PHYSICAL REVIEW A 68, 034301 (2003

Entanglement between a qubit and the environment in the spin-boson model
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The quantitative description of the quantum entanglement between a qubit and its environment is consid-
ered. Specifically, for the ground state of the spin-boson model, the entropy of entanglement of the spin is
calculated as a function aof, the strength of the ohmic coupling to the environment, andhe level
asymmetry. This is done by a numerical renormalization group treatment of the related anisotropic Kondo
model. Fore =0, the entanglement increases monotonically withuntil it becomes maximal for— 1. For
fixed e>0, the entanglement is a maximum as a functiomrdbr a value,a= ay<1.
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Due to the promise of quantum computation there is curbelow[5]. We will only consider the ohmic case, where it is
rently considerable interest in the relationship between enhas a linear dependence on frequency
tanglement, decoherence, entropy, and measurement. Moti-
vated by quantum information theory several authors have
recently investigated entanglement in quantum many-body
systems[2,1,3,4. It is often stated that decoherence or a
measurement causes a system to become entangled with i&§ w<w., and« is the dimensionless dissipation strength.
environment. The purpose of this paper is to make theséhe cutoff frequencyw.>A. This model can describe the
ideas quantitative by a study of the simplest possible modelecoherence of Josephson junction qubits, such as those re-
the spin-boson mod¢b,6]. This describes a qubitwo-level ~ cently realized experimentallf7], due to voltage fluctua-
system interacting with an infinite collection of harmonic tions in the electronic circuit8], anda can be expressed in
oscillators that model the environment responsible for decoterms of resistances and capacitances in the circuit and so
herence and dissipation. Specifically, we show how the enthis is an experimentally tunable parameter. Recent results
tanglement between a superposition state of the qubit and tishow it is possible to construct devices with1, the re-
environment changes as the coupling between the qubit argime required for quantum computation. However, when
environment increases. One interesting result is that we fincdhodeling measurements one has 1.
that the qubit becomes maximally entangled with the envi- The dynamical properties of the model have been exten-
ronment when the coupling approaches a particular finite sively studied. In particular, suppose the spiubit) is ini-
value (@—17). Furthermore, at this value the model under-tially in a pure state which is a product state of up spin and
goes a quantum phase transition, which is consistent witthe environment state, then the coherent Rabi oscillations
recent observations that often entanglement is largest ne#htat would be observed in the absence of coupling to the
guantum critical point$2,1,3,4. environment are modified as follows. One finds distinct be-

The spin-boson modeThe Hamiltonian i5,6] havior for 0<a<1/2 (damped coherent oscillationsl/2
<a<1 (exponential decgyand 1<« (localization, i.e., the
spin remains in the up statgs,6,9,19.

J(w)= 772 )\izé(w—wi)ZZﬂ'aw

HSB:;AUX+ %80’24- 2 ;| ala;+ % Entropy of entanglemente now consider a quantitative
' description of the entanglement of the qubit with the envi-
1 ronment. A good entanglement measure for a pure state is the
+ 5‘722 Ni(aj+a)), (1)  von Neumann entropy or entropy of entanglemelt, 11]
I

E(p)=—Tr(plogzp), 2

wherep is the reduced density matrix of the qubit. This is a
two by two matrix given by

where A is the bare tunneling amplitude between the two
guantum-mechanical statésand |, ¢ is the level asymme-
try (or biag, w; are the frequencies of the oscillators, and

is the strength with which they couple to the two quantum-
mechanical states. The effect of the oscillator bath is com- p=5 1+37; , (oa)oal, )
pletely determined by the spectral functidfw), defined -

where(o,) denotes the expectation value in the state of in-

terest. In this case E@2) reduces to
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wherep.. are the eigenvalues of the density matrix, We restrict ourselves in this paper to the longitudinal sector
of the AKM, i.e., toJ, <|Jj|, where the simple parameter

:1(1+|< »>|) ) correspondence between the models given above remains
P= A AN valid to lowest order ilMA/w.=pyd, . For larger values of
Alw, a will acquire a renormalization due to finitA
For e=0 the only nonzero value dfo) is (o). At T =], | as indicated by the scaling analysis of the AKM in
=0 it is given by Refs.[12,14). This renormalization, however, is important
JE mainly for the transverse sector of the AKM,>|J)|, which
0

6) we do not consider in this paper.

We turn now to the evaluation dfr,). The equivalence
) o between models ensures that the AKM Hé&s within an
whereE, is the ground-state energy of the Hamiltonid),  aqgitive constantthe same ground-state eneify as that of
and use has been made of the Feynman-Hellmann theoregpe spin-boson model. At=0, we therefore find, in analogy

That the other values are zero can be seen by symmetry gs Eq. (6) applied to the AKM withA=J, , that
follows. In general the Hamiltonian is invariant under the '

reflection in spin spacey,— — o, . Hence, all eigenstates _/nt —

must have a definite pariycy undeyr this transformation. Thus, {0:0=(C0;C0, S +HC), ©
(oy)=—(0oy) for all states and s¢o,)=0 at any tempera-
ture. Fore =0 the Hamiltonian is also invariant under the
joint transformationo,— — o, and a;— —a; and so{o,)
=0 at any temperature, provided there is no symmetr
breaking.

