49 research outputs found

    Marrying Business Activity Modeling with Activity-Based Costing for Measuring Systems’ Cost Savings

    Get PDF
    The motivation for business change is either to improve the quality of products or services or decrease the costs of current operations that create those products or services. Since implementation of an information system causes business change, that implementation should demonstrate some explicit value in improvement of quality or decreased costs (or both). Quantifying the value provides justification for information systems implementation. Through a case study of four real-world examples, this article shows how activity-based costing determines costs associated with a set of business activities prior to a business change and then again after the implemented system. Four separate municipal organizations’ business activity models were built prior to implementation of web-based electronic payment systems and then after the implementation. Activity-based costing analysis demonstrated benefits of reduced costs in a range from 15% to 28% in three cases. However, costs actually increased by 7% in a fourth case

    Network interdigitations of Tau and amyloid-beta deposits define cognitive levels in aging

    Get PDF
    Amyloid-beta (Aβ) plaques and tau neurofibrillary tangles are pathological hallmarks of Alzheimer's disease (AD); their contribution to neurodegeneration and clinical manifestations are critical in understanding preclinical AD. At present, the mechanisms related to Aβ and tau pathogenesis leading to cognitive decline in older adults remain largely unknown. Here, we examined graph theory-based positron emission tomography (PET) analytical approaches, within and between tau and Aβ PET modalities, and tested the effects on cognitive changes in cognitively normal older adults (CN). Particularly, we focused on the network interdigitations of Aβ and tau deposits, along with cognitive test scores in CN at both baseline and 2-year follow-up (FU). We found highly significant Aβ-tau network integrations in AD vulnerable areas, as well as significant associations between those Aβ-tau interdigitations and general cognitive impairment in CN at baseline and FU. Our findings suggest a distinctive contribution of interlinking network relationships between Aβ and tau deposits in heteromodal areas of the human brain. They support a network-based interaction between Aβ and tau accumulations as a key factor for cognitive deterioration in CN prior to dementia. We examined network interaction patterns within single positron emission tomography (PET) modality, such as Aß-to-Aß or Tau-to-Tau correlations, and between different PET modalities, such as Aß-to-Tau or Tau-to-Aß, at high-resolution (voxel-level) in cognitively normal older adults (CN), using a graph theory-based analysis. We observed that the PET uptakes derived from Aß-to-Tau interdigitations were significantly associated with Alzheimer's Disease Assessment Scale-Cognitive Subscale in AD vulnerable brain areas, a finding confirmed by our longitudinal investigation. Therefore, our work suggests the preceding contribution of network interactions between Aß and tau deposits to explain initial cognitive changes in CN prior to the conversion of dementia

    Factors that influence exercise activity among women post hip fracture participating in the Exercise Plus Program

    Get PDF
    Using a social ecological model, this paper describes selected intra- and interpersonal factors that influence exercise behavior in women post hip fracture who participated in the Exercise Plus Program. Model testing of factors that influence exercise behavior at 2, 6 and 12 months post hip fracture was done. The full model hypothesized that demographic variables; cognitive, affective, physical and functional status; pain; fear of falling; social support for exercise, and exposure to the Exercise Plus Program would influence self-efficacy, outcome expectations, and stage of change both directly and indirectly influencing total time spent exercising. Two hundred and nine female hip fracture patients (age 81.0 ± 6.9), the majority of whom were Caucasian (97%), participated in this study. The three predictive models tested across the 12 month recovery trajectory suggest that somewhat different factors may influence exercise over the recovery period and the models explained 8 to 21% of the variance in time spent exercising. To optimize exercise activity post hip fracture, older adults should be helped to realistically assess their self-efficacy and outcome expectations related to exercise, health care providers and friends/peers should be encouraged to reinforce the positive benefits of exercise post hip fracture, and fear of falling should be addressed throughout the entire hip fracture recovery trajectory

    Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees

    Get PDF
    Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 +/- 4 days; mean +/- 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 +/- 19 mm (mean +/- SE) during their peak growth than ring-porous and coniferous species (15 +/- 35 mm and 30 +/- 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.Peer reviewe

    The Transition from Stem Cell to Progenitor Spermatogonia and Male Fertility Requires the SHP2 Protein Tyrosine Phosphatase

    Full text link
    SHP2 is a widely expressed protein tyrosine phosphatase required for signal transduction from multiple cell surface receptors. Gain and loss of function SHP2 mutations in humans are known to cause Noonan and LEOPARD syndromes, respectively, that are characterized by numerous pathological conditions including male infertility. Using conditional gene targeting in the mouse, we found that SHP2 is required for maintaining spermatogonial stem cells (SSCs) and the production of germ cells required for male fertility. After deleting SHP2, spermatogenesis was halted at the initial step during which transit‐amplifying undifferentiated spermatogonia are produced from SSCs. In the absence of SHP2, proliferation of SSCs and undifferentiated spermatogonia was inhibited, thus germ cells cannot be replenished and SSCs cannot undergo renewal. However, germ cells beyond the undifferentiated spermatogonia stage of development at the time of SHP2 knockout were able to complete their maturation to become sperm. In cultures of SSCs and their progeny, inhibition of SHP2 activity reduced growth factor‐mediated intracellular signaling that regulates SSC proliferation and cell fate. Inhibition of SHP2 also decreased the number of SSCs present in culture and caused SSCs to detach from supporting cells. Injection of mice with an SHP2 inhibitor blocked the production of germ cells from SSCs. Together, our studies show that SHP2 is essential for SSCs to maintain fertility and indicates that the pathogenesis of infertility in humans with SHP2 mutations is due to compromised SSC functions that block spermatogenesis. S tem C ells 2014;32:741–753Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106124/1/stem1572.pd

    Connectomic-genetic signatures in the cerebral small vessel disease

    Get PDF
    Small vessel disease (SVD) is a disorder that causes vascular lesions in the entire parenchyma of the human brain. At present, it is not well understood how primary and secondary damage interact to give rise to the complex scenario of white matter (WM) and grey matter (GM) lesions. Using novel cross-sectional and longitudinal connectomic approaches, we unveil the bidirectional nature of GM and WM changes, that is, primary cortical neurodegeneration that leads to secondary alterations in vascular border zones, and WM lesions that lead to secondary neurodegeneration in cortical projecting areas. We found this GM-WM interaction to be essential for executive cognitive performance. Moreover, we also observed that the interlocked degeneration of GM and WM over time associates with prototypical expression levels of genes potentially linked to SVD. Among these connectomic-genetic intersections, we found that the Androgen Receptor (AR) gene, is a particularly central candidate gene that might confer key vulnerability for brain lesion development in SVD. In conclusion, this study advances in the understanding of the bidirectional relationships between GM and WM lesions, primary and secondary vascular neurodegeneration, and sheds light on the genetic signatures of SV

    Imagining emotional events benefits future-oriented decisions

    Get PDF
    How does imagining future events—whether positive or negative—influence our choices in the present? Prior work has shown the simulation of hypothetical future events, dubbed episodic future thinking, can alter the propensity to engage in delay discounting (the tendency to devalue future rewards) and does so in a valence-specific manner. Some research shows that positive episodic future thinking reduces delay discounting, whereas negative future thinking augments it. However, more recent research indicates that both positive and negative episodic future thinking reduce delay discounting, suggesting an effect of episodic future thinking that is independent of valence. In this study, we sought to replicate and extend these latter findings. Here, participants (N = 604; N = 572 after exclusions) completed an online study. In the baseline task, participants completed a delay discounting task. In the experimental task, they engaged in episodic future thinking before completing a second delay discounting task. Participants were randomly assigned to engage in either positive, neutral, or negative episodic future thinking. In accordance with Bulley et al., we found that episodic future thinking, regardless of valence, reduced delay discounting. Although episodic future thinking shifted decision-making in all conditions, the effect was stronger when participants engaged in positive episodic future thinking, even after accounting for personal relevance and vividness of imagined events. These findings suggest that episodic future thinking may promote future-oriented choices by contextualising the future, and this effect is further strengthened when the future is tied to positive emotion

