherêsz&51,̂ sx&50, and the reduced
density matrix eigenvaluesp650,1 givingE50, i.e.,E(a)
drops discontinuously at the quantum critical pointa51
@19#. It is interesting that for a spin qubit coupled to tw
bosonic baths it is possible to remain in the delocaliz
phase~i.e., ^sz&50) for all dissipation strengths@21#. Fi-
nally, we note that the entropy of entanglement is quite d
ferent from the thermodynamic entropy of the boundary~or
impurity spin entropy!. The latter is usually defined a
S(a)2S(a50) whereS(a) is the total thermodynamic en
tropy of the system@14#. The impurity spin entropy is zero
for a,1 because the ground state of the AKM is a sp
singlet forJi.0.

FIG. 1. The dependence of~i! the ground-state expectatio
value ^sx& as a function of the dimensionless couplinga to the
environment for«50 and~ii ! the entanglement entropyE of a qubit
ohmically coupled to an environment as a function ofa for «50.
The different curves correspond to different values of the ratio
the bare tunneling amplitudeD to the cutoff frequency of the boso
bath vc . Note that asa→12 the qubit becomes maximally en
tangled with the environment.
03430
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Asymmetric case.For «.0, ^sz& acquires a finite value
analogous to the magnetization^Sz& in a local magnetic field
gmBh5« in the AKM. The entanglement entropyE now
depends onu^sW &u5(u^sx&u21u^sz&u)1/2 via Eq. ~3! and is
shown in Fig. 2. The behavior ofE as a function ofa and«
is understood from the behavior of^sx& and ^sz& shown in
Fig. 3. In particular, we now find that for arbitrary small«,
the entanglement entropy first increases with increasinga
before reaching a maximum value ata5aM,1 and then
decreasing asa→1. This behavior arises from the compe
tion between thea dependence of̂sx& and ^sz& in Fig. 3.
Whereaŝ sx& continues to decrease monotonically with i
creasinga ~as for«50), it is seen that̂sz& increases mono-

f

FIG. 2. The dependence of the entanglement entropy of
ground state on the coupling to the environmenta and the level
asymmetry« for D/vc50.04. Note that for«.0, the entanglemen
is a maximum ata5aM,1.

FIG. 3. The dependence of the ground-state expectation va
^sx&, ^sz& on a and« for D/vc50.04. Fora50 the noninteract-

ing valueŝ sx&5D/A«21D2 and^sz&5«/A«21D2 are recovered
for all values of«/D.
1-3
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tonically with increasinga, with ^sz&→1 as a→1. The
condition for full polarization,̂ sz&'1, is «@D r . For any
«.0, this condition is always satisfied sinceD r→0 as a

→1. It follows thatu^sW &u has a minimum as a function ofa
and that the entanglement entropy, for«.0, has a maximum
at a5aM,1 before decreasing again asa→1.

Finally, we suggest several directions for future work.
~i! This work focused solely on static properties of t

spin-boson model. It would be interesting to consider d
namics, for example, the longitudinal and the transverse
namical susceptibilities, and hence extract the decohere
and relaxation rates for an ohmically coupled qubit. In ad
tion, it is interesting to ask how the entanglement varies w
time if the initial state has no entanglement of the qubit a
the environment.

~ii ! The AKM is integrable by the Bethe ansatz@22#. The
AKM can also be related to a free boson field theory with
boundary sine-Gordon term@9,23# which is also integrable
by the Bethe ansatz. Exact expressions can be obtaine
the free energy. It involves solving a set of thermodynam
Bethe ansatz~TBA! equations. AtT50 the impurity ground-
state energy is going to be related toTK . The real problem is
A

t

A.

a

y

t-
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getting results for arbitrary anisotropies~dissipation
strengths! @24#.

~iii ! Recently it was shown@4# that if in a quantum critical
system one calculates the entropy of entanglement of a
system of sizeL with the rest of the system this equals th
geometric entropy previously calculated for the correspo
ing conformal field theory~motivated by questions concern
ing black-hole thermodynamics!! @25#. It would be interest-
ing to perform similar calculations for the relevant bounda
field theory.

~iv! The NRG can also be used to reliably calculate pro
erties of the spin-boson model at nonzero temperature@19#.
However, calculating the entanglement at nonzero temp
ture is an open problem because it involves a mixed state
it is not practical to evaluate the measure of entanglem
that has been proposed for such states@10#.
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