The challenge is now to evaluate the ground-state expe
tation valueq o) and(o,). For a>1/2 and particularly for
a~1 this is a highly nontrivial problem because in this re-
gime nonperturbative effects become importgs6]. How-
ever, we show how these expectation values can be evaluat

using the numerical renormalization grolpRG) applied to . .
the equivalent anisotropic Kondo model. Method.The above local correlation function can be cal-

Anisotropic Kondo ModelThe above model is equivalent culated from Wilson's NRG methoft16] which has been

; : - shown to give very reliable results for quantum impurity
to the anisotropic Kondo modéAKM), defined by[12] models such as the AKNI17]. The approach used here al-

J, lows in addition the calculation of local dynamical quanti-
H=> ecCl,Crot ?(CSTCOLS* +cfciSh) ties, such as the dynamical  susceptibility
ko ((cd;C0,S7:¢h, €0 ST)) [18]. In outline (see Ref[16] for
I, : the detailg, the procedure consists of introducing a logarith-
+E(COTCOT—COICOL)SZ-i-g/LBhSZ. (7)  mic mesh ofk points k,=A"",A>1 for the conduction
band and performing a unitary transformation of thg such
The first term represents a free electron conduction band. W@t fo,=ZCy, is the first operator in a new basfg, ,n
use a flat density of stateg=1/2D, per spin, with Dy the ~ =0.1, ..., which tridiagonalizesH =2\, €,,,Cy,Ciu in K
bandwidth. The second and third terms represent the tran§Pace. The Hamiltoniav) with the discretized form of the
verse and longitudinal parts of the exchange interaction bekinetic energy is now diagonalized by the following iterative
tween aS=1/2 impurity and the local conduction-electron Process: (&) One defines a sequence of finite-size
spin density, and the last term represents a Zeeman term fbtamiltonians Hy=3, SN g&n A "(f, 1, o+ H.C)
a magnetic-field coupling only to the impurity spin. The cor- +(J,/2)(f8;fo,S™+ 8 f0;S™) + (3/2) (F§,fo; = 15, f0,) S
respondence betweeth andHgg, established via bosoniza- for N=0 and §,—1 for n>1 [16]; (b) The sequence of
tion [13,14), implies e=gugh, Alw,=pyd,, and a=(1  HamiltoniansHy for N=0,1, . .. isiteratively diagonalized
+26/ )2, where tars= — mpodyl4. & is the phase shift for within a product basis of, typically, up to 1200 states for each
scattering of electrons from a potentidl/4 [5,15,13. We iteration, up to a maximum valull=N,. This gives the
choosew.= 2D, so thatA=J, . This equivalence has been excitations and many-body eigenstates at a corresponding set
used extensively to make predictions about the dynamicef energy scaleswy defined by the lowest scalevy
[15] and thermodynamic§14] of the ohmic spin-boson =A~MN"D2in Hy. The matrix element¢m|O, ,/n)y for
model. The relevant low-energy scale for the thermodynamthe operator@xzcgﬁcoyisf andO,=S,, required to calcu-
ics is the Kondo scal&x (J, ,Jj) which is identified with the  late(o,) and(o,), are also calculated iteratively. The choice
renormalized tunneling amplitudd, of the spin-boson of N,, depends on the Kondo scalg =A, and hence om,
model, but for givena (i.e., for givenJ, ,Jj) should be large enough
such thatwy <A, . A discretization parametek =1.5 was
Ar ( A )1/(1— a) m

(Ux>:2Ea

i.e.,(oy) can be obtained fromlacal static correlation func-
tion. Another way of seeing that this relation is valid, is to
note that the unitary transformation in bosonization which
YransformsH into Hgg also transforms c(gchovlS‘+H.c.)
into o, of the spin-boson modétietails of this mapping can
e found in Ref[13] and in greater detail in Appendix A of
Ref. [14]). The same unitary transformation on the AKM
transformgS,) into /2 of the spin-boson model. The latter
gn therefore be calculated directly within the AKM as a
ermodynamic averages,).

- (8) used throughout and we checked that the above expectation

e values remained unchanged on further increadipg This
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FIG. 2. The dependence of the entanglement entropy of the
ground state on the coupling to the environmenand the level
asymmetrye for A/w.=0.04. Note that foe >0, the entanglement
is a maximum atr=ay<1.