    Carbon budget of the Harvard Forest Long- Term Ecological Research site: pattern, process, and response to global change

    Full text link
    How, where, and why carbon (C) moves into and out of an ecosystem through time are long- standing questions in biogeochemistry. Here, we bring together hundreds of thousands of C- cycle observations at the Harvard Forest in central Massachusetts, USA, a mid- latitude landscape dominated by 80- 120- yr- old closed- canopy forests. These data answered four questions: (1) where and how much C is presently stored in dominant forest types; (2) what are current rates of C accrual and loss; (3) what biotic and abiotic factors contribute to variability in these rates; and (4) how has climate change affected the forest- s C cycle? Harvard Forest is an active C sink resulting from forest regrowth following land abandonment. Soil and tree biomass comprise nearly equal portions of existing C stocks. Net primary production (NPP) averaged 680- 750 g C·m- 2·yr- 1; belowground NPP contributed 38- 47% of the total, but with large uncertainty. Mineral soil C measured in the same inventory plots in 1992 and 2013 was too heterogeneous to detect change in soil- C pools; however, radiocarbon data suggest a small but persistent sink of 10- 30 g C·m- 2·yr- 1. Net ecosystem production (NEP) in hardwood stands averaged ~300 g C·m- 2·yr- 1. NEP in hemlock- dominated forests averaged ~450 g C·m- 2·yr- 1 until infestation by the hemlock woolly adelgid turned these stands into a net C source. Since 2000, NPP has increased by 26%. For the period 1992- 2015, NEP increased 93%. The increase in mean annual temperature and growing season length alone accounted for ~30% of the increase in productivity. Interannual variations in GPP and NEP were also correlated with increases in red oak biomass, forest leaf area, and canopy- scale light- use efficiency. Compared to long- term global change experiments at the Harvard Forest, the C sink in regrowing biomass equaled or exceeded C cycle modifications imposed by soil warming, N saturation, and hemlock removal. Results of this synthesis and comparison to simulation models suggest that forests across the region are likely to accrue C for decades to come but may be disrupted if the frequency or severity of biotic and abiotic disturbances increases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/3/ecm1423_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/2/ecm1423-sup-0001-AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163495/1/ecm1423.pd

    Multiresolution identification of germ layer components in teratomas derived from human and nonhuman primate embryonic stem cells

    Full text link
    We propose a system for identification of germ layer components in teratomas derived from human and nonhuman primate embryonic stem cells. Tissue regeneration and repair, drug testing and discov-ery, the cure of genetic and developmental syndromes all may rest on the understanding of the biology and behavior of embryonic stem (ES) cells. Within the field of stem cell biology, an ES cell is not con-sidered an ES cell until it can produce a teratoma tumor (the ”gold” standard test); a seemingly disorganized mass of tissue derived from all three embryonic germ layers; ectoderm, mesoderm, and endo-derm. Identification and quantification of tissue types within ter-atomas derived from ES cells may expand our knowledge of abnor-mal and normal developmental programming and the response of ES cells to genetic manipulation and/or toxic exposures. In addition, because of the tissue complexity, identifying and quantifying the tis-sue is tedious and time consuming, but in turn the teratoma provides an excellent biological platform to test robust image analysis algo-rithms. We use a multiresolution (MR) classification system with texture features, as well as develop novel nuclear texture features to recognize germ layer components. With redundant MR transform, we achieve a classification accuracy of approximately 88%. Index Terms — Stem cell biology, multiresolution, classifica-tion, feature extractio
    corecore