FIG. 1. The dependence df) the ground-state expectation
value {o,) as a function of the dimensionless couplingto the
environment fore =0 and(ii) the entanglement entrofig/of a qubit
ohmically coupled to an environment as a functionaofor e=0. ) ) o
The different curves correspond to different values of the ratio of Asymmetric case-or >0, (o) acquires a finite value
the bare tunneling amplitud® to the cutoff frequency of the boson analogous to the magnetizati¢8,) in a local magnetic field
bath w,. Note that asa— 1~ the qubit becomes maximally en- gugh=¢ in the AKM. The entanglement entropl now
tangled with the environment. depends ori<5—>| :(|<o’x>|2+ |<0-Z>|)1/2 via Eq. (3) and is

o _ o shown in Fig. 2. The behavior & as a function ofx ande
suggested that our approximation of using a fifitg to  is understood from the behavior ¢#,) and(c,) shown in
calculate the thermodynamic eXpeCtation values of the |nf|‘F|g 3. 1n particu'ar, we now find that for arbitrary Sma“
nite system is a very good one. _ the entanglement entropy first increases with increasing

~ Symmetric casdzor 6 =0 anda<1 only (oy) is nonva-  pefore reaching a maximum value at=ay<1 and then
nishing. We show this in Fig. 1 §t=0 versus dimensionless decreasing aa— 1. This behavior arises from the competi-
dissipation strengtlr in the range 8-«<1, and for several tjon between ther dependence ofc,) and(c,) in Fig. 3.
values of the dimensionless tunneling amplituteo.. The  \whereas(o,) continues to decrease monotonically with in-

limiting noninteracting valug(oy)—1 is recovered asr  creasingx (as fore =0), it is seen thato,) increases mono-
—0. In the limitA/w.— 0 it vanishes at the quantum critical

point of the spin-boson model=1 whereA,—0. For any
finite fixed A/ w., however, our use of the AKM implies that
the critical behavior occurs ai,>1 with a,—1 asJ, —0
(specifically, this critical behavior occurs at the
ferromagnetic-antiferromagnetic boundady = —J)). Fig-
ure 1 also shows th& =0 entropy of entanglement of the
qgubit. The entropy vanishes as—0 and approaches its
maximum value asr— 1~ (see also Ref.20] for weak dis-
sipation results for E Fora>1, we are in the ferromagnetic
sector of the AKM wheréo,)=1,{0,)=0, and the reduced
density matrix eigenvalugs..=0,1 givinge=0, i.e.,E(«)
drops discontinuously at the quantum critical pomt 1
[19]. It is interesting that for a spin qubit coupled to two
bosonic baths it is possible to remain in the delocalized
phase(i.e., (d,)=0) for all dissipation strengthf21]. Fi- -0.1 . : - . .
nally, we note that the entropy of entanglement is quite dif- 0.0 0.2 04 0.6 0.8 1.0
ferent from the thermodynamic entropy of the boundary
impurity spin entropy. The latter is usually defined as
S(a) — S(a=0) whereS(«) is the total thermodynamic en- FIG. 3. The dependence of the ground-state expectation values
tropy of the systeni14]. The impurity spin entropy is zero (o), (o;) ona ande for A/w.=0.04. Fora=0 the noninteract-

for <1 because the ground state of the AKM is a spining values(a,)=A/\e2+A? and{o,) =&/ s+ A? are recovered
singlet forJ;>0. for all values ofe/A.
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tonically with increasinge, with (o,)—1 asa—1. The getting results for arbitrary anisotropiegdissipation

condition for full polarization{o,)~1, ise>A,. For any  strengthg[24].

£>0, this condition is always satisfied sindg —0 as« (iii ) Recently it was showpd] that if in a quantum critical

—1. It follows that|(5>| has a minimum as a function of  system one calculates the entropy of entanglement of a sub-

and that the entanglement entropy, $0¢ 0, has a maximum System of size. with the rest of the system this equals the

at = ay <1 before decreasing again as—1. geometric entropy previously calculated for the correspond-
Finally, we suggest several directions for future work. ing conformal field theorymotivated by questions concern-
(i) This work focused solely on static properties of theing black-hole thermodynamigs]25]. It would be interest-

spin-boson model. It would be interesting to consider dy-ing to perform similar calculations for the relevant boundary

namics, for example, the longitudinal and the transverse dyfield theory.

namical susceptibilities, and hence extract the decoherence (jv) The NRG can also be used to reliably calculate prop-

and relaxation rates for an ohmically coupled qubit. In addi-erties of the spin-boson model at nonzero temperdil@

tion, it is interesting to ask how the entanglement varies withjowever, calculating the entanglement at nonzero tempera-

time if the initial state has no entanglement of the qubit andye is an open problem because it involves a mixed state and

the environment. it is not practical to evaluate the measure of entanglement
(il) The AKM is integrable by the Bethe ansd22]. The 4 -t has been proposed for such stéfe.

AKM can also be related to a free boson field theory with a

boundary sine-Gordon terfi9,23] which is also integrable T.A.C. acknowledges support from the Deutsche Fors-

by the Bethe ansatz. Exact expressions can be obtained fohungsgemeinschaft through the Sonderforschungsbereich

the free energy. It involves solving a set of thermodynamic195. Work at UQ was supported by the Australian Research

Bethe ansatfTBA) equations. AT =0 the impurity ground-  Council. We thank A. Hines, A. W. W. Ludwig, G. J. Mil-